Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
7a3b49e5
Commit
7a3b49e5
authored
Jun 25, 2022
by
Chao Liu
Browse files
Merge remote-tracking branch 'origin/develop' into contraction
parents
e07b3d8e
d3051d75
Changes
592
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1047 additions
and
285 deletions
+1047
-285
profiler/include/profile_gemm_add_add_fastgelu_impl.hpp
profiler/include/profile_gemm_add_add_fastgelu_impl.hpp
+290
-0
profiler/include/profile_gemm_bias_2d_impl.hpp
profiler/include/profile_gemm_bias_2d_impl.hpp
+13
-11
profiler/include/profile_gemm_bias_add_reduce_impl.hpp
profiler/include/profile_gemm_bias_add_reduce_impl.hpp
+390
-0
profiler/include/profile_gemm_bias_relu_add_impl.hpp
profiler/include/profile_gemm_bias_relu_add_impl.hpp
+14
-11
profiler/include/profile_gemm_bias_relu_impl.hpp
profiler/include/profile_gemm_bias_relu_impl.hpp
+14
-11
profiler/include/profile_gemm_impl.hpp
profiler/include/profile_gemm_impl.hpp
+15
-11
profiler/include/profile_gemm_reduce_impl.hpp
profiler/include/profile_gemm_reduce_impl.hpp
+42
-41
profiler/include/profile_grouped_gemm_impl.hpp
profiler/include/profile_grouped_gemm_impl.hpp
+15
-11
profiler/include/profile_reduce_impl.hpp
profiler/include/profile_reduce_impl.hpp
+38
-25
profiler/src/profile_batched_gemm.cpp
profiler/src/profile_batched_gemm.cpp
+5
-12
profiler/src/profile_batched_gemm_reduce.cpp
profiler/src/profile_batched_gemm_reduce.cpp
+4
-3
profiler/src/profile_conv_bwd_weight.cpp
profiler/src/profile_conv_bwd_weight.cpp
+5
-3
profiler/src/profile_conv_fwd_bias_relu.cpp
profiler/src/profile_conv_fwd_bias_relu.cpp
+5
-3
profiler/src/profile_conv_fwd_bias_relu_add.cpp
profiler/src/profile_conv_fwd_bias_relu_add.cpp
+5
-3
profiler/src/profile_conv_fwd_bias_relu_atomic_add.cpp
profiler/src/profile_conv_fwd_bias_relu_atomic_add.cpp
+0
-116
profiler/src/profile_convnd_bwd_data.cpp
profiler/src/profile_convnd_bwd_data.cpp
+4
-3
profiler/src/profile_convnd_fwd.cpp
profiler/src/profile_convnd_fwd.cpp
+24
-15
profiler/src/profile_gemm.cpp
profiler/src/profile_gemm.cpp
+5
-3
profiler/src/profile_gemm_add_add_fastgelu.cpp
profiler/src/profile_gemm_add_add_fastgelu.cpp
+154
-0
profiler/src/profile_gemm_bias_2d.cpp
profiler/src/profile_gemm_bias_2d.cpp
+5
-3
No files found.
profiler/include/profile_gemm_add_add_fastgelu_impl.hpp
0 → 100644
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/host_tensor/host_conv.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
DeviceGemmAddAddFastGeluPtr
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDPtr
<
2
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddAddFastGelu
>
;
void
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
(
std
::
vector
<
DeviceGemmAddAddFastGeluPtr
>&
);
void
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
DeviceGemmAddAddFastGeluPtr
>&
);
void
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances
(
std
::
vector
<
DeviceGemmAddAddFastGeluPtr
>&
);
void
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances
(
std
::
vector
<
DeviceGemmAddAddFastGeluPtr
>&
);
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
D0DataType
,
typename
D1DataType
,
typename
EDataType
,
typename
ALayout
,
typename
BLayout
,
typename
D0Layout
,
typename
D1Layout
,
typename
ELayout
>
int
profile_gemm_add_add_fastgelu_impl
(
int
do_verification
,
int
init_method
,
bool
/*do_log*/
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideD0
,
int
StrideD1
,
int
StrideE
)
{
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
D0DataType
>
d0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD0
,
D0Layout
{}));
Tensor
<
D1DataType
>
d1_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD1
,
D1Layout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m_n: "
<<
d1_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_device_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
5
,
5
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
}
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddAddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddAddFastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddAddFastGelu
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
// add device GEMM instances
std
::
vector
<
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
DeviceGemmAddAddFastGeluPtr
>
device_op_ptrs
;
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>
&&
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>
&&
is_same_v
<
ELayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
(
device_op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>
&&
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>
&&
is_same_v
<
ELayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
(
device_op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>
&&
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>
&&
is_same_v
<
ELayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances
(
device_op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>
&&
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>
&&
is_same_v
<
ELayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances
(
device_op_ptrs
);
}
}
std
::
cout
<<
"found "
<<
device_op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
// run reference
if
(
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
M
),
static_cast
<
std
::
size_t
>
(
N
)}));
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_m_n
(
m
,
n
),
d1_m_n
(
m
,
n
));
}
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d0_m_n_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d1_m_n_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_m_n_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
d1_m_n_device_buf
.
ToDevice
(
d1_m_n
.
mData
.
data
());
std
::
string
best_device_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
bool
pass
=
true
;
// profile device operation instances
for
(
auto
&
device_op_ptr
:
device_op_ptrs
)
{
auto
argument_ptr
=
device_op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
2
>
{
d0_m_n_device_buf
.
GetDeviceBuffer
(),
d1_m_n_device_buf
.
GetDeviceBuffer
()},
static_cast
<
EDataType
*>
(
e_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
2
>
{
StrideD0
,
StrideD1
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
device_op_ptr
->
MakeInvokerPointer
();
std
::
string
device_op_name
=
device_op_ptr
->
GetTypeString
();
if
(
device_op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init E to zero before profiling a kernel
e_device_buf
.
SetZero
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
device_op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_device_op_name
=
device_op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
);
}
}
else
{
std
::
cout
<<
device_op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_device_op_name
<<
std
::
endl
;
return
pass
?
0
:
1
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profile_gemm_bias_2d_impl.hpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "device_gemm_bias.hpp"
#include "reference_gemm_bias_2d.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_bias_2d.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
profiler/include/profile_gemm_bias_add_reduce_impl.hpp
0 → 100644
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
DPtrsGlobal
=
ck
::
Tuple
<
F32
*
,
F32
*>
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
DInElementOps
=
ck
::
Tuple
<
Identity
,
Square
>
;
using
DOutElementOps
=
ck
::
Tuple
<
Div
,
Div
>
;
using
DeviceGemmBiasAddReduceNoOpPtr
=
ck
::
tensor_operation
::
device
::
DeviceGemmBiasAddReducePtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
DInElementOps
,
DOutElementOps
>
;
void
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_mk_kn_mn_instances
(
std
::
vector
<
DeviceGemmBiasAddReduceNoOpPtr
>&
);
void
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_mk_nk_mn_instances
(
std
::
vector
<
DeviceGemmBiasAddReduceNoOpPtr
>&
);
void
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_kn_mn_instances
(
std
::
vector
<
DeviceGemmBiasAddReduceNoOpPtr
>&
);
void
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_nk_mn_instances
(
std
::
vector
<
DeviceGemmBiasAddReduceNoOpPtr
>&
);
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
C0DataType
,
typename
C1DataType
,
typename
DDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
void
profile_gemm_bias_add_reduce_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
int
StrideC1
)
{
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C0DataType
>
bias_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
C1DataType
>
c1_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d0_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
DDataType
>
d1_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d0_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
DDataType
>
d1_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m: "
<<
d0_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m: "
<<
d1_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
std
::
srand
(
0
);
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
},
num_thread
);
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
},
num_thread
);
bias_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
},
num_thread
);
c1_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
std
::
srand
(
0
);
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
},
num_thread
);
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
},
num_thread
);
bias_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
0.5
,
0.5
},
num_thread
);
c1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
},
num_thread
);
}
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
using
C1ElementOp
=
PassThrough
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
DxsInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
DxsOutElementOps
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
const
auto
c1_element_op
=
C1ElementOp
{};
const
auto
d0_reduce_op
=
D0ReduceOp
{};
const
auto
d1_reduce_op
=
D1ReduceOp
{};
auto
dxs_in_element_op
=
DxsInElementOps
{};
auto
dxs_out_element_op
=
DxsOutElementOps
{
N
,
N
};
if
(
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
DDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
using
ReduceAccDataType
=
DDataType
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ReduceAccDataType
acc
=
static_cast
<
ReduceAccDataType
>
(
c_m_n_host_result
(
m
,
n
))
+
static_cast
<
ReduceAccDataType
>
(
bias_n
(
n
));
ReduceAccDataType
c1
=
static_cast
<
ReduceAccDataType
>
(
c1_m_n
(
m
,
n
));
c_element_op
(
acc
,
acc
);
c1_element_op
(
c1
,
c1
);
acc
+=
c1
;
c_m_n_host_result
(
m
,
n
)
=
static_cast
<
CDataType
>
(
acc
);
}
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
d0_acc
=
d0_reduce_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
d1_acc
=
d1_reduce_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ReduceAccDataType
c_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
c_m_n_host_result
(
m
,
n
));
ReduceAccDataType
d0_val
;
ReduceAccDataType
d1_val
;
dxs_in_element_op
(
ck
::
Number
<
0
>
{})(
d0_val
,
c_val
);
dxs_in_element_op
(
ck
::
Number
<
1
>
{})(
d1_val
,
c_val
);
d0_reduce_op
(
d0_acc
,
d0_val
);
d1_reduce_op
(
d1_acc
,
d1_val
);
}
dxs_out_element_op
(
ck
::
Number
<
0
>
{})(
d0_acc
,
d0_acc
);
dxs_out_element_op
(
ck
::
Number
<
1
>
{})(
d1_acc
,
d1_acc
);
d0_m_host_result
(
m
)
=
ck
::
type_convert
<
DDataType
>
(
d0_acc
);
d1_m_host_result
(
m
)
=
ck
::
type_convert
<
DDataType
>
(
d1_acc
);
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
bias_device_buf
(
sizeof
(
C0DataType
)
*
bias_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c1_device_buf
(
sizeof
(
C1DataType
)
*
c1_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d0_device_buf
(
sizeof
(
DDataType
)
*
d0_m_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
d1_device_buf
(
sizeof
(
DDataType
)
*
d1_m_device_result
.
mDesc
.
GetElementSpace
());
auto
dxs_global
=
ck
::
make_tuple
(
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()));
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_n
.
mData
.
data
());
c1_device_buf
.
ToDevice
(
c1_m_n
.
mData
.
data
());
// add device GEMM instances
std
::
vector
<
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
DeviceGemmBiasAddReduceNoOpPtr
>
gemm_ptrs
;
if
constexpr
(
is_same
<
ADataType
,
half_t
>::
value
&&
is_same
<
BDataType
,
half_t
>::
value
&&
is_same
<
CDataType
,
half_t
>::
value
)
{
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_mk_kn_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_mk_nk_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_kn_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_bias_add_reduce_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_nk_mn_instances
(
gemm_ptrs
);
}
}
if
(
gemm_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device GEMM instance found"
);
}
std
::
string
best_gemm_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device GEMM instances
for
(
auto
&
gemm_ptr
:
gemm_ptrs
)
{
auto
argument_ptr
=
gemm_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
static_cast
<
C1DataType
*>
(
c1_device_buf
.
GetDeviceBuffer
()),
&
dxs_global
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
StrideC1
,
a_element_op
,
b_element_op
,
c_element_op
,
c1_element_op
,
dxs_in_element_op
,
dxs_out_element_op
);
auto
invoker_ptr
=
gemm_ptr
->
MakeInvokerPointer
();
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// init DO, D1 to 0
d0_device_buf
.
SetZero
();
d1_device_buf
.
SetZero
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
+
std
::
size_t
(
2
)
*
M
*
N
;
std
::
size_t
num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
+
sizeof
(
C0DataType
)
*
M
*
N
+
sizeof
(
C1DataType
)
*
M
*
N
+
sizeof
(
DDataType
)
*
M
+
sizeof
(
DDataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_gemm_name
=
gemm_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
d0_device_buf
.
FromDevice
(
d0_m_device_result
.
mData
.
data
());
d1_device_buf
.
FromDevice
(
d1_m_device_result
.
mData
.
data
());
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
ck
::
utils
::
check_err
(
d0_m_device_result
.
mData
,
d0_m_host_result
.
mData
);
ck
::
utils
::
check_err
(
d1_m_device_result
.
mData
,
d1_m_host_result
.
mData
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host: "
,
c_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d0_host: "
,
d0_m_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d0_device: "
,
d0_m_device_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d1_host: "
,
d1_m_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d1_device: "
,
d1_m_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
"does not support this GEMM problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
std
::
endl
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profile_gemm_bias_relu_add_impl.hpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "c
heck_err
.hpp"
#include "c
onfig
.hpp"
#include "
device
.hpp"
#include "
host_tensor
.hpp"
#include "host_tensor_generator.hpp"
#include "
host_conv
.hpp"
#include "
tensor_layout
.hpp"
#include "device_
tens
or.hpp"
#include "
element_wise_operation
.hpp"
#include "
device_gemm_bias_activation_add
.hpp"
#include "reference_gemm_bias_activation_add.hpp"
#include "c
k/ck
.hpp"
#include "c
k/tensor_operation/gpu/device/tensor_layout
.hpp"
#include "
ck/tensor_operation/gpu/device/device_gemm_bias_activation_add
.hpp"
#include "
ck/tensor_operation/gpu/element/element_wise_operation
.hpp"
#include "
ck/library/utility/check_err
.hpp"
#include "
ck/library/utility/conv_util
.hpp"
#include "
ck/library/host_tensor/
device_
mem
or
y
.hpp"
#include "
ck/library/host_tensor/host_tensor
.hpp"
#include "
ck/library/host_tensor/host_tensor_generator
.hpp"
#include "
ck/library/reference_tensor_operation/cpu/
reference_gemm_bias_activation_add.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
profiler/include/profile_gemm_bias_relu_impl.hpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "c
heck_err
.hpp"
#include "c
onfig
.hpp"
#include "
device
.hpp"
#include "
host_tensor
.hpp"
#include "host_tensor_generator.hpp"
#include "
host_conv
.hpp"
#include "
tensor_layout
.hpp"
#include "device_
tens
or.hpp"
#include "
element_wise_operation
.hpp"
#include "
device_gemm_bias_activation
.hpp"
#include "reference_gemm_bias_activation.hpp"
#include "c
k/ck
.hpp"
#include "c
k/tensor_operation/gpu/device/tensor_layout
.hpp"
#include "
ck/tensor_operation/gpu/device/device_gemm_bias_activation
.hpp"
#include "
ck/tensor_operation/gpu/element/element_wise_operation
.hpp"
#include "
ck/library/utility/check_err
.hpp"
#include "
ck/library/utility/conv_util
.hpp"
#include "
ck/library/host_tensor/
device_
mem
or
y
.hpp"
#include "
ck/library/host_tensor/host_tensor
.hpp"
#include "
ck/library/host_tensor/host_tensor_generator
.hpp"
#include "
ck/library/reference_tensor_operation/cpu/
reference_gemm_bias_activation.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
profiler/include/profile_gemm_impl.hpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "c
heck_err
.hpp"
#include "c
onfig
.hpp"
#include "
device
.hpp"
#include "
host_tensor
.hpp"
#include "host_tensor_generator.hpp"
#include "
host_conv
.hpp"
#include "
tensor_layout
.hpp"
#include "device_
tens
or.hpp"
#include "
element_wise_operation
.hpp"
#include "
device_gemm
.hpp"
#include "reference_gemm.hpp"
#include "c
k/ck
.hpp"
#include "c
k/tensor_operation/gpu/device/tensor_layout
.hpp"
#include "
ck/tensor_operation/gpu/device/device_gemm
.hpp"
#include "
ck/tensor_operation/gpu/element/element_wise_operation
.hpp"
#include "
ck/library/utility/check_err
.hpp"
#include "
ck/library/utility/conv_util
.hpp"
#include "
ck/library/host_tensor/
device_
mem
or
y
.hpp"
#include "
ck/library/host_tensor/host_tensor
.hpp"
#include "
ck/library/host_tensor/host_tensor_generator
.hpp"
#include "
ck/library/reference_tensor_operation/cpu/
reference_gemm.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
profiler/include/profile_gemm_reduce_impl.hpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "reduction_operator.hpp"
#include "device_gemm_reduce.hpp"
#include "reference_gemm.hpp"
#include "ck/ck.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -19,14 +24,13 @@ namespace device_gemm_instance {
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
DPtrsGlobal
=
ck
::
Tuple
<
F32
*
,
F32
*>
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
Unary
Identic
<
F32
,
F32
,
true
>
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
F32
,
F32
,
false
>
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
F32
,
F32
,
false
>
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
Unary
Divide
;
using
Identity
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
DInElementOps
=
ck
::
Tuple
<
Identity
,
Square
>
;
using
DOutElementOps
=
ck
::
Tuple
<
Div
,
Div
>
;
using
DeviceGemmReduceNoOpPtr
=
ck
::
tensor_operation
::
device
::
DeviceGemmReducePtr
<
DPtrsGlobal
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
...
...
@@ -123,18 +127,16 @@ bool profile_gemm_reduce_impl(int do_verification,
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
},
num_thread
);
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
float
,
float
,
true
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
float
,
float
,
false
>
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
float
,
float
,
false
>
;
using
DxsInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
DxsOutElementOps
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
DxsInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
DxsOutElementOps
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
...
...
@@ -143,7 +145,7 @@ bool profile_gemm_reduce_impl(int do_verification,
const
auto
d1_reduce_op
=
D1ReduceOp
{};
auto
dxs_in_element_op
=
DxsInElementOps
{};
auto
dxs_out_element_op
=
DxsOutElementOps
{
M
,
M
};
auto
dxs_out_element_op
=
DxsOutElementOps
{
N
,
N
};
if
(
do_verification
)
{
...
...
@@ -155,6 +157,8 @@ bool profile_gemm_reduce_impl(int do_verification,
BElementOp
,
CElementOp
>
;
using
ReduceAccDataType
=
DDataType
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
...
...
@@ -165,14 +169,15 @@ bool profile_gemm_reduce_impl(int do_verification,
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
float
d0_acc
=
d0_reduce_op
.
Get
ReductionZeroVal
();
float
d1_acc
=
d1_reduce_op
.
Get
ReductionZeroVal
();
auto
d0_acc
=
d0_reduce_op
.
Get
IdentityValue
<
ReduceAccDataType
>
();
auto
d1_acc
=
d1_reduce_op
.
Get
IdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
float
c_val
=
ck
::
type_convert
<
float
>
(
c_m_n_host_result
(
m
,
n
));
float
d0_val
=
0
;
float
d1_val
=
0
;
ReduceAccDataType
c_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
c_m_n_host_result
(
m
,
n
));
ReduceAccDataType
d0_val
;
ReduceAccDataType
d1_val
;
dxs_in_element_op
(
ck
::
Number
<
0
>
{})(
d0_val
,
c_val
);
dxs_in_element_op
(
ck
::
Number
<
1
>
{})(
d1_val
,
c_val
);
...
...
@@ -257,7 +262,7 @@ bool profile_gemm_reduce_impl(int do_verification,
gemm_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
dxs_global
,
&
dxs_global
,
M
,
N
,
K
,
...
...
@@ -309,13 +314,9 @@ bool profile_gemm_reduce_impl(int do_verification,
d0_device_buf
.
FromDevice
(
d0_m_device_result
.
mData
.
data
());
d1_device_buf
.
FromDevice
(
d1_m_device_result
.
mData
.
data
());
float
c_error
=
check_error
(
c_m_n_host_result
,
c_m_n_device_result
);
float
d0_error
=
check_error
(
d0_m_host_result
,
d0_m_device_result
);
float
d1_error
=
check_error
(
d1_m_host_result
,
d1_m_device_result
);
pass
=
pass
&&
(
c_error
<
1E-6
);
pass
=
pass
&&
(
d0_error
<
1E-6
);
pass
=
pass
&&
(
d1_error
<
1E-6
);
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
ck
::
utils
::
check_err
(
d0_m_device_result
.
mData
,
d0_m_host_result
.
mData
);
ck
::
utils
::
check_err
(
d1_m_device_result
.
mData
,
d1_m_host_result
.
mData
);
if
(
do_log
)
{
...
...
profiler/include/profile_grouped_gemm_impl.hpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "c
heck_err
.hpp"
#include "c
onfig
.hpp"
#include "
device
.hpp"
#include "
host_tensor
.hpp"
#include "host_tensor_generator.hpp"
#include "
host_conv
.hpp"
#include "
tensor_layout
.hpp"
#include "device_
tens
or.hpp"
#include "
element_wise_operation
.hpp"
#include "
device_gemm
.hpp"
#include "reference_gemm.hpp"
#include "c
k/ck
.hpp"
#include "c
k/tensor_operation/gpu/device/tensor_layout
.hpp"
#include "
ck/tensor_operation/gpu/device/device_gemm
.hpp"
#include "
ck/tensor_operation/gpu/element/element_wise_operation
.hpp"
#include "
ck/library/utility/check_err
.hpp"
#include "
ck/library/utility/conv_util
.hpp"
#include "
ck/library/host_tensor/
device_
mem
or
y
.hpp"
#include "
ck/library/host_tensor/host_tensor
.hpp"
#include "
ck/library/host_tensor/host_tensor_generator
.hpp"
#include "
ck/library/reference_tensor_operation/cpu/
reference_gemm.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
profiler/include/profile_reduce_impl.hpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "check_err.hpp"
#include "device_reduce.hpp"
#include "device_reduce_instance.hpp"
#include "reduction_enums.hpp"
#include "host_reduction.hpp"
#include "host_common_util.hpp"
#include "host_tensor_generator.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_reduction.hpp"
#include "ck/library/host_tensor/host_common_util.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -138,7 +143,6 @@ bool profile_reduce_impl_impl(bool do_verification,
{
using
namespace
ck
::
tensor_operation
::
device
;
using
namespace
ck
::
tensor_operation
::
device
::
device_reduce_instance
;
using
namespace
ck
::
host_reduce
;
using
ck
::
host_common
::
dumpBufferToFile
;
constexpr
bool
op_support_indices
=
...
...
@@ -261,15 +265,22 @@ bool profile_reduce_impl_impl(bool do_verification,
float
best_avg_time
=
0
;
float
best_gb_per_sec
=
0
;
using
InElementwiseOperation_0
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation_0
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
using
InElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
using
ReduceOperation
=
typename
reduce_binary_operator
<
ReduceOpId
>::
opType
;
InElementwiseOperation
in_elementwise_op
;
AccElementwiseOperation
acc_elementwise_op
;
std
::
tie
(
in_elementwise_op
,
acc_elementwise_op
)
=
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
static_cast
<
int32_t
>
(
reduce_total_length
));
using
DeviceReduceInstPtr0
=
DeviceReducePtr
<
InElementwiseOperation
_0
,
AccElementwiseOperation
_0
>
;
DeviceReducePtr
<
InElementwiseOperation
,
AccElementwiseOperation
>
;
std
::
vector
<
DeviceReduceInstPtr0
>
reduce0_ptrs
;
...
...
@@ -313,15 +324,22 @@ bool profile_reduce_impl_impl(bool do_verification,
ReductionHost
<
InDataType
,
AccDataType
,
OutDataType
,
ReduceOpId
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
Rank
,
NumReduceDim
,
PropagateNan
,
OutputIndex
>
hostReduce
(
in
.
mDesc
,
out_ref
.
mDesc
,
invariantDims
,
reduceDims
);
hostReduce
.
Run
(
alpha
,
in
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
out_indices_ref
.
mData
.
data
());
hostReduce
.
Run
(
alpha
,
in
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
out_indices_ref
.
mData
.
data
(),
in_elementwise_op
,
acc_elementwise_op
);
};
std
::
vector
<
ck
::
index_t
>
i_inLengths
;
...
...
@@ -336,11 +354,6 @@ bool profile_reduce_impl_impl(bool do_verification,
for
(
auto
&
reduce_ptr
:
reduce0_ptrs
)
{
InElementwiseOperation_0
in_elementwise_op_0
(
static_cast
<
int32_t
>
(
reduce_total_length
));
AccElementwiseOperation_0
acc_elementwise_op_0
(
static_cast
<
int32_t
>
(
reduce_total_length
));
auto
argument_ptr
=
reduce_ptr
->
MakeArgumentPointer
(
i_inLengths
,
i_inStrides
,
i_outLengths
,
...
...
@@ -352,8 +365,8 @@ bool profile_reduce_impl_impl(bool do_verification,
nullptr
,
out_dev
.
GetDeviceBuffer
(),
out_indices_dev
.
GetDeviceBuffer
(),
in_elementwise_op
_0
,
acc_elementwise_op
_0
);
in_elementwise_op
,
acc_elementwise_op
);
if
(
!
reduce_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
continue
;
...
...
profiler/src/profile_batched_gemm.cpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdint>
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_batched_gemm_xdl.hpp"
#include "profile_batched_gemm_impl.hpp"
#include "profiler/include/profile_batched_gemm_impl.hpp"
enum
struct
GemmMatrixLayout
{
...
...
profiler/src/profile_batched_gemm_reduce.cpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_batched_gemm_reduce_impl.hpp"
#include "
profiler/include/
profile_batched_gemm_reduce_impl.hpp"
int
profile_batched_gemm_reduce
(
int
argc
,
char
*
argv
[])
{
...
...
profiler/src/profile_conv_bwd_weight.cpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_conv_bwd_weight_impl.hpp"
#include "profiler/include/profile_conv_bwd_weight_impl.hpp"
enum
struct
ConvDataType
{
...
...
profiler/src/profile_conv_fwd_bias_relu.cpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_conv_fwd_bias_relu_impl.hpp"
#include "profiler/include/profile_conv_fwd_bias_relu_impl.hpp"
enum
struct
ConvDataType
{
...
...
profiler/src/profile_conv_fwd_bias_relu_add.cpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_conv_fwd_bias_relu_add_impl.hpp"
#include "profiler/include/profile_conv_fwd_bias_relu_add_impl.hpp"
enum
struct
ConvDataType
{
...
...
profiler/src/profile_conv_fwd_bias_relu_atomic_add.cpp
deleted
100644 → 0
View file @
e07b3d8e
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_conv_fwd_bias_relu_atomic_add_impl.hpp"
enum
struct
ConvDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
};
enum
struct
ConvInputLayout
{
NCHW
,
// 0
NHWC
,
// 1
};
enum
struct
ConvWeightLayout
{
KCYX
,
// 0
KYXC
,
// 1
};
enum
struct
ConvOutputLayout
{
NKHW
,
// 0
NHWK
,
// 1
};
int
profile_conv_fwd_bias_relu_atomic_add
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
25
)
{
printf
(
"arg1: tensor operation (conv_fwd_bias_relu_atomic_add: "
"ForwardConvolution+Bias+ReLu+AtomicAdd)
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16)
\n
"
);
printf
(
"arg3: input tensor layout (0: NCHW; 1: NHWC)
\n
"
);
printf
(
"arg4: weight tensor layout (0: KCYX; 1: KYXC)
\n
"
);
printf
(
"arg5: output tensor layout (0: NKHW; 1: NHWK)
\n
"
);
printf
(
"arg6: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg7: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg8: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg9: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg10 to 24: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
ConvDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
in_layout
=
static_cast
<
ConvInputLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
auto
wei_layout
=
static_cast
<
ConvWeightLayout
>
(
std
::
stoi
(
argv
[
4
]));
const
auto
out_layout
=
static_cast
<
ConvOutputLayout
>
(
std
::
stoi
(
argv
[
5
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
6
]);
const
int
init_method
=
std
::
stoi
(
argv
[
7
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
8
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
9
]);
const
ck
::
index_t
N
=
std
::
stoi
(
argv
[
10
]);
const
ck
::
index_t
K
=
std
::
stoi
(
argv
[
11
]);
const
ck
::
index_t
C
=
std
::
stoi
(
argv
[
12
]);
const
ck
::
index_t
Y
=
std
::
stoi
(
argv
[
13
]);
const
ck
::
index_t
X
=
std
::
stoi
(
argv
[
14
]);
const
ck
::
index_t
Hi
=
std
::
stoi
(
argv
[
15
]);
const
ck
::
index_t
Wi
=
std
::
stoi
(
argv
[
16
]);
const
ck
::
index_t
conv_stride_h
=
std
::
stoi
(
argv
[
17
]);
const
ck
::
index_t
conv_stride_w
=
std
::
stoi
(
argv
[
18
]);
const
ck
::
index_t
conv_dilation_h
=
std
::
stoi
(
argv
[
19
]);
const
ck
::
index_t
conv_dilation_w
=
std
::
stoi
(
argv
[
20
]);
const
ck
::
index_t
in_left_pad_h
=
std
::
stoi
(
argv
[
21
]);
const
ck
::
index_t
in_left_pad_w
=
std
::
stoi
(
argv
[
22
]);
const
ck
::
index_t
in_right_pad_h
=
std
::
stoi
(
argv
[
23
]);
const
ck
::
index_t
in_right_pad_w
=
std
::
stoi
(
argv
[
24
]);
const
ck
::
index_t
YEff
=
(
Y
-
1
)
*
conv_dilation_h
+
1
;
const
ck
::
index_t
XEff
=
(
X
-
1
)
*
conv_dilation_w
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
YEff
)
/
conv_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
XEff
)
/
conv_stride_w
+
1
;
if
(
data_type
==
ConvDataType
::
F16_F16_F16
&&
in_layout
==
ConvInputLayout
::
NHWC
&&
wei_layout
==
ConvWeightLayout
::
KYXC
&&
out_layout
==
ConvOutputLayout
::
NHWK
)
{
ck
::
profiler
::
profile_conv_fwd_bias_relu_atomic_add_impl
<
2
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
tensor_layout
::
convolution
::
NHWC
,
ck
::
tensor_layout
::
convolution
::
KYXC
,
ck
::
tensor_layout
::
convolution
::
NHWK
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
N
,
K
,
C
,
std
::
vector
<
ck
::
index_t
>
{
Hi
,
Wi
},
std
::
vector
<
ck
::
index_t
>
{
Y
,
X
},
std
::
vector
<
ck
::
index_t
>
{
Ho
,
Wo
},
std
::
vector
<
ck
::
index_t
>
{
conv_stride_h
,
conv_stride_w
},
std
::
vector
<
ck
::
index_t
>
{
conv_dilation_h
,
conv_dilation_w
},
std
::
vector
<
ck
::
index_t
>
{
in_left_pad_h
,
in_left_pad_w
},
std
::
vector
<
ck
::
index_t
>
{
in_right_pad_h
,
in_right_pad_w
});
}
else
{
throw
std
::
runtime_error
(
"wrong! data_type & layout for this operator is not implemented"
);
}
return
0
;
}
profiler/src/profile_convnd_bwd_data.cpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_convnd_bwd_data_impl.hpp"
#include "
profiler/include/
profile_convnd_bwd_data_impl.hpp"
namespace
{
...
...
profiler/src/profile_convnd_fwd.cpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <functional>
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include <half.hpp>
#include "conv_util.hpp"
#include "element_wise_operation.hpp"
#include "fill.hpp"
#include "profile_convnd_fwd.hpp"
#include "tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/utility/fill.hpp"
#include "profiler/include/profile_convnd_fwd.hpp"
namespace
{
...
...
@@ -150,9 +154,12 @@ void profile_convnd_instances_impl(const ck::utils::conv::ConvParams& params,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
utils
::
FillUniform
<
int
>
,
ck
::
utils
::
FillUniform
<
int
>>>
(
params
,
true
,
ck
::
utils
::
FillUniform
<
int
>
{},
ck
::
utils
::
FillUniform
<
int
>
{});
ck
::
utils
::
FillUniformDistributionIntegerValue
<
int
>
,
ck
::
utils
::
FillUniformDistributionIntegerValue
<
int
>>>
(
params
,
true
,
ck
::
utils
::
FillUniformDistributionIntegerValue
<
int
>
{},
ck
::
utils
::
FillUniformDistributionIntegerValue
<
int
>
{});
break
;
case
2
:
conv_instance
=
std
::
make_unique
<
...
...
@@ -165,12 +172,12 @@ void profile_convnd_instances_impl(const ck::utils::conv::ConvParams& params,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
utils
::
FillUniform
<
InDataType
>
,
ck
::
utils
::
FillUniform
<
WeiDataType
>>>
(
ck
::
utils
::
FillUniform
Distribution
<
InDataType
>
,
ck
::
utils
::
FillUniform
Distribution
<
WeiDataType
>>>
(
params
,
true
,
ck
::
utils
::
FillUniform
<
InDataType
>
{},
ck
::
utils
::
FillUniform
<
WeiDataType
>
{});
ck
::
utils
::
FillUniform
Distribution
<
InDataType
>
{},
ck
::
utils
::
FillUniform
Distribution
<
WeiDataType
>
{});
break
;
default:
throw
std
::
runtime_error
(
"Unsupported init method!"
);
}
...
...
@@ -181,8 +188,10 @@ void profile_convnd_instances_impl(const ck::utils::conv::ConvParams& params,
_1
,
_2
,
_3
);
OpInstanceRunEngine
<
InDataType
,
WeiDataType
,
OutDataType
>
run_engine
(
*
conv_instance
,
reference_conv_fwd_fun
);
OpInstanceRunEngine
<
InDataType
,
WeiDataType
,
OutDataType
>
run_engine
(
*
conv_instance
,
reference_conv_fwd_fun
,
do_verification
);
auto
best_conf
=
run_engine
.
Profile
(
conv
::
ConvolutionFwdInstances
<
InDataType
,
WeiDataType
,
OutDataType
>::
template
Get
<
NDim
>(),
time_kernel
,
...
...
profiler/src/profile_gemm.cpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_gemm_impl.hpp"
#include "profiler/include/profile_gemm_impl.hpp"
enum
struct
GemmMatrixLayout
{
...
...
profiler/src/profile_gemm_add_add_fastgelu.cpp
0 → 100644
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_gemm_add_add_fastgelu_impl.hpp"
int
profile_gemm_add_add_fastgelu
(
int
argc
,
char
*
argv
[])
{
enum
struct
MatrixLayout
{
MK_KN_MN_MN_MN
,
// 0
MK_NK_MN_MN_MN
,
// 1
KM_KN_MN_MN_MN
,
// 2
KM_NK_MN_MN_MN
,
// 3
MK_KN_NM_MN_MN
,
// 4
MK_NK_NM_MN_MN
,
// 5
KM_KN_NM_MN_MN
,
// 6
KM_NK_NM_MN_MN
,
// 7
};
enum
struct
MatrixDataType
{
F32_F32_F32_F32_F32
,
// 0
F16_F16_F16_F16_F16
,
// 1
BF16_BF16_BF16_BF16_BF16
,
// 2
INT8_INT8_INT8_INT8_INT8
,
// 3
};
if
(
argc
!=
16
)
{
// clang-format off
printf
(
"arg1: tensor operation (gemm_add_add_fastgelu: GEMM+Add+Add+GeLU)
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)
\n
"
);
printf
(
"arg3: matrix layout (0: E[m, n] = FastGeLU(A[m, k] * B[k, n] + D0[m, n] + D1[m, n]);
\n
"
);
printf
(
" 1: E[m, n] = FastGeLU(A[m, k] * B[n, k] + D0[m, n] + D1[m, n]);
\n
"
);
printf
(
" 2: E[m, n] = FastGeLU(A[k, m] * B[k, n] + D0[m, n] + D1[m, n]);
\n
"
);
printf
(
" 3: E[m, n] = FastGeLU(A[k, m] * B[n, k] + D0[m, n] + D1[m, n]))
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 13: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE
\n
"
);
// clang-format on
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
MatrixDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
MatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideD0
=
std
::
stoi
(
argv
[
13
]);
const
int
StrideD1
=
std
::
stoi
(
argv
[
14
]);
const
int
StrideE
=
std
::
stoi
(
argv
[
15
]);
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
acc_type
,
auto
d0_type
,
auto
d1_type
,
auto
e_type
,
auto
a_layout
,
auto
b_layout
,
auto
d0_layout
,
auto
d1_layout
,
auto
e_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
D0DataType
=
decltype
(
d0_type
);
using
D1DataType
=
decltype
(
d1_type
);
using
EDataType
=
decltype
(
e_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
D0Layout
=
decltype
(
d0_layout
);
using
D1Layout
=
decltype
(
d1_layout
);
using
ELayout
=
decltype
(
e_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideD0
=
ck
::
is_same_v
<
D0Layout
,
Row
>
?
N
:
M
;
const
int
DefaultStrideD1
=
ck
::
is_same_v
<
D1Layout
,
Row
>
?
N
:
M
;
const
int
DefaultStrideE
=
ck
::
is_same_v
<
ELayout
,
Row
>
?
N
:
M
;
return
ck
::
profiler
::
profile_gemm_add_add_fastgelu_impl
<
ADataType
,
BDataType
,
AccDataType
,
D0DataType
,
D1DataType
,
EDataType
,
ALayout
,
BLayout
,
D0Layout
,
D1Layout
,
ELayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideD0
<
0
)
?
DefaultStrideD0
:
StrideD0
,
(
StrideD1
<
0
)
?
DefaultStrideD1
:
StrideD1
,
(
StrideE
<
0
)
?
DefaultStrideE
:
StrideE
);
};
if
(
data_type
==
MatrixDataType
::
F16_F16_F16_F16_F16
&&
layout
==
MatrixLayout
::
MK_KN_MN_MN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
F16
{},
Row
{},
Row
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
F16_F16_F16_F16_F16
&&
layout
==
MatrixLayout
::
MK_NK_MN_MN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
F16
{},
Row
{},
Col
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
F16_F16_F16_F16_F16
&&
layout
==
MatrixLayout
::
KM_KN_MN_MN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
F16
{},
Col
{},
Row
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
F16_F16_F16_F16_F16
&&
layout
==
MatrixLayout
::
KM_NK_MN_MN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
F16
{},
Col
{},
Col
{},
Row
{},
Row
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
0
;
}
}
profiler/src/profile_gemm_bias_2d.cpp
View file @
7a3b49e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_gemm_bias_2d_impl.hpp"
#include "profiler/include/profile_gemm_bias_2d_impl.hpp"
enum
struct
GemmMatrixLayout
{
...
...
Prev
1
…
23
24
25
26
27
28
29
30
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment