"test/old-api/parsertests.cpp" did not exist on "6f7995d27e615df9cd08fdc7a5fd88c6b223e2b0"
Commit 71b69694 authored by Chao Liu's avatar Chao Liu
Browse files

update DeviceGemmMultipleD_Xdl_CShuffle

parent 0e8d7ed3
......@@ -51,33 +51,34 @@ using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F16;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using DELayout = Row;
using ALayout = Row;
using BLayout = Col;
using DLayout = Row;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AlphaBetaAdd;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceOpInstance =
ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_CShuffle<ALayout,
BLayout,
DELayout,
ck::Tuple<DLayout>,
ELayout,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
ck::Tuple<DDataType>,
EDataType,
AElementOp,
BElementOp,
CDEElementOp,
GemmDefault,
GemmSpec,
1,
256,
256,
......@@ -190,9 +191,9 @@ int main(int argc, char* argv[])
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<DDataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, DELayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, DELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, DELayout{}));
Tensor<DDataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, DLayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
......
......@@ -47,33 +47,34 @@ using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using DDataType = F16;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using DLayout = Row;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddRelu;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceOpInstance =
ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_CShuffle<ALayout,
BLayout,
ck::Tuple<DLayout>,
ELayout,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
ck::Tuple<DDataType>,
EDataType,
AElementOp,
BElementOp,
CDEElementOp,
GemmDefault,
GemmSpec,
1,
256,
256,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation>
struct DeviceConvFwd : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in,
const void* p_wei,
void* p_out,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r3.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in NWC data format
// @li Weight tensor in KXC data format
// @li Output tensor in NWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
//
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ConvolutionForwardSpecialization ConvForwardSpecialization,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector>
struct DeviceConvNdFwdNwcKxcNwk_Xdl
: public DeviceConvFwd<NDimSpatial,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::NDHWC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::KZYXC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::NWK,
ck::tensor_layout::convolution::NHWK,
ck::tensor_layout::convolution::NDHWK>>,
InDataType,
WeiDataType,
OutDataType,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation>
{
using DeviceOp = DeviceConvNdFwdNwcKxcNwk_Xdl;
using ADataType = InDataType;
using BDataType = WeiDataType;
using CDataType = OutDataType;
// TODO make A/B datatype different
using ABDataType = InDataType;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto K1Number = Number<K1>{};
static constexpr auto GemmK1Number = K1Number;
static auto GetWeightTensorDescriptor(ck::index_t gemm_n, ck::index_t gemm_k)
{
const ck::index_t gemm_k0 = gemm_k / GemmK1Number;
const auto wei_k_yxc_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_n, gemm_k));
// wei_gemmk0_gemmn_gemmk1_grid_desc
return transform_tensor_descriptor(
wei_k_yxc_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_pass_through_transform(gemm_n)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
static auto
GetOutputTensorDescriptor(ck::index_t gemm_m, ck::index_t gemm_n, ck::index_t gemm_m_pad)
{
const auto out_gemmmraw_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_n));
// out_gemmm_gemmn_grid_desc
return transform_tensor_descriptor(out_gemmmraw_gemmn_grid_desc,
make_tuple(make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(gemm_n)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
template <ck::index_t NDim, typename std::enable_if<NDim == 1, bool>::type = false>
static auto GetInputTensorDescriptor(ck::index_t N,
ck::index_t C,
ck::index_t gemm_m,
ck::index_t gemm_k,
ck::index_t gemm_m_pad,
const std::vector<ck::index_t>& input_spatial_lengths,
const std::vector<ck::index_t>& filter_spatial_lengths,
const std::vector<ck::index_t>& output_spatial_lengths,
const std::vector<ck::index_t>& conv_filter_strides,
const std::vector<ck::index_t>& conv_filter_dilations,
const std::vector<ck::index_t>& input_left_pads,
const std::vector<ck::index_t>& input_right_pads)
{
const ck::index_t gemm_k0 = gemm_k / GemmK1Number;
const index_t Wi = input_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[0];
const index_t ConvStrideW = conv_filter_strides[0];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_k));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmmraw_gemmk_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_right_pad_transform(gemm_m, gemm_m_pad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
const auto in_n_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C));
const auto in_n_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_n_wo_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_merge_transform(make_tuple(N, Wo))),
make_tuple(Sequence<2>{}, Sequence<0, 1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
else
{
const index_t X = filter_spatial_lengths[0];
const index_t ConvDilationW = conv_filter_dilations[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
const auto in_n_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C));
const auto in_n_wip_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_n_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto in_gemmk_gemmmraw_grid_desc =
transform_tensor_descriptor(in_n_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(X, C)),
make_merge_transform(make_tuple(N, Wo))),
make_tuple(Sequence<1, 3>{}, Sequence<0, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmk_gemmmraw_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_pass_through_transform(gemm_m)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
}
template <ck::index_t NDim, typename std::enable_if<NDim == 2, bool>::type = false>
static auto GetInputTensorDescriptor(ck::index_t N,
ck::index_t C,
ck::index_t gemm_m,
ck::index_t gemm_k,
ck::index_t gemm_m_pad,
const std::vector<ck::index_t>& input_spatial_lengths,
const std::vector<ck::index_t>& filter_spatial_lengths,
const std::vector<ck::index_t>& output_spatial_lengths,
const std::vector<ck::index_t>& conv_filter_strides,
const std::vector<ck::index_t>& conv_filter_dilations,
const std::vector<ck::index_t>& input_left_pads,
const std::vector<ck::index_t>& input_right_pads)
{
const ck::index_t gemm_k0 = gemm_k / GemmK1Number;
const index_t Hi = input_spatial_lengths[0];
const index_t Wi = input_spatial_lengths[1];
const index_t Ho = output_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[1];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_k));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmmraw_gemmk_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_right_pad_transform(gemm_m, gemm_m_pad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
const auto in_n_ho_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Ho), make_tuple(ConvStrideH)),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_n_ho_wo_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<3>{}, Sequence<0, 1, 2>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
else
{
const index_t Y = filter_spatial_lengths[0];
const index_t X = filter_spatial_lengths[1];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmk_gemmmraw_grid_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Y, X, C)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmk_gemmmraw_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_pass_through_transform(gemm_m)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
}
template <ck::index_t NDim, typename std::enable_if<NDim == 3, bool>::type = false>
static auto GetInputTensorDescriptor(ck::index_t N,
ck::index_t C,
ck::index_t gemm_m,
ck::index_t gemm_k,
ck::index_t gemm_m_pad,
const std::vector<ck::index_t>& input_spatial_lengths,
const std::vector<ck::index_t>& filter_spatial_lengths,
const std::vector<ck::index_t>& output_spatial_lengths,
const std::vector<ck::index_t>& conv_filter_strides,
const std::vector<ck::index_t>& conv_filter_dilations,
const std::vector<ck::index_t>& input_left_pads,
const std::vector<ck::index_t>& input_right_pads)
{
const ck::index_t gemm_k0 = gemm_k / GemmK1Number;
const index_t Di = input_spatial_lengths[0];
const index_t Hi = input_spatial_lengths[1];
const index_t Wi = input_spatial_lengths[2];
const index_t Do = output_spatial_lengths[0];
const index_t Ho = output_spatial_lengths[1];
const index_t Wo = output_spatial_lengths[2];
const index_t ConvStrideD = conv_filter_strides[0];
const index_t ConvStrideH = conv_filter_strides[1];
const index_t ConvStrideW = conv_filter_strides[2];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_k));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmmraw_gemmk_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_right_pad_transform(gemm_m, gemm_m_pad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
const auto in_n_di_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Di, Hi, Wi, C));
const auto in_n_do_ho_wo_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Do), make_tuple(ConvStrideD)),
make_embed_transform(make_tuple(Ho), make_tuple(ConvStrideH)),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_n_do_ho_wo_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_merge_transform(make_tuple(N, Do, Ho, Wo))),
make_tuple(Sequence<4>{}, Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
else
{
const index_t Z = filter_spatial_lengths[0];
const index_t Y = filter_spatial_lengths[1];
const index_t X = filter_spatial_lengths[2];
const index_t ConvDilationD = conv_filter_dilations[0];
const index_t ConvDilationH = conv_filter_dilations[1];
const index_t ConvDilationW = conv_filter_dilations[2];
const index_t InLeftPadD = input_left_pads[0];
const index_t InLeftPadH = input_left_pads[1];
const index_t InLeftPadW = input_left_pads[2];
const index_t InRightPadD = input_right_pads[0];
const index_t InRightPadH = input_right_pads[1];
const index_t InRightPadW = input_right_pads[2];
const auto in_n_di_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Di, Hi, Wi, C));
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Di, InLeftPadD, InRightPadD),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_n_z_do_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Z, Do), make_tuple(ConvDilationD, ConvStrideD)),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto in_gemmk_gemmmraw_grid_desc = transform_tensor_descriptor(
in_n_z_do_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Z, Y, X, C)),
make_merge_transform(make_tuple(N, Do, Ho, Wo))),
make_tuple(Sequence<1, 3, 5, 7>{}, Sequence<0, 2, 4, 6>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmk_gemmmraw_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_pass_through_transform(gemm_m)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
}
static index_t GetGemmMRaw(ck::index_t N,
const std::vector<ck::index_t>& output_spatial_lengths)
{
return N * std::accumulate(std::begin(output_spatial_lengths),
std::end(output_spatial_lengths),
1,
std::multiplies<ck::index_t>());
}
static index_t GetGemmK(ck::index_t C, const std::vector<ck::index_t>& filter_spatial_lengths)
{
return C * std::accumulate(std::begin(filter_spatial_lengths),
std::end(filter_spatial_lengths),
1,
std::multiplies<ck::index_t>());
}
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
{
using namespace ck;
const index_t GemmMRaw = GetGemmMRaw(N, output_spatial_lengths);
const index_t GemmN = K;
const index_t GemmK = GetGemmK(C, filter_spatial_lengths);
const auto GemmMPad = math::integer_least_multiple(GemmMRaw, MPerBlock) - GemmMRaw;
assert(GemmK % GemmK1Number == 0);
// C = A^T*B
// A:
const auto in_gemmk0_gemmm_gemmk1_grid_desc =
GetInputTensorDescriptor<NDimSpatial>(N,
C,
GemmMRaw,
GemmK,
GemmMPad,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
// B:
const auto wei_gemmk0_gemmn_gemmk1_grid_desc = GetWeightTensorDescriptor(GemmN, GemmK);
// C:
const auto out_gemmm_gemmn_grid_desc = GetOutputTensorDescriptor(GemmMRaw, GemmN, GemmMPad);
return make_tuple(in_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
out_gemmm_gemmn_grid_desc);
}
template <ck::index_t NDim, typename std::enable_if<NDim == 1, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1}, {1}, {1}, {1}, {1}, {1}, {1});
}
template <ck::index_t NDim, typename std::enable_if<NDim == 2, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1});
}
template <ck::index_t NDim, typename std::enable_if<NDim == 3, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1});
}
using ABCGridDescs = decltype(GetABCGridDesc<NDimSpatial>());
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
using Block2CTileMap = BlockToCTileMap_M00_N0_M01<MPerBlock, NPerBlock, CGridDesc_M_N>;
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3<
BlockSize,
ABDataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXDL,
NPerXDL,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
Sequence<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder,
Sequence<1, 0, 2>, // ABlockTransferSrcAccessOrder,
2, // ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
Sequence<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder,
Sequence<1, 0, 2>, // BBlockTransferSrcAccessOrder,
2, // BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
Sequence<2, 3, 0, 1, 7, 5, 4, 6>, // CThreadTransferSrcDstAccessOrder,
7, // CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
// Argument
struct Argument : public BaseArgument
{
Argument(const InDataType* p_in_grid,
const WeiDataType* p_wei_grid,
OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
: p_a_grid_{p_in_grid},
p_b_grid_{p_wei_grid},
p_c_grid_{p_out_grid},
a_grid_desc_k0_m_k1_{},
b_grid_desc_k0_n_k1_{},
c_grid_desc_m_n_{},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
block_2_ctile_map_{},
in_element_op_{in_element_op},
wei_element_op_{wei_element_op},
out_element_op_{out_element_op},
Conv_N_{N},
Conv_K_{K},
Conv_C_{C},
filter_spatial_lengths_{filter_spatial_lengths},
conv_filter_strides_{conv_filter_strides},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
const auto descs =
DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
a_grid_desc_k0_m_k1_ = descs[I0];
b_grid_desc_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2];
block_2_ctile_map_ = Block2CTileMap{c_grid_desc_m_n_};
if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
Block2CTileMap block_2_ctile_map_;
InElementwiseOperation in_element_op_;
WeiElementwiseOperation wei_element_op_;
OutElementwiseOperation out_element_op_;
// for checking IsSupportedArgument()
index_t Conv_N_;
index_t Conv_K_;
index_t Conv_C_;
std::vector<index_t> filter_spatial_lengths_;
std::vector<index_t> conv_filter_strides_;
std::vector<index_t> input_left_pads_;
std::vector<index_t> input_right_pads_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
#if 0
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
<< ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
}
const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
float ave_time = 0;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
const auto kernel = kernel_gemm_xdlops_v2r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
Block2CTileMap,
true>;
ave_time = launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.in_element_op_,
arg.wei_element_op_,
arg.out_element_op_,
arg.block_2_ctile_map_);
}
else
{
const auto kernel = kernel_gemm_xdlops_v2r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
Block2CTileMap,
false>;
ave_time = launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.in_element_op_,
arg.wei_element_op_,
arg.out_element_op_,
arg.block_2_ctile_map_);
}
return ave_time;
}
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(ck::get_device_name() == "gfx908")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t>))
{
return false;
}
}
else if(ck::get_device_name() == "gfx90a")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t> || is_same_v<AccDataType, double>))
{
return false;
}
}
else
{
return false;
}
// Input tensors can't be bigger than 2GB each.
constexpr ck::long_index_t GB2 = (ck::long_index_t{1} << 31);
if(arg.a_grid_desc_k0_m_k1_.GetElementSpaceSize() * sizeof(ADataType) > GB2 ||
arg.b_grid_desc_k0_n_k1_.GetElementSpaceSize() * sizeof(BDataType) > GB2 ||
arg.c_grid_desc_m_n_.GetElementSpaceSize() * sizeof(CDataType) > GB2)
{
return false;
}
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
// check if it's 1x1, stride=1 conv
for(ck::index_t i = 0; i < NDimSpatial; ++i)
{
if(!(arg.filter_spatial_lengths_[i] == 1 && arg.conv_filter_strides_[i] == 1 &&
arg.input_left_pads_[i] == 0 && arg.input_right_pads_[i] == 0))
{
return false;
}
}
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
// check if it's 1x1 conv
for(ck::index_t i = 0; i < NDimSpatial; ++i)
{
if(!(arg.filter_spatial_lengths_[i] == 1 && arg.input_left_pads_[i] == 0 &&
arg.input_right_pads_[i] == 0))
{
return false;
}
}
}
// vector load A/B matrix from global memory
if(!(ABlockTransferSrcVectorDim == 2 && BBlockTransferSrcVectorDim == 2 &&
arg.Conv_C_ % ABlockTransferSrcScalarPerVector == 0 &&
arg.Conv_C_ % BBlockTransferSrcScalarPerVector == 0))
{
return false;
}
// vector store C matrix into global memory
if(!(arg.Conv_K_ % CThreadTransferDstScalarPerVector == 0))
{
return false;
}
// Gridwise GEMM size
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_);
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const InDataType* p_in_grid,
const WeiDataType* p_wei_grid,
OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
{
return Argument{p_in_grid,
p_wei_grid,
p_out_grid,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in_grid,
const void* p_wei_grid,
void* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op) override
{
return std::make_unique<Argument>(static_cast<const InDataType*>(p_in_grid),
static_cast<const WeiDataType*>(p_wei_grid),
static_cast<OutDataType*>(p_out_grid),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceConvNdFwdNwcKxcNwk_Xdl"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< getConvForwardSpecializationString(ConvForwardSpecialization)
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -20,9 +20,9 @@
namespace ck {
template <typename GridwiseGemm,
typename FloatAB,
typename FloatDsPointer,
typename FloatE,
typename ABDataType,
typename DsPointer,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
......@@ -36,10 +36,10 @@ __global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_multiple_d_xdl_cshuffle(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatDsPointer p_ds_grid,
FloatE* __restrict__ p_e_grid,
kernel_gemm_multiple_d_xdl_cshuffle(const ABDataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
......@@ -100,10 +100,11 @@ namespace device {
// D0, D1, ... and E have the same layout
template <typename ALayout,
typename BLayout,
typename DELayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename GemmAccDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
......@@ -143,7 +144,7 @@ template <typename ALayout,
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
BLayout,
DELayout,
ELayout,
ADataType,
BDataType,
DsDataType,
......@@ -164,7 +165,7 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, KPerBlock};
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
static auto MakeAGridDescriptor_M_K(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
......@@ -179,26 +180,10 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
}
}();
const auto a_grid_desc_m_k = matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
return matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
}
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
static auto MakeBGridDescriptor_N_K(index_t KRaw, index_t NRaw, index_t StrideB)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
......@@ -213,53 +198,50 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
}
}();
const auto b_grid_desc_n_k = matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = b_grid_desc_n_k.GetLength(I1);
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
return matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
}
template <typename ELay>
static auto MakeEGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE)
{
const auto e_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, DELayout>::value)
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideE, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, DELayout>::value)
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideE));
}
}();
const auto e_grid_desc_m_n = matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
}
static auto MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& NRaws,
const std::array<index_t, NumDTensor>& DsStride)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return e_grid_desc_m_n;
return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(MRaws[i], NRaws[i], DsStride[i]);
},
Number<NumDTensor>{});
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1(1, 1, 1));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1(1, 1, 1));
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N(1, 1, 1));
using AGridDesc_M_K = decltype(MakeAGridDescriptor_M_K(1, 1, 1));
using BGridDesc_N_K = decltype(MakeBGridDescriptor_N_K(1, 1, 1));
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}, {}))>;
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N<ELayout>(1, 1, 1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle<
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype
GemmAccDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
......@@ -267,8 +249,9 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
AGridDesc_M_K,
BGridDesc_N_K,
DsGridDesc_M_N,
EGridDesc_M_N,
NumGemmKPrefetchStage,
BlockSize,
......@@ -303,6 +286,13 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
CDEBlockTransferScalarPerVector_NPerBlock,
LoopSched>;
using AGridDesc_AK0_M_AK1 = remove_cvref_t<decltype(
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(AGridDesc_M_K{}))>;
using BGridDesc_BK0_N_BK1 = remove_cvref_t<decltype(
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(BGridDesc_N_K{}))>;
using Block2ETileMap = typename GridwiseGemm::DefaultBlock2ETileMap;
// Argument
struct Argument : public BaseArgument
{
......@@ -322,20 +312,40 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
CDEElementwiseOperation cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a_grid)},
p_b_grid_{static_cast<const BDataType*>(p_b_grid)},
p_ds_grid_{}, // FIXME
p_ds_grid_{},
p_e_grid_{static_cast<EDataType*>(p_e_grid)},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)},
a_grid_desc_m_k_{DeviceOp::MakeAGridDescriptor_M_K(MRaw, KRaw, StrideA)},
b_grid_desc_n_k_{DeviceOp::MakeBGridDescriptor_N_K(KRaw, NRaw, StrideB)},
ds_grid_desc_m_n_{},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N<ELayout>(MRaw, NRaw, StrideE)},
a_grid_desc_ak0_m_ak1_{
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_)},
b_grid_desc_bk0_n_bk1_{
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N(MRaw, NRaw, StrideE)},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_,
// populate pointer, batch stride, desc for Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds_grid[i]);
// D desc
ds_grid_desc_m_n_(i) =
DeviceOp::MakeEGridDescriptor_M_N<DLayout>(MRaw, NRaw, StrideDs[i]);
});
// populate desc for Ds/E
if(GridwiseGemm::CheckValidity(a_grid_desc_m_k_,
b_grid_desc_n_k_,
ds_grid_desc_m_n_,
e_grid_desc_m_n_,
block_2_etile_map_))
{
......@@ -343,21 +353,21 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds_grid[i]);
const auto d_grid_desc_m_n =
DeviceOp::MakeEGridDescriptor_M_N(MRaw, NRaw, StrideDs[i]);
ds_grid_desc_mblock_mperblock_nblock_nperblock_(i) =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
d_grid_desc_m_n);
});
ds_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n_);
}
}
void Print() const
{
std::cout << "A[M, K]: " << a_grid_desc_m_k_ << std::endl;
std::cout << "B[N, K]: " << b_grid_desc_n_k_ << std::endl;
static_for<0, NumDTensor, 1>{}(
[&](auto i) { std::cout << "Ds[M, N]: " << ds_grid_desc_m_n_[i] << std::endl; });
std::cout << "E[M, N]: " << e_grid_desc_m_n_ << std::endl;
}
// private:
// pointers
const ADataType* p_a_grid_;
......@@ -365,20 +375,22 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
typename GridwiseGemm::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_;
// tensor descriptors
// tensor descriptors for problem definiton
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_N_K b_grid_desc_n_k_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
StaticallyIndexedArray<
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
NumDTensor>
ds_grid_desc_mblock_mperblock_nblock_nperblock_; // FIXME: Ds desc may be of different
// type from E
EGridDesc_M_N e_grid_desc_m_n_;
typename GridwiseGemm::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_;
// block-to-e-tile map
typename GridwiseGemm::DefaultBlock2ETileMap block_2_etile_map_;
Block2ETileMap block_2_etile_map_;
// element-wise op
AElementwiseOperation a_element_op_;
......@@ -393,12 +405,14 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_n_k_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
throw std::runtime_error(
"wrong! GridwiseGemmMultipleD_xdl_cshuffle has invalid setting");
}
const index_t grid_size =
......@@ -446,18 +460,14 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
arg.block_2_etile_map_);
};
float avg_time = 0;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
avg_time = launch_kernel(integral_constant<bool, true>{});
return launch_kernel(integral_constant<bool, true>{});
}
else
{
avg_time = launch_kernel(integral_constant<bool, false>{});
return launch_kernel(integral_constant<bool, false>{});
}
return avg_time;
}
// polymorphic
......@@ -475,8 +485,9 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
return false;
}
return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
return GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_n_k_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_);
}
......
......@@ -1315,17 +1315,30 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
const CDEElementwiseOperation& cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a)},
p_b_grid_{static_cast<const BDataType*>(p_b)},
p_ds_grid_{}, // FIXME
p_ds_grid_{},
p_e_grid_{static_cast<EDataType*>(p_e)},
a_grid_desc_m_k_{},
b_grid_desc_n_k_{},
a_grid_desc_m_k_{DeviceOp::MakeAGridDescriptor_M_K<ALayout>(a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads)},
b_grid_desc_n_k_{DeviceOp::MakeBGridDescriptor_N_K<BLayout>(b_g_k_c_xs_lengths,
b_g_k_c_xs_strides)},
ds_grid_desc_m_n_{},
e_grid_desc_m_n_{},
a_grid_desc_ak0_m_ak1_{},
b_grid_desc_bk0_n_bk1_{},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N<ELayout>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides)},
a_grid_desc_ak0_m_ak1_{
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_)},
b_grid_desc_bk0_n_bk1_{
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{},
block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
compute_ptr_offset_of_batch_{},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
......@@ -1343,42 +1356,12 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
// A desc
a_grid_desc_m_k_ = DeviceOp::MakeAGridDescriptor_M_K<ALayout>(a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
// B Desc
b_grid_desc_n_k_ =
DeviceOp::MakeBGridDescriptor_N_K<BLayout>(b_g_k_c_xs_lengths, b_g_k_c_xs_strides);
// E Desc
e_grid_desc_m_n_ = DeviceOp::MakeEGridDescriptor_M_N<ELayout>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides);
// A Des
a_grid_desc_ak0_m_ak1_ =
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_);
// B Desc
b_grid_desc_bk0_n_bk1_ =
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_);
// Block-to-e-tile
block_2_etile_map_ = Block2ETileMap{e_grid_desc_m_n_};
// A/B/E Batch Stride
compute_ptr_offset_of_batch_.BatchStrideA_ = a_g_n_c_wis_strides[0];
compute_ptr_offset_of_batch_.BatchStrideB_ = b_g_k_c_xs_strides[0];
compute_ptr_offset_of_batch_.BatchStrideE_ = e_g_n_k_wos_strides[0];
// populate pointer, batch stride, desc for Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
......@@ -1427,12 +1410,13 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
typename GridwiseGemm::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_;
// tensor descriptors
// tensor descriptors for problem definiton
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_N_K b_grid_desc_n_k_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
typename GridwiseGemm::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
......@@ -1487,7 +1471,7 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
const index_t grid_size =
arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_) *
arg.a_g_n_c_wis_lengths_[0];
arg.a_g_n_c_wis_lengths_[0]; // Group count
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment