Commit 71b69694 authored by Chao Liu's avatar Chao Liu
Browse files

update DeviceGemmMultipleD_Xdl_CShuffle

parent 0e8d7ed3
...@@ -51,33 +51,34 @@ using BDataType = F16; ...@@ -51,33 +51,34 @@ using BDataType = F16;
using AccDataType = F32; using AccDataType = F32;
using CShuffleDataType = F32; using CShuffleDataType = F32;
using DDataType = F16; using DDataType = F16;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F16; using EDataType = F16;
using ALayout = Row; using ALayout = Row;
using BLayout = Col; using BLayout = Col;
using DELayout = Row; using DLayout = Row;
using ELayout = Row;
using AElementOp = PassThrough; using AElementOp = PassThrough;
using BElementOp = PassThrough; using BElementOp = PassThrough;
using CDEElementOp = AlphaBetaAdd; using CDEElementOp = AlphaBetaAdd;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding; static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceOpInstance = using DeviceOpInstance =
ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_CShuffle<ALayout, ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_CShuffle<ALayout,
BLayout, BLayout,
DELayout, ck::Tuple<DLayout>,
ELayout,
ADataType, ADataType,
BDataType, BDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
DsDataType, ck::Tuple<DDataType>,
EDataType, EDataType,
AElementOp, AElementOp,
BElementOp, BElementOp,
CDEElementOp, CDEElementOp,
GemmDefault, GemmSpec,
1, 1,
256, 256,
256, 256,
...@@ -190,9 +191,9 @@ int main(int argc, char* argv[]) ...@@ -190,9 +191,9 @@ int main(int argc, char* argv[])
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{})); Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{})); Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<DDataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, DELayout{})); Tensor<DDataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, DLayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, DELayout{})); Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, DELayout{})); Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl; std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl; std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
......
...@@ -47,33 +47,34 @@ using BDataType = F16; ...@@ -47,33 +47,34 @@ using BDataType = F16;
using AccDataType = F32; using AccDataType = F32;
using CShuffleDataType = F16; using CShuffleDataType = F16;
using DDataType = F16; using DDataType = F16;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F16; using EDataType = F16;
using ALayout = Row; using ALayout = Row;
using BLayout = Col; using BLayout = Col;
using DLayout = Row;
using ELayout = Row; using ELayout = Row;
using AElementOp = PassThrough; using AElementOp = PassThrough;
using BElementOp = PassThrough; using BElementOp = PassThrough;
using CDEElementOp = AddRelu; using CDEElementOp = AddRelu;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding; static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceOpInstance = using DeviceOpInstance =
ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_CShuffle<ALayout, ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_CShuffle<ALayout,
BLayout, BLayout,
ck::Tuple<DLayout>,
ELayout, ELayout,
ADataType, ADataType,
BDataType, BDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
DsDataType, ck::Tuple<DDataType>,
EDataType, EDataType,
AElementOp, AElementOp,
BElementOp, BElementOp,
CDEElementOp, CDEElementOp,
GemmDefault, GemmSpec,
1, 1,
256, 256,
256, 256,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation>
struct DeviceConvFwd : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in,
const void* p_wei,
void* p_out,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r3.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in NWC data format
// @li Weight tensor in KXC data format
// @li Output tensor in NWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
//
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ConvolutionForwardSpecialization ConvForwardSpecialization,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector>
struct DeviceConvNdFwdNwcKxcNwk_Xdl
: public DeviceConvFwd<NDimSpatial,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::NDHWC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::KZYXC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::NWK,
ck::tensor_layout::convolution::NHWK,
ck::tensor_layout::convolution::NDHWK>>,
InDataType,
WeiDataType,
OutDataType,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation>
{
using DeviceOp = DeviceConvNdFwdNwcKxcNwk_Xdl;
using ADataType = InDataType;
using BDataType = WeiDataType;
using CDataType = OutDataType;
// TODO make A/B datatype different
using ABDataType = InDataType;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto K1Number = Number<K1>{};
static constexpr auto GemmK1Number = K1Number;
static auto GetWeightTensorDescriptor(ck::index_t gemm_n, ck::index_t gemm_k)
{
const ck::index_t gemm_k0 = gemm_k / GemmK1Number;
const auto wei_k_yxc_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_n, gemm_k));
// wei_gemmk0_gemmn_gemmk1_grid_desc
return transform_tensor_descriptor(
wei_k_yxc_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_pass_through_transform(gemm_n)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
static auto
GetOutputTensorDescriptor(ck::index_t gemm_m, ck::index_t gemm_n, ck::index_t gemm_m_pad)
{
const auto out_gemmmraw_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_n));
// out_gemmm_gemmn_grid_desc
return transform_tensor_descriptor(out_gemmmraw_gemmn_grid_desc,
make_tuple(make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(gemm_n)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
template <ck::index_t NDim, typename std::enable_if<NDim == 1, bool>::type = false>
static auto GetInputTensorDescriptor(ck::index_t N,
ck::index_t C,
ck::index_t gemm_m,
ck::index_t gemm_k,
ck::index_t gemm_m_pad,
const std::vector<ck::index_t>& input_spatial_lengths,
const std::vector<ck::index_t>& filter_spatial_lengths,
const std::vector<ck::index_t>& output_spatial_lengths,
const std::vector<ck::index_t>& conv_filter_strides,
const std::vector<ck::index_t>& conv_filter_dilations,
const std::vector<ck::index_t>& input_left_pads,
const std::vector<ck::index_t>& input_right_pads)
{
const ck::index_t gemm_k0 = gemm_k / GemmK1Number;
const index_t Wi = input_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[0];
const index_t ConvStrideW = conv_filter_strides[0];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_k));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmmraw_gemmk_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_right_pad_transform(gemm_m, gemm_m_pad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
const auto in_n_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C));
const auto in_n_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_n_wo_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_merge_transform(make_tuple(N, Wo))),
make_tuple(Sequence<2>{}, Sequence<0, 1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
else
{
const index_t X = filter_spatial_lengths[0];
const index_t ConvDilationW = conv_filter_dilations[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
const auto in_n_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C));
const auto in_n_wip_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_n_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto in_gemmk_gemmmraw_grid_desc =
transform_tensor_descriptor(in_n_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(X, C)),
make_merge_transform(make_tuple(N, Wo))),
make_tuple(Sequence<1, 3>{}, Sequence<0, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmk_gemmmraw_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_pass_through_transform(gemm_m)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
}
template <ck::index_t NDim, typename std::enable_if<NDim == 2, bool>::type = false>
static auto GetInputTensorDescriptor(ck::index_t N,
ck::index_t C,
ck::index_t gemm_m,
ck::index_t gemm_k,
ck::index_t gemm_m_pad,
const std::vector<ck::index_t>& input_spatial_lengths,
const std::vector<ck::index_t>& filter_spatial_lengths,
const std::vector<ck::index_t>& output_spatial_lengths,
const std::vector<ck::index_t>& conv_filter_strides,
const std::vector<ck::index_t>& conv_filter_dilations,
const std::vector<ck::index_t>& input_left_pads,
const std::vector<ck::index_t>& input_right_pads)
{
const ck::index_t gemm_k0 = gemm_k / GemmK1Number;
const index_t Hi = input_spatial_lengths[0];
const index_t Wi = input_spatial_lengths[1];
const index_t Ho = output_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[1];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_k));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmmraw_gemmk_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_right_pad_transform(gemm_m, gemm_m_pad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
const auto in_n_ho_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Ho), make_tuple(ConvStrideH)),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_n_ho_wo_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<3>{}, Sequence<0, 1, 2>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
else
{
const index_t Y = filter_spatial_lengths[0];
const index_t X = filter_spatial_lengths[1];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmk_gemmmraw_grid_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Y, X, C)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmk_gemmmraw_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_pass_through_transform(gemm_m)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
}
template <ck::index_t NDim, typename std::enable_if<NDim == 3, bool>::type = false>
static auto GetInputTensorDescriptor(ck::index_t N,
ck::index_t C,
ck::index_t gemm_m,
ck::index_t gemm_k,
ck::index_t gemm_m_pad,
const std::vector<ck::index_t>& input_spatial_lengths,
const std::vector<ck::index_t>& filter_spatial_lengths,
const std::vector<ck::index_t>& output_spatial_lengths,
const std::vector<ck::index_t>& conv_filter_strides,
const std::vector<ck::index_t>& conv_filter_dilations,
const std::vector<ck::index_t>& input_left_pads,
const std::vector<ck::index_t>& input_right_pads)
{
const ck::index_t gemm_k0 = gemm_k / GemmK1Number;
const index_t Di = input_spatial_lengths[0];
const index_t Hi = input_spatial_lengths[1];
const index_t Wi = input_spatial_lengths[2];
const index_t Do = output_spatial_lengths[0];
const index_t Ho = output_spatial_lengths[1];
const index_t Wo = output_spatial_lengths[2];
const index_t ConvStrideD = conv_filter_strides[0];
const index_t ConvStrideH = conv_filter_strides[1];
const index_t ConvStrideW = conv_filter_strides[2];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_k));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmmraw_gemmk_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_right_pad_transform(gemm_m, gemm_m_pad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
const auto in_n_di_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Di, Hi, Wi, C));
const auto in_n_do_ho_wo_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Do), make_tuple(ConvStrideD)),
make_embed_transform(make_tuple(Ho), make_tuple(ConvStrideH)),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_n_do_ho_wo_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_merge_transform(make_tuple(N, Do, Ho, Wo))),
make_tuple(Sequence<4>{}, Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
else
{
const index_t Z = filter_spatial_lengths[0];
const index_t Y = filter_spatial_lengths[1];
const index_t X = filter_spatial_lengths[2];
const index_t ConvDilationD = conv_filter_dilations[0];
const index_t ConvDilationH = conv_filter_dilations[1];
const index_t ConvDilationW = conv_filter_dilations[2];
const index_t InLeftPadD = input_left_pads[0];
const index_t InLeftPadH = input_left_pads[1];
const index_t InLeftPadW = input_left_pads[2];
const index_t InRightPadD = input_right_pads[0];
const index_t InRightPadH = input_right_pads[1];
const index_t InRightPadW = input_right_pads[2];
const auto in_n_di_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Di, Hi, Wi, C));
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Di, InLeftPadD, InRightPadD),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_n_z_do_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Z, Do), make_tuple(ConvDilationD, ConvStrideD)),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto in_gemmk_gemmmraw_grid_desc = transform_tensor_descriptor(
in_n_z_do_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Z, Y, X, C)),
make_merge_transform(make_tuple(N, Do, Ho, Wo))),
make_tuple(Sequence<1, 3, 5, 7>{}, Sequence<0, 2, 4, 6>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmk_gemmmraw_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_pass_through_transform(gemm_m)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
}
static index_t GetGemmMRaw(ck::index_t N,
const std::vector<ck::index_t>& output_spatial_lengths)
{
return N * std::accumulate(std::begin(output_spatial_lengths),
std::end(output_spatial_lengths),
1,
std::multiplies<ck::index_t>());
}
static index_t GetGemmK(ck::index_t C, const std::vector<ck::index_t>& filter_spatial_lengths)
{
return C * std::accumulate(std::begin(filter_spatial_lengths),
std::end(filter_spatial_lengths),
1,
std::multiplies<ck::index_t>());
}
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
{
using namespace ck;
const index_t GemmMRaw = GetGemmMRaw(N, output_spatial_lengths);
const index_t GemmN = K;
const index_t GemmK = GetGemmK(C, filter_spatial_lengths);
const auto GemmMPad = math::integer_least_multiple(GemmMRaw, MPerBlock) - GemmMRaw;
assert(GemmK % GemmK1Number == 0);
// C = A^T*B
// A:
const auto in_gemmk0_gemmm_gemmk1_grid_desc =
GetInputTensorDescriptor<NDimSpatial>(N,
C,
GemmMRaw,
GemmK,
GemmMPad,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
// B:
const auto wei_gemmk0_gemmn_gemmk1_grid_desc = GetWeightTensorDescriptor(GemmN, GemmK);
// C:
const auto out_gemmm_gemmn_grid_desc = GetOutputTensorDescriptor(GemmMRaw, GemmN, GemmMPad);
return make_tuple(in_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
out_gemmm_gemmn_grid_desc);
}
template <ck::index_t NDim, typename std::enable_if<NDim == 1, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1}, {1}, {1}, {1}, {1}, {1}, {1});
}
template <ck::index_t NDim, typename std::enable_if<NDim == 2, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1});
}
template <ck::index_t NDim, typename std::enable_if<NDim == 3, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1});
}
using ABCGridDescs = decltype(GetABCGridDesc<NDimSpatial>());
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
using Block2CTileMap = BlockToCTileMap_M00_N0_M01<MPerBlock, NPerBlock, CGridDesc_M_N>;
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3<
BlockSize,
ABDataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXDL,
NPerXDL,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
Sequence<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder,
Sequence<1, 0, 2>, // ABlockTransferSrcAccessOrder,
2, // ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
Sequence<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder,
Sequence<1, 0, 2>, // BBlockTransferSrcAccessOrder,
2, // BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
Sequence<2, 3, 0, 1, 7, 5, 4, 6>, // CThreadTransferSrcDstAccessOrder,
7, // CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
// Argument
struct Argument : public BaseArgument
{
Argument(const InDataType* p_in_grid,
const WeiDataType* p_wei_grid,
OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
: p_a_grid_{p_in_grid},
p_b_grid_{p_wei_grid},
p_c_grid_{p_out_grid},
a_grid_desc_k0_m_k1_{},
b_grid_desc_k0_n_k1_{},
c_grid_desc_m_n_{},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
block_2_ctile_map_{},
in_element_op_{in_element_op},
wei_element_op_{wei_element_op},
out_element_op_{out_element_op},
Conv_N_{N},
Conv_K_{K},
Conv_C_{C},
filter_spatial_lengths_{filter_spatial_lengths},
conv_filter_strides_{conv_filter_strides},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
const auto descs =
DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
a_grid_desc_k0_m_k1_ = descs[I0];
b_grid_desc_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2];
block_2_ctile_map_ = Block2CTileMap{c_grid_desc_m_n_};
if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
Block2CTileMap block_2_ctile_map_;
InElementwiseOperation in_element_op_;
WeiElementwiseOperation wei_element_op_;
OutElementwiseOperation out_element_op_;
// for checking IsSupportedArgument()
index_t Conv_N_;
index_t Conv_K_;
index_t Conv_C_;
std::vector<index_t> filter_spatial_lengths_;
std::vector<index_t> conv_filter_strides_;
std::vector<index_t> input_left_pads_;
std::vector<index_t> input_right_pads_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
#if 0
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
<< ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
}
const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
float ave_time = 0;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
const auto kernel = kernel_gemm_xdlops_v2r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
Block2CTileMap,
true>;
ave_time = launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.in_element_op_,
arg.wei_element_op_,
arg.out_element_op_,
arg.block_2_ctile_map_);
}
else
{
const auto kernel = kernel_gemm_xdlops_v2r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
Block2CTileMap,
false>;
ave_time = launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.in_element_op_,
arg.wei_element_op_,
arg.out_element_op_,
arg.block_2_ctile_map_);
}
return ave_time;
}
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(ck::get_device_name() == "gfx908")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t>))
{
return false;
}
}
else if(ck::get_device_name() == "gfx90a")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t> || is_same_v<AccDataType, double>))
{
return false;
}
}
else
{
return false;
}
// Input tensors can't be bigger than 2GB each.
constexpr ck::long_index_t GB2 = (ck::long_index_t{1} << 31);
if(arg.a_grid_desc_k0_m_k1_.GetElementSpaceSize() * sizeof(ADataType) > GB2 ||
arg.b_grid_desc_k0_n_k1_.GetElementSpaceSize() * sizeof(BDataType) > GB2 ||
arg.c_grid_desc_m_n_.GetElementSpaceSize() * sizeof(CDataType) > GB2)
{
return false;
}
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
// check if it's 1x1, stride=1 conv
for(ck::index_t i = 0; i < NDimSpatial; ++i)
{
if(!(arg.filter_spatial_lengths_[i] == 1 && arg.conv_filter_strides_[i] == 1 &&
arg.input_left_pads_[i] == 0 && arg.input_right_pads_[i] == 0))
{
return false;
}
}
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
// check if it's 1x1 conv
for(ck::index_t i = 0; i < NDimSpatial; ++i)
{
if(!(arg.filter_spatial_lengths_[i] == 1 && arg.input_left_pads_[i] == 0 &&
arg.input_right_pads_[i] == 0))
{
return false;
}
}
}
// vector load A/B matrix from global memory
if(!(ABlockTransferSrcVectorDim == 2 && BBlockTransferSrcVectorDim == 2 &&
arg.Conv_C_ % ABlockTransferSrcScalarPerVector == 0 &&
arg.Conv_C_ % BBlockTransferSrcScalarPerVector == 0))
{
return false;
}
// vector store C matrix into global memory
if(!(arg.Conv_K_ % CThreadTransferDstScalarPerVector == 0))
{
return false;
}
// Gridwise GEMM size
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_);
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const InDataType* p_in_grid,
const WeiDataType* p_wei_grid,
OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
{
return Argument{p_in_grid,
p_wei_grid,
p_out_grid,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in_grid,
const void* p_wei_grid,
void* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op) override
{
return std::make_unique<Argument>(static_cast<const InDataType*>(p_in_grid),
static_cast<const WeiDataType*>(p_wei_grid),
static_cast<OutDataType*>(p_out_grid),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceConvNdFwdNwcKxcNwk_Xdl"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< getConvForwardSpecializationString(ConvForwardSpecialization)
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -20,9 +20,9 @@ ...@@ -20,9 +20,9 @@
namespace ck { namespace ck {
template <typename GridwiseGemm, template <typename GridwiseGemm,
typename FloatAB, typename ABDataType,
typename FloatDsPointer, typename DsPointer,
typename FloatE, typename EDataType,
typename AElementwiseOperation, typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CDEElementwiseOperation, typename CDEElementwiseOperation,
...@@ -36,10 +36,10 @@ __global__ void ...@@ -36,10 +36,10 @@ __global__ void
#if CK_USE_LAUNCH_BOUNDS #if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU) __launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif #endif
kernel_gemm_multiple_d_xdl_cshuffle(const FloatAB* __restrict__ p_a_grid, kernel_gemm_multiple_d_xdl_cshuffle(const ABDataType* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid, const ABDataType* __restrict__ p_b_grid,
FloatDsPointer p_ds_grid, DsPointer p_ds_grid,
FloatE* __restrict__ p_e_grid, EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op, const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op, const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op, const CDEElementwiseOperation cde_element_op,
...@@ -100,10 +100,11 @@ namespace device { ...@@ -100,10 +100,11 @@ namespace device {
// D0, D1, ... and E have the same layout // D0, D1, ... and E have the same layout
template <typename ALayout, template <typename ALayout,
typename BLayout, typename BLayout,
typename DELayout, typename DsLayout,
typename ELayout,
typename ADataType, typename ADataType,
typename BDataType, typename BDataType,
typename GemmAccDataType, typename AccDataType,
typename CShuffleDataType, typename CShuffleDataType,
typename DsDataType, typename DsDataType,
typename EDataType, typename EDataType,
...@@ -143,7 +144,7 @@ template <typename ALayout, ...@@ -143,7 +144,7 @@ template <typename ALayout,
LoopScheduler LoopSched = make_default_loop_scheduler()> LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout, struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
BLayout, BLayout,
DELayout, ELayout,
ADataType, ADataType,
BDataType, BDataType,
DsDataType, DsDataType,
...@@ -164,7 +165,7 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout, ...@@ -164,7 +165,7 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
static constexpr auto matrix_padder = static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, KPerBlock}; MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, KPerBlock};
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA) static auto MakeAGridDescriptor_M_K(index_t MRaw, index_t KRaw, index_t StrideA)
{ {
const auto a_grid_desc_mraw_kraw = [&]() { const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>) if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
...@@ -179,26 +180,10 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout, ...@@ -179,26 +180,10 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
} }
}(); }();
const auto a_grid_desc_m_k = matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw); return matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
} }
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB) static auto MakeBGridDescriptor_N_K(index_t KRaw, index_t NRaw, index_t StrideB)
{ {
const auto b_grid_desc_nraw_kraw = [&]() { const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value) if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
...@@ -213,53 +198,50 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout, ...@@ -213,53 +198,50 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
} }
}(); }();
const auto b_grid_desc_n_k = matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw); return matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = b_grid_desc_n_k.GetLength(I1);
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
} }
template <typename ELay>
static auto MakeEGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE) static auto MakeEGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE)
{ {
const auto e_grid_desc_mraw_nraw = [&]() { const auto e_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, DELayout>::value) if constexpr(is_same<tensor_layout::gemm::RowMajor, ELayout>::value)
{ {
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw), return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideE, I1)); make_tuple(StrideE, I1));
} }
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, DELayout>::value) else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELayout>::value)
{ {
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw), return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideE)); make_tuple(I1, StrideE));
} }
}(); }();
const auto e_grid_desc_m_n = matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw); return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
}
static auto MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& NRaws,
const std::array<index_t, NumDTensor>& DsStride)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return e_grid_desc_m_n; return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(MRaws[i], NRaws[i], DsStride[i]);
},
Number<NumDTensor>{});
} }
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1(1, 1, 1)); using AGridDesc_M_K = decltype(MakeAGridDescriptor_M_K(1, 1, 1));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1(1, 1, 1)); using BGridDesc_N_K = decltype(MakeBGridDescriptor_N_K(1, 1, 1));
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N(1, 1, 1)); using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}, {}))>;
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N<ELayout>(1, 1, 1));
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle< using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
GemmAccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
DsDataType, DsDataType,
EDataType, EDataType,
...@@ -267,8 +249,9 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout, ...@@ -267,8 +249,9 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
BElementwiseOperation, BElementwiseOperation,
CDEElementwiseOperation, CDEElementwiseOperation,
InMemoryDataOperationEnum::Set, InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1, AGridDesc_M_K,
BGridDesc_BK0_N_BK1, BGridDesc_N_K,
DsGridDesc_M_N,
EGridDesc_M_N, EGridDesc_M_N,
NumGemmKPrefetchStage, NumGemmKPrefetchStage,
BlockSize, BlockSize,
...@@ -303,6 +286,13 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout, ...@@ -303,6 +286,13 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
CDEBlockTransferScalarPerVector_NPerBlock, CDEBlockTransferScalarPerVector_NPerBlock,
LoopSched>; LoopSched>;
using AGridDesc_AK0_M_AK1 = remove_cvref_t<decltype(
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(AGridDesc_M_K{}))>;
using BGridDesc_BK0_N_BK1 = remove_cvref_t<decltype(
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(BGridDesc_N_K{}))>;
using Block2ETileMap = typename GridwiseGemm::DefaultBlock2ETileMap;
// Argument // Argument
struct Argument : public BaseArgument struct Argument : public BaseArgument
{ {
...@@ -322,20 +312,40 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout, ...@@ -322,20 +312,40 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
CDEElementwiseOperation cde_element_op) CDEElementwiseOperation cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a_grid)}, : p_a_grid_{static_cast<const ADataType*>(p_a_grid)},
p_b_grid_{static_cast<const BDataType*>(p_b_grid)}, p_b_grid_{static_cast<const BDataType*>(p_b_grid)},
p_ds_grid_{}, // FIXME p_ds_grid_{},
p_e_grid_{static_cast<EDataType*>(p_e_grid)}, p_e_grid_{static_cast<EDataType*>(p_e_grid)},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)}, a_grid_desc_m_k_{DeviceOp::MakeAGridDescriptor_M_K(MRaw, KRaw, StrideA)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)}, b_grid_desc_n_k_{DeviceOp::MakeBGridDescriptor_N_K(KRaw, NRaw, StrideB)},
ds_grid_desc_m_n_{},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N<ELayout>(MRaw, NRaw, StrideE)},
a_grid_desc_ak0_m_ak1_{
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_)},
b_grid_desc_bk0_n_bk1_{
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{}, ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N(MRaw, NRaw, StrideE)},
e_grid_desc_mblock_mperblock_nblock_nperblock_{}, e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)}, block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
a_element_op_{a_element_op}, a_element_op_{a_element_op},
b_element_op_{b_element_op}, b_element_op_{b_element_op},
cde_element_op_{cde_element_op} cde_element_op_{cde_element_op}
{ {
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_, // populate pointer, batch stride, desc for Ds
b_grid_desc_bk0_n_bk1_, static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds_grid[i]);
// D desc
ds_grid_desc_m_n_(i) =
DeviceOp::MakeEGridDescriptor_M_N<DLayout>(MRaw, NRaw, StrideDs[i]);
});
// populate desc for Ds/E
if(GridwiseGemm::CheckValidity(a_grid_desc_m_k_,
b_grid_desc_n_k_,
ds_grid_desc_m_n_,
e_grid_desc_m_n_, e_grid_desc_m_n_,
block_2_etile_map_)) block_2_etile_map_))
{ {
...@@ -343,21 +353,21 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout, ...@@ -343,21 +353,21 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock( GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_); e_grid_desc_m_n_);
static_for<0, NumDTensor, 1>{}([&](auto i) { ds_grid_desc_mblock_mperblock_nblock_nperblock_ =
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>; GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n_);
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds_grid[i]);
const auto d_grid_desc_m_n =
DeviceOp::MakeEGridDescriptor_M_N(MRaw, NRaw, StrideDs[i]);
ds_grid_desc_mblock_mperblock_nblock_nperblock_(i) =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
d_grid_desc_m_n);
});
} }
} }
void Print() const
{
std::cout << "A[M, K]: " << a_grid_desc_m_k_ << std::endl;
std::cout << "B[N, K]: " << b_grid_desc_n_k_ << std::endl;
static_for<0, NumDTensor, 1>{}(
[&](auto i) { std::cout << "Ds[M, N]: " << ds_grid_desc_m_n_[i] << std::endl; });
std::cout << "E[M, N]: " << e_grid_desc_m_n_ << std::endl;
}
// private: // private:
// pointers // pointers
const ADataType* p_a_grid_; const ADataType* p_a_grid_;
...@@ -365,20 +375,22 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout, ...@@ -365,20 +375,22 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
typename GridwiseGemm::DsGridPointer p_ds_grid_; typename GridwiseGemm::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_; EDataType* p_e_grid_;
// tensor descriptors // tensor descriptors for problem definiton
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_N_K b_grid_desc_n_k_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_; AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_; BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
StaticallyIndexedArray< typename GridwiseGemm::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock, ds_grid_desc_mblock_mperblock_nblock_nperblock_;
NumDTensor>
ds_grid_desc_mblock_mperblock_nblock_nperblock_; // FIXME: Ds desc may be of different
// type from E
EGridDesc_M_N e_grid_desc_m_n_;
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_; e_grid_desc_mblock_mperblock_nblock_nperblock_;
// block-to-e-tile map // block-to-e-tile map
typename GridwiseGemm::DefaultBlock2ETileMap block_2_etile_map_; Block2ETileMap block_2_etile_map_;
// element-wise op // element-wise op
AElementwiseOperation a_element_op_; AElementwiseOperation a_element_op_;
...@@ -393,12 +405,14 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout, ...@@ -393,12 +405,14 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{}) float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{ {
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_bk0_n_bk1_, arg.b_grid_desc_n_k_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_, arg.e_grid_desc_m_n_,
arg.block_2_etile_map_)) arg.block_2_etile_map_))
{ {
throw std::runtime_error("wrong! GridwiseGemm has invalid setting"); throw std::runtime_error(
"wrong! GridwiseGemmMultipleD_xdl_cshuffle has invalid setting");
} }
const index_t grid_size = const index_t grid_size =
...@@ -446,18 +460,14 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout, ...@@ -446,18 +460,14 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
arg.block_2_etile_map_); arg.block_2_etile_map_);
}; };
float avg_time = 0;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K)) if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{ {
avg_time = launch_kernel(integral_constant<bool, true>{}); return launch_kernel(integral_constant<bool, true>{});
} }
else else
{ {
avg_time = launch_kernel(integral_constant<bool, false>{}); return launch_kernel(integral_constant<bool, false>{});
} }
return avg_time;
} }
// polymorphic // polymorphic
...@@ -475,8 +485,9 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout, ...@@ -475,8 +485,9 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
return false; return false;
} }
return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_bk0_n_bk1_, arg.b_grid_desc_n_k_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_, arg.e_grid_desc_m_n_,
arg.block_2_etile_map_); arg.block_2_etile_map_);
} }
......
...@@ -1315,17 +1315,30 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle ...@@ -1315,17 +1315,30 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
const CDEElementwiseOperation& cde_element_op) const CDEElementwiseOperation& cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a)}, : p_a_grid_{static_cast<const ADataType*>(p_a)},
p_b_grid_{static_cast<const BDataType*>(p_b)}, p_b_grid_{static_cast<const BDataType*>(p_b)},
p_ds_grid_{}, // FIXME p_ds_grid_{},
p_e_grid_{static_cast<EDataType*>(p_e)}, p_e_grid_{static_cast<EDataType*>(p_e)},
a_grid_desc_m_k_{}, a_grid_desc_m_k_{DeviceOp::MakeAGridDescriptor_M_K<ALayout>(a_g_n_c_wis_lengths,
b_grid_desc_n_k_{}, a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads)},
b_grid_desc_n_k_{DeviceOp::MakeBGridDescriptor_N_K<BLayout>(b_g_k_c_xs_lengths,
b_g_k_c_xs_strides)},
ds_grid_desc_m_n_{}, ds_grid_desc_m_n_{},
e_grid_desc_m_n_{}, e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N<ELayout>(e_g_n_k_wos_lengths,
a_grid_desc_ak0_m_ak1_{}, e_g_n_k_wos_strides)},
b_grid_desc_bk0_n_bk1_{}, a_grid_desc_ak0_m_ak1_{
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_)},
b_grid_desc_bk0_n_bk1_{
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{}, ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_mblock_mperblock_nblock_nperblock_{}, e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{}, block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
compute_ptr_offset_of_batch_{}, compute_ptr_offset_of_batch_{},
a_element_op_{a_element_op}, a_element_op_{a_element_op},
b_element_op_{b_element_op}, b_element_op_{b_element_op},
...@@ -1343,42 +1356,12 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle ...@@ -1343,42 +1356,12 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
input_left_pads_{input_left_pads}, input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads} input_right_pads_{input_right_pads}
{ {
// A desc
a_grid_desc_m_k_ = DeviceOp::MakeAGridDescriptor_M_K<ALayout>(a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
// B Desc
b_grid_desc_n_k_ =
DeviceOp::MakeBGridDescriptor_N_K<BLayout>(b_g_k_c_xs_lengths, b_g_k_c_xs_strides);
// E Desc
e_grid_desc_m_n_ = DeviceOp::MakeEGridDescriptor_M_N<ELayout>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides);
// A Des
a_grid_desc_ak0_m_ak1_ =
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_);
// B Desc
b_grid_desc_bk0_n_bk1_ =
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_);
// Block-to-e-tile
block_2_etile_map_ = Block2ETileMap{e_grid_desc_m_n_};
// A/B/E Batch Stride // A/B/E Batch Stride
compute_ptr_offset_of_batch_.BatchStrideA_ = a_g_n_c_wis_strides[0]; compute_ptr_offset_of_batch_.BatchStrideA_ = a_g_n_c_wis_strides[0];
compute_ptr_offset_of_batch_.BatchStrideB_ = b_g_k_c_xs_strides[0]; compute_ptr_offset_of_batch_.BatchStrideB_ = b_g_k_c_xs_strides[0];
compute_ptr_offset_of_batch_.BatchStrideE_ = e_g_n_k_wos_strides[0]; compute_ptr_offset_of_batch_.BatchStrideE_ = e_g_n_k_wos_strides[0];
// populate pointer, batch stride, desc for Ds
static_for<0, NumDTensor, 1>{}([&](auto i) { static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>; using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>; using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
...@@ -1427,12 +1410,13 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle ...@@ -1427,12 +1410,13 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
typename GridwiseGemm::DsGridPointer p_ds_grid_; typename GridwiseGemm::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_; EDataType* p_e_grid_;
// tensor descriptors // tensor descriptors for problem definiton
AGridDesc_M_K a_grid_desc_m_k_; AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_N_K b_grid_desc_n_k_; BGridDesc_N_K b_grid_desc_n_k_;
DsGridDesc_M_N ds_grid_desc_m_n_; DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_; EGridDesc_M_N e_grid_desc_m_n_;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_; AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_; BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
typename GridwiseGemm::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock typename GridwiseGemm::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
...@@ -1487,7 +1471,7 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle ...@@ -1487,7 +1471,7 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
const index_t grid_size = const index_t grid_size =
arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_) * arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_) *
arg.a_g_n_c_wis_lengths_[0]; arg.a_g_n_c_wis_lengths_[0]; // Group count
const auto K = const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2); arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment