Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
70eebf22
Unverified
Commit
70eebf22
authored
Nov 07, 2023
by
zjing14
Committed by
GitHub
Nov 07, 2023
Browse files
Merge branch 'develop' into grouped_gemm_multi_abd_fixed_nk_example
parents
5608328c
98fd41f5
Changes
217
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1027 additions
and
16 deletions
+1027
-16
library/src/tensor_operation_instance/gpu/column_to_image/device_column_to_image_gnhwc_2d_instance.cpp
...umn_to_image/device_column_to_image_gnhwc_2d_instance.cpp
+4
-4
library/src/tensor_operation_instance/gpu/column_to_image/device_column_to_image_gnwc_1d_instance.cpp
...lumn_to_image/device_column_to_image_gnwc_1d_instance.cpp
+4
-4
library/src/tensor_operation_instance/gpu/column_to_image/device_column_to_image_ndhwgc_3d_instance.cpp
...mn_to_image/device_column_to_image_ndhwgc_3d_instance.cpp
+62
-0
library/src/tensor_operation_instance/gpu/column_to_image/device_column_to_image_nhwgc_2d_instance.cpp
...umn_to_image/device_column_to_image_nhwgc_2d_instance.cpp
+62
-0
library/src/tensor_operation_instance/gpu/column_to_image/device_column_to_image_nwgc_1d_instance.cpp
...lumn_to_image/device_column_to_image_nwgc_1d_instance.cpp
+61
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/CMakeLists.txt
...peration_instance/gpu/contraction_bilinear/CMakeLists.txt
+36
-8
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance.cpp
...shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance.cpp
...shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance.cpp
...shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance.cpp
...shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance.cpp
...l_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance.cpp
...l_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance.cpp
...l_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance.cpp
...l_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance.cpp
..._c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance.cpp
..._c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance.cpp
..._c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance.cpp
..._c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance.cpp
...l_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance.cpp
...l_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance.cpp
+57
-0
No files found.
library/src/tensor_operation_instance/gpu/column_to_image/device_column_to_image_nhwc_2d_instance.cpp
→
library/src/tensor_operation_instance/gpu/column_to_image/device_column_to_image_
g
nhwc_2d_instance.cpp
View file @
70eebf22
...
...
@@ -11,7 +11,7 @@ namespace instance {
using
namespace
ck
::
conv_tensor_rearrange_op
;
void
add_device_column_to_image_nhwc_2d_bf16_instances
(
void
add_device_column_to_image_
g
nhwc_2d_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
GNHWC
,
BF16
,
BF16
,
ColumnToImage
>>>&
instances
)
{
...
...
@@ -22,7 +22,7 @@ void add_device_column_to_image_nhwc_2d_bf16_instances(
#endif
}
void
add_device_column_to_image_nhwc_2d_f16_instances
(
void
add_device_column_to_image_
g
nhwc_2d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
GNHWC
,
F16
,
F16
,
ColumnToImage
>>>&
instances
)
{
...
...
@@ -33,7 +33,7 @@ void add_device_column_to_image_nhwc_2d_f16_instances(
#endif
}
void
add_device_column_to_image_nhwc_2d_f32_instances
(
void
add_device_column_to_image_
g
nhwc_2d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
GNHWC
,
F32
,
F32
,
ColumnToImage
>>>&
instances
)
{
...
...
@@ -44,7 +44,7 @@ void add_device_column_to_image_nhwc_2d_f32_instances(
#endif
}
void
add_device_column_to_image_nhwc_2d_i8_instances
(
void
add_device_column_to_image_
g
nhwc_2d_i8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
GNHWC
,
int8_t
,
int8_t
,
ColumnToImage
>>>&
instances
)
...
...
library/src/tensor_operation_instance/gpu/column_to_image/device_column_to_image_n
h
wc_1d_instance.cpp
→
library/src/tensor_operation_instance/gpu/column_to_image/device_column_to_image_
g
nwc_1d_instance.cpp
View file @
70eebf22
...
...
@@ -11,7 +11,7 @@ namespace instance {
using
namespace
ck
::
conv_tensor_rearrange_op
;
void
add_device_column_to_image_nwc_1d_bf16_instances
(
void
add_device_column_to_image_
g
nwc_1d_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
GNWC
,
BF16
,
BF16
,
ColumnToImage
>>>&
instances
)
{
...
...
@@ -22,7 +22,7 @@ void add_device_column_to_image_nwc_1d_bf16_instances(
#endif
}
void
add_device_column_to_image_nwc_1d_f16_instances
(
void
add_device_column_to_image_
g
nwc_1d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
GNWC
,
F16
,
F16
,
ColumnToImage
>>>&
instances
)
{
...
...
@@ -33,7 +33,7 @@ void add_device_column_to_image_nwc_1d_f16_instances(
#endif
}
void
add_device_column_to_image_nwc_1d_f32_instances
(
void
add_device_column_to_image_
g
nwc_1d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
GNWC
,
F32
,
F32
,
ColumnToImage
>>>&
instances
)
{
...
...
@@ -44,7 +44,7 @@ void add_device_column_to_image_nwc_1d_f32_instances(
#endif
}
void
add_device_column_to_image_nwc_1d_i8_instances
(
void
add_device_column_to_image_
g
nwc_1d_i8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
GNWC
,
int8_t
,
int8_t
,
ColumnToImage
>>>&
instances
)
{
...
...
library/src/tensor_operation_instance/gpu/column_to_image/device_column_to_image_ndhwgc_3d_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange/device_column_to_image_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
namespace
ck
::
conv_tensor_rearrange_op
;
void
add_device_column_to_image_ndhwgc_3d_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
3
,
NDHWGC
,
BF16
,
BF16
,
ColumnToImage
>>>&
instances
)
{
#ifdef CK_ENABLE_BF16
add_device_operation_instances
(
instances
,
device_column_to_image_bf16_instances
<
3
,
NDHWGC
>
{});
#else
ignore
=
instances
;
#endif
}
void
add_device_column_to_image_ndhwgc_3d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
3
,
NDHWGC
,
F16
,
F16
,
ColumnToImage
>>>&
instances
)
{
#ifdef CK_ENABLE_FP16
add_device_operation_instances
(
instances
,
device_column_to_image_f16_instances
<
3
,
NDHWGC
>
{});
#else
ignore
=
instances
;
#endif
}
void
add_device_column_to_image_ndhwgc_3d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
3
,
NDHWGC
,
F32
,
F32
,
ColumnToImage
>>>&
instances
)
{
#ifdef CK_ENABLE_FP32
add_device_operation_instances
(
instances
,
device_column_to_image_f32_instances
<
3
,
NDHWGC
>
{});
#else
ignore
=
instances
;
#endif
}
void
add_device_column_to_image_ndhwgc_3d_i8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
3
,
NDHWGC
,
int8_t
,
int8_t
,
ColumnToImage
>>>&
instances
)
{
#ifdef CK_ENABLE_INT8
add_device_operation_instances
(
instances
,
device_column_to_image_i8_instances
<
3
,
NDHWGC
>
{});
#else
ignore
=
instances
;
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/column_to_image/device_column_to_image_nhwgc_2d_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange/device_column_to_image_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
namespace
ck
::
conv_tensor_rearrange_op
;
void
add_device_column_to_image_nhwgc_2d_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
NHWGC
,
BF16
,
BF16
,
ColumnToImage
>>>&
instances
)
{
#ifdef CK_ENABLE_BF16
add_device_operation_instances
(
instances
,
device_column_to_image_bf16_instances
<
2
,
NHWGC
>
{});
#else
ignore
=
instances
;
#endif
}
void
add_device_column_to_image_nhwgc_2d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
NHWGC
,
F16
,
F16
,
ColumnToImage
>>>&
instances
)
{
#ifdef CK_ENABLE_FP16
add_device_operation_instances
(
instances
,
device_column_to_image_f16_instances
<
2
,
NHWGC
>
{});
#else
ignore
=
instances
;
#endif
}
void
add_device_column_to_image_nhwgc_2d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
NHWGC
,
F32
,
F32
,
ColumnToImage
>>>&
instances
)
{
#ifdef CK_ENABLE_FP32
add_device_operation_instances
(
instances
,
device_column_to_image_f32_instances
<
2
,
NHWGC
>
{});
#else
ignore
=
instances
;
#endif
}
void
add_device_column_to_image_nhwgc_2d_i8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
NHWGC
,
int8_t
,
int8_t
,
ColumnToImage
>>>&
instances
)
{
#ifdef CK_ENABLE_INT8
add_device_operation_instances
(
instances
,
device_column_to_image_i8_instances
<
2
,
NHWGC
>
{});
#else
ignore
=
instances
;
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/column_to_image/device_column_to_image_nwgc_1d_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange/device_column_to_image_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
namespace
ck
::
conv_tensor_rearrange_op
;
void
add_device_column_to_image_nwgc_1d_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
NWGC
,
BF16
,
BF16
,
ColumnToImage
>>>&
instances
)
{
#ifdef CK_ENABLE_BF16
add_device_operation_instances
(
instances
,
device_column_to_image_bf16_instances
<
1
,
NWGC
>
{});
#else
ignore
=
instances
;
#endif
}
void
add_device_column_to_image_nwgc_1d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
NWGC
,
F16
,
F16
,
ColumnToImage
>>>&
instances
)
{
#ifdef CK_ENABLE_FP16
add_device_operation_instances
(
instances
,
device_column_to_image_f16_instances
<
1
,
NWGC
>
{});
#else
ignore
=
instances
;
#endif
}
void
add_device_column_to_image_nwgc_1d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
NWGC
,
F32
,
F32
,
ColumnToImage
>>>&
instances
)
{
#ifdef CK_ENABLE_FP32
add_device_operation_instances
(
instances
,
device_column_to_image_f32_instances
<
1
,
NWGC
>
{});
#else
ignore
=
instances
;
#endif
}
void
add_device_column_to_image_nwgc_1d_i8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
NWGC
,
int8_t
,
int8_t
,
ColumnToImage
>>>&
instances
)
{
#ifdef CK_ENABLE_INT8
add_device_operation_instances
(
instances
,
device_column_to_image_i8_instances
<
1
,
NWGC
>
{});
#else
ignore
=
instances
;
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/CMakeLists.txt
View file @
70eebf22
set
(
DEVICE_CONTRACTION_BILINEAR_INSTANCES
)
#float
# FP32
list
(
APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn_instance.cpp
)
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn_instance.cpp
)
list
(
APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mnnn_instance.cpp
)
list
(
APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance.cpp
)
#
double
#
FP64
list
(
APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance.cpp
)
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance.cpp
)
list
(
APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mnnn_instance.cpp
)
# FP16
list
(
APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance.cpp
)
# BF16
list
(
APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance.cpp
)
add_instance_library
(
device_contraction_bilinear_instance
${
DEVICE_CONTRACTION_BILINEAR_INSTANCES
}
)
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance
=
device_contraction_kk_instance
<
BF16
,
BF16
,
F32
,
BF16
,
BF16_Tuple
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
BF16
,
BF16
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance
=
device_contraction_kn_instance
<
BF16
,
BF16
,
F32
,
BF16
,
BF16_Tuple
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
BF16
,
BF16
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance
=
device_contraction_mk_instance
<
BF16
,
BF16
,
F32
,
BF16
,
BF16_Tuple
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
BF16
,
BF16
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance
=
device_contraction_mn_instance
<
BF16
,
BF16
,
F32
,
BF16
,
BF16_Tuple
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
BF16
,
BF16
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance
=
device_contraction_kk_instance
<
F16
,
F16
,
F32
,
F16
,
F16_Tuple
,
F16
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F16
,
F16
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance
=
device_contraction_kn_instance
<
F16
,
F16
,
F32
,
F16
,
F16_Tuple
,
F16
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F16
,
F16
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance
=
device_contraction_mk_instance
<
F16
,
F16
,
F32
,
F16
,
F16_Tuple
,
F16
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F16
,
F16
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance
=
device_contraction_mn_instance
<
F16
,
F16
,
F32
,
F16
,
F16_Tuple
,
F16
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F16
,
F16
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
F32
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance
=
device_contraction_kk_instance
<
F32
,
F32
,
F32
,
F32
,
F32_Tuple
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F32
,
F32
,
F32_Tuple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
BF16
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance
=
device_contraction_kn_instance
<
F32
,
F32
,
F32
,
F32
,
F32_Tuple
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F32
,
F32
,
F32_Tuple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
BF16
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance
=
device_contraction_mk_instance
<
F32
,
F32
,
F32
,
F32
,
F32_Tuple
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F32
,
F32
,
F32_Tuple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
BF16
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance
=
device_contraction_mn_instance
<
F32
,
F32
,
F32
,
F32
,
F32_Tuple
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F32
,
F32
,
F32_Tuple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
BF16
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance
=
device_contraction_kk_instance
<
F32
,
F32
,
F32
,
F32
,
F32_Tuple
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F32
,
F32
,
F32_Tuple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
F16
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance.cpp
0 → 100644
View file @
70eebf22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance
=
device_contraction_kn_instance
<
F32
,
F32
,
F32
,
F32
,
F32_Tuple
,
F32
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
>
;
void
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceContractionMultipleD
<
2
,
2
,
2
,
F32
,
F32
,
F32_Tuple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
F16
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
2
3
4
5
6
7
8
9
10
11
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment