Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
6e3cf8b0
"src/diffusers/pipelines/sana/pipeline_sana_sprint.py" did not exist on "be4afa0bb4384f201c8fe68af536faffefbae661"
Commit
6e3cf8b0
authored
May 24, 2022
by
Jing Zhang
Browse files
merge develop
parents
4ad62d7f
ba58a93f
Changes
177
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1235 additions
and
203 deletions
+1235
-203
example/11_conv2d_bwd_weight/conv2d_bwd_weight_xdl.cpp
example/11_conv2d_bwd_weight/conv2d_bwd_weight_xdl.cpp
+11
-8
example/12_reduce/CMakeLists.txt
example/12_reduce/CMakeLists.txt
+1
-1
example/12_reduce/reduce_blockwise.cpp
example/12_reduce/reduce_blockwise.cpp
+10
-10
example/13_pool2d_fwd/pool2d_fwd.cpp
example/13_pool2d_fwd/pool2d_fwd.cpp
+12
-10
example/14_gemm_xdl_requant_relu_requant/gemm_xdl_requant_relu_requant_int8.cpp
...quant_relu_requant/gemm_xdl_requant_relu_requant_int8.cpp
+8
-8
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
+9
-8
example/16_gemm_reduce/CMakeLists.txt
example/16_gemm_reduce/CMakeLists.txt
+2
-1
example/16_gemm_reduce/gemm_reduce_xdl_max_fp16.cpp
example/16_gemm_reduce/gemm_reduce_xdl_max_fp16.cpp
+249
-0
example/16_gemm_reduce/gemm_reduce_xdl_sum_squaresum_fp16.cpp
...ple/16_gemm_reduce/gemm_reduce_xdl_sum_squaresum_fp16.cpp
+67
-55
example/17_convnd_bwd_data_xdl/convnd_bwd_data_xdl.cpp
example/17_convnd_bwd_data_xdl/convnd_bwd_data_xdl.cpp
+12
-8
example/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
...e/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
+75
-63
example/19_binary_elementwise/CMakeLists.txt
example/19_binary_elementwise/CMakeLists.txt
+3
-0
example/19_binary_elementwise/broadcast_add_2d.cpp
example/19_binary_elementwise/broadcast_add_2d.cpp
+130
-0
example/19_binary_elementwise/elementwise_add_1d.cpp
example/19_binary_elementwise/elementwise_add_1d.cpp
+110
-0
example/19_binary_elementwise/elementwise_add_4d.cpp
example/19_binary_elementwise/elementwise_add_4d.cpp
+112
-0
example/20_convnd_bwd_weight_xdl/CMakeLists.txt
example/20_convnd_bwd_weight_xdl/CMakeLists.txt
+2
-0
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl.cpp
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl.cpp
+387
-0
example/CMakeLists.txt
example/CMakeLists.txt
+13
-2
include/ck/config.hpp
include/ck/config.hpp
+22
-1
include/ck/hip_version.hpp.in
include/ck/hip_version.hpp.in
+0
-28
No files found.
example/11_conv2d_bwd_weight/conv2d_bwd_weight_xdl.cpp
View file @
6e3cf8b0
...
...
@@ -82,9 +82,9 @@ using ReferenceConvBwdWeightInstance =
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
do_log
=
0
;
int
split_k
=
4
;
...
...
@@ -109,7 +109,7 @@ int main(int argc, char* argv[])
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
do_log
=
std
::
stoi
(
argv
[
4
]);
split_k
=
std
::
stoi
(
argv
[
5
]);
}
...
...
@@ -117,7 +117,7 @@ int main(int argc, char* argv[])
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
do_log
=
std
::
stoi
(
argv
[
4
]);
split_k
=
std
::
stoi
(
argv
[
5
]);
...
...
@@ -141,7 +141,7 @@ int main(int argc, char* argv[])
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3:
run
kernel
# of times (>1
)
\n
"
);
printf
(
"arg3:
time
kernel
(0=n0, 1=yes
)
\n
"
);
printf
(
"arg4: is show log (0=no, 1=yes)
\n
"
);
printf
(
"arg5: split-k
\n
"
);
printf
(
"arg6 to 19: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
...
...
@@ -246,7 +246,7 @@ int main(int argc, char* argv[])
return
1
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
}
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
...
...
@@ -291,6 +291,9 @@ int main(int argc, char* argv[])
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei_host : "
,
wei_k_c_y_x_host_result
.
mData
,
","
)
<<
std
::
endl
;
}
ck
::
utils
::
check_err
(
wei_k_c_y_x_device_result
.
mData
,
wei_k_c_y_x_host_result
.
mData
);
return
ck
::
utils
::
check_err
(
wei_k_c_y_x_device_result
.
mData
,
wei_k_c_y_x_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
}
example/12_reduce/CMakeLists.txt
View file @
6e3cf8b0
add_example_executable
(
example_reduce_blockwise reduce_blockwise.cpp
)
add_example_executable
(
example_reduce_blockwise reduce_blockwise.cpp
-D 16,64,32,960 -v 1 1 10
)
example/12_reduce/reduce_blockwise.cpp
View file @
6e3cf8b0
...
...
@@ -116,10 +116,9 @@ class SimpleAppArgs
std
::
vector
<
size_t
>
inLengths
;
std
::
vector
<
float
>
scales
;
bool
do_verification
=
false
;
bool
do_verification
=
true
;
int
init_method
=
1
;
int
nrepeat
=
5
;
bool
time_kernel
=
false
;
public:
void
show_usage
(
const
char
*
cmd
)
...
...
@@ -135,7 +134,7 @@ class SimpleAppArgs
std
::
cout
<<
"Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<<
std
::
endl
;
std
::
cout
<<
"Arg2 --
number of repeats to run the kernel
"
<<
std
::
endl
;
std
::
cout
<<
"Arg2 --
time kernel (0=n0, 1=yes)
"
<<
std
::
endl
;
};
int
processArgs
(
int
argc
,
char
*
argv
[])
...
...
@@ -182,7 +181,7 @@ class SimpleAppArgs
throw
std
::
runtime_error
(
"Invalid cmd-line arguments, more argumetns are needed!"
);
init_method
=
std
::
atoi
(
argv
[
optind
++
]);
nrepeat
=
std
::
atoi
(
argv
[
optind
]);
time_kernel
=
std
::
atoi
(
argv
[
optind
]);
if
(
scales
.
empty
())
{
...
...
@@ -352,7 +351,7 @@ int main(int argc, char* argv[])
auto
invoker_ptr
=
reduce
.
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
args
.
nrepeat
);
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
args
.
time_kernel
}
);
std
::
size_t
num_bytes
=
invariant_total_length
*
reduce_total_length
*
sizeof
(
InDataType
)
+
invariant_total_length
*
sizeof
(
OutDataType
);
...
...
@@ -362,16 +361,17 @@ int main(int argc, char* argv[])
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
reduce_name
<<
std
::
endl
;
bool
pass
=
true
;
if
(
args
.
do_verification
)
{
out_dev
.
FromDevice
(
out
.
mData
.
data
());
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
pass
&=
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
if
(
NeedIndices
)
{
out_indices_dev
.
FromDevice
(
out_indices
.
mData
.
data
());
ck
::
utils
::
check_err
(
out_indices
.
mData
,
out_indices_ref
.
mData
);
;
pass
&=
ck
::
utils
::
check_err
(
out_indices
.
mData
,
out_indices_ref
.
mData
);
};
};
return
pass
?
0
:
1
;
}
example/13_pool2d_fwd/pool2d_fwd.cpp
View file @
6e3cf8b0
...
...
@@ -149,9 +149,9 @@ int main(int argc, char* argv[])
{
using
namespace
ck
::
host_reduce
;
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// Pool shape
ck
::
index_t
N
=
128
;
...
...
@@ -171,13 +171,13 @@ int main(int argc, char* argv[])
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
16
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
N
=
std
::
stoi
(
argv
[
4
]);
C
=
std
::
stoi
(
argv
[
5
]);
...
...
@@ -196,7 +196,7 @@ int main(int argc, char* argv[])
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3:
run
kernel
# of times (>1
)
\n
"
);
printf
(
"arg3:
time
kernel
(0=n0, 1=yes
)
\n
"
);
printf
(
"arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
0
);
...
...
@@ -271,7 +271,7 @@ int main(int argc, char* argv[])
"not support this problem"
);
}
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
nrepeat
);
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
}
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
C
*
Ho
*
Wo
*
Y
*
X
;
...
...
@@ -285,6 +285,7 @@ int main(int argc, char* argv[])
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
pool_host_verify
<
InDataType
,
...
...
@@ -302,14 +303,15 @@ int main(int argc, char* argv[])
out_device_buf
.
FromDevice
(
out_n_c_ho_wo_device
.
mData
.
data
());
ck
::
utils
::
check_err
(
out_n_c_ho_wo_device
.
mData
,
out_n_c_ho_wo_host
.
mData
);
pass
&=
ck
::
utils
::
check_err
(
out_n_c_ho_wo_device
.
mData
,
out_n_c_ho_wo_host
.
mData
);
if
constexpr
(
NeedIndices
)
{
out_indices_device_buf
.
FromDevice
(
out_indices_n_c_ho_wo_device
.
mData
.
data
());
//
ck::utils::check_err(out_indices_n_c_ho_wo_device.mData,
//
out_indices_n_c_ho_wo_host.mData);
;
pass
&=
ck
::
utils
::
check_err
(
out_indices_n_c_ho_wo_device
.
mData
,
out_indices_n_c_ho_wo_host
.
mData
);
};
}
return
pass
?
0
:
1
;
}
example/14_gemm_xdl_requant_relu_requant/gemm_xdl_requant_relu_requant_int8.cpp
View file @
6e3cf8b0
...
...
@@ -105,9 +105,9 @@ using ReferenceGemmInstance = ck::tensor_operation::host::
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
...
...
@@ -125,13 +125,13 @@ int main(int argc, char* argv[])
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
...
...
@@ -145,7 +145,7 @@ int main(int argc, char* argv[])
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3:
run
kernel
# of times (>1
)
\n
"
);
printf
(
"arg3:
time
kernel
(0=n0, 1=yes
)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
...
...
@@ -219,7 +219,7 @@ int main(int argc, char* argv[])
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
}
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
...
...
@@ -244,7 +244,7 @@ int main(int argc, char* argv[])
ref_invoker
.
Run
(
ref_argument
);
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
return
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
View file @
6e3cf8b0
...
...
@@ -60,21 +60,21 @@ using ReferenceGemmInstance = ck::tensor_operation::host::
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3:
run
kernel
# of times (>1
)
\n
"
);
printf
(
"arg3:
time
kernel
(0=n0, 1=yes
)
\n
"
);
exit
(
0
);
}
...
...
@@ -202,7 +202,7 @@ int main(int argc, char* argv[])
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
}
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
...
...
@@ -211,6 +211,7 @@ int main(int argc, char* argv[])
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
for
(
std
::
size_t
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
...
...
@@ -227,9 +228,9 @@ int main(int argc, char* argv[])
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
ck
::
utils
::
check_err
(
c_device_tensors
[
i
].
mData
,
c_host_tensors
[
i
].
mData
);
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
].
mData
,
c_host_tensors
[
i
].
mData
);
}
}
return
0
;
return
pass
?
0
:
1
;
}
example/16_gemm_reduce/CMakeLists.txt
View file @
6e3cf8b0
add_example_executable
(
example_gemm_reduce_xdl_fp16 gemm_reduce_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_reduce_xdl_max_fp16 gemm_reduce_xdl_max_fp16.cpp
)
add_example_executable
(
example_gemm_reduce_xdl_sum_squaresum_fp16 gemm_reduce_xdl_sum_squaresum_fp16.cpp
)
example/16_gemm_reduce/gemm_reduce_xdl_max_fp16.cpp
0 → 100644
View file @
6e3cf8b0
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "element_wise_reduce_operation.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F64
=
double
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
DDataType
=
F64
;
using
DPtrsGlobal
=
ck
::
Tuple
<
DDataType
*>
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DsReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
<
ReduceAccDataType
>>
;
using
DsElementOp
=
ck
::
Tuple
<
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
ReduceAccDataType
,
ReduceAccDataType
,
false
>>
;
using
DGlobalMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsOutEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
ReduceAccDataType
,
DPtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
DsReduceOp
,
DsElementOp
,
DsElementOp
,
DGlobalMemOp
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_m: "
<<
d_m_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_m_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
ds_element_op
=
DsElementOp
{};
auto
p_ds_global
=
ck
::
make_tuple
(
static_cast
<
DDataType
*>
(
d_device_buf
.
GetDeviceBuffer
()));
// do GEMM
auto
gemm
=
DeviceGemmReduceInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
p_ds_global
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
,
ds_element_op
,
ds_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
// init D
d_device_buf
.
SetValue
(
ck
::
NumericLimits
<
DDataType
>::
Lowest
());
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
d_device_buf
.
FromDevice
(
d_m_device_result
.
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
auto
d_reduce_op
=
DsReduceOp
{}[
ck
::
Number
<
0
>
{}];
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
ReduceAccDataType
d_acc
=
d_reduce_op
.
GetReductionZeroVal
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
d_reduce_op
(
d_acc
,
c_m_n_host_result
(
m
,
n
));
d_m_host_result
(
m
)
=
d_acc
;
}
pass
=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
,
"Error: Incorrect results c"
)
&&
ck
::
utils
::
check_err
(
d_m_device_result
.
mData
,
d_m_host_result
.
mData
,
"Error: Incorrect results d"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/16_gemm_reduce/gemm_reduce_xdl_fp16.cpp
→
example/16_gemm_reduce/gemm_reduce_xdl_
sum_squaresum_
fp16.cpp
View file @
6e3cf8b0
...
...
@@ -3,7 +3,8 @@
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
...
...
@@ -28,7 +29,9 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
DDataType
=
F32
;
using
DPtrsGlobal
=
ck
::
Tuple
<
DDataType
*
,
DDataType
*>
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
...
@@ -37,20 +40,31 @@ using CLayout = ck::tensor_layout::gemm::RowMajor;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
D1ElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
float
,
float
,
false
>
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
<
ReduceAccDataType
>
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
<
ReduceAccDataType
>
;
using
DxsReduceOp
=
ck
::
Tuple
<
D0ReduceOp
,
D1ReduceOp
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
ReduceAccDataType
,
ReduceAccDataType
,
false
>
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
ReduceAccDataType
,
ReduceAccDataType
,
false
>
;
using
DxsInElementOp
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
DxsOutElementOp
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnaryIdenticElementOp
>
;
using
DGlobalMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D
0| D1| D1EleOp|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce|
Reduce
| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation|
Operation|
Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
AElementOp
,
BElementOp
,
CElementOp
,
D
0
ReduceOp
,
D
1ReduceOp
,
D1Element
Op
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc|
DData| A| B| C| D
xs| DxsInEleOp| DxsOutEleOp| D|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType|
Type
Tuple
| Elementwise| Elementwise| Elementwise|
Reduce|
| | MemoryData
| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | |
| Operation
| Operation| Operation| Operation|
| |
Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | |
|
| | | |
| |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
DPtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
D
xs
ReduceOp
,
D
xsInElementOp
,
DxsOutElementOp
,
DGlobalMem
Op
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
...
...
@@ -58,9 +72,9 @@ using ReferenceGemmInstance = ck::tensor_operation::host::
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
1
;
bool
do_verification
=
true
;
int
init_method
=
1
;
int
nrepeat
=
5
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
...
...
@@ -79,13 +93,13 @@ int main(int argc, char* argv[])
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
...
...
@@ -99,7 +113,7 @@ int main(int argc, char* argv[])
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3:
run
kernel
# of times (>1
)
\n
"
);
printf
(
"arg3:
time
kernel
(0=n0, 1=yes
)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
...
...
@@ -164,7 +178,8 @@ int main(int argc, char* argv[])
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
d1_element_op
=
D1ElementOp
{};
auto
dxs_global
=
ck
::
make_tuple
(
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()));
// do GEMM
auto
gemm
=
DeviceGemmReduceInstance
{};
...
...
@@ -172,8 +187,7 @@ int main(int argc, char* argv[])
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()),
dxs_global
,
M
,
N
,
K
,
...
...
@@ -183,7 +197,8 @@ int main(int argc, char* argv[])
a_element_op
,
b_element_op
,
c_element_op
,
d1_element_op
);
DxsInElementOp
{},
DxsOutElementOp
{});
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
...
...
@@ -192,30 +207,13 @@ int main(int argc, char* argv[])
"not support this GEMM problem"
);
}
// warm up
invoker
.
Run
(
argument
);
// timing
float
total_time
=
0
;
for
(
int
i
=
0
;
i
<
nrepeat
;
++
i
)
{
// init DO, D1 to 0
d0_device_buf
.
SetZero
();
d1_device_buf
.
SetZero
();
KernelTimer
timer
;
timer
.
Start
();
invoker
.
Run
(
argument
);
timer
.
End
();
total_time
+=
timer
.
GetElapsedTime
();
}
float
ave_time
=
total_time
/
nrepeat
;
// if time_kernel == true, kernel will run multiple times. This kernel use atomic-add so result
// will not be correct. need to set time_kernel = false for correctness test
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
...
...
@@ -228,6 +226,8 @@ int main(int argc, char* argv[])
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
...
...
@@ -252,10 +252,12 @@ int main(int argc, char* argv[])
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
float
d0_val
=
ck
::
type_convert
<
float
>
(
c_m_n_host_result
(
m
,
n
));
float
d1_val
;
float
c_val
=
ck
::
type_convert
<
float
>
(
c_m_n_host_result
(
m
,
n
));
float
d0_val
=
0
;
float
d1_val
=
0
;
d1_element_op
(
d1_val
,
d0_val
);
UnaryIdenticElementOp
{}(
d0_val
,
c_val
);
UnarySquareElementOp
{}(
d1_val
,
c_val
);
d0_reduce_op
(
d0_acc
,
d0_val
);
d1_reduce_op
(
d1_acc
,
d1_val
);
}
...
...
@@ -264,10 +266,20 @@ int main(int argc, char* argv[])
d1_m_host_result
(
m
)
=
ck
::
type_convert
<
DDataType
>
(
d1_acc
);
}
check_error
(
c_m_n_host_result
,
c_m_n_device_result
);
check_error
(
d0_m_host_result
,
d0_m_device_result
);
check_error
(
d1_m_host_result
,
d1_m_device_result
);
pass
=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
,
"Error: Incorrect results c"
)
&&
ck
::
utils
::
check_err
(
d0_m_device_result
.
mData
,
d0_m_host_result
.
mData
,
"Error: Incorrect results d0"
,
1e-4
,
1e-5
)
&&
ck
::
utils
::
check_err
(
d1_m_device_result
.
mData
,
d1_m_host_result
.
mData
,
"Error: Incorrect results d1"
,
1e-3
,
1e-5
);
}
return
0
;
return
pass
?
0
:
1
;
}
example/17_convnd_bwd_data_xdl/convnd_bwd_data_xdl.cpp
View file @
6e3cf8b0
...
...
@@ -87,7 +87,7 @@ void print_use_msg()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=random value, 2= init to 1 )
\n
"
<<
"arg3:
run
kernel
# of times (>1
)
\n
"
<<
"arg3:
time
kernel
(0=n0, 1=yes
)
\n
"
<<
"arg4: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N, K, C,
\n
"
...
...
@@ -165,9 +165,9 @@ DeviceConvBwdDataBasePtr get_conv_instance(int num_dim_spatial)
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
num_dim_spatial
=
2
;
ck
::
utils
::
conv
::
ConvParams
params
;
...
...
@@ -177,13 +177,13 @@ int main(int argc, char* argv[])
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
>
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
// check args number
int
conv_args
=
3
+
num_dim_spatial
*
6
;
...
...
@@ -284,7 +284,7 @@ int main(int argc, char* argv[])
"not support this Conv problem"
);
}
float
ave_time
=
invoker
->
Run
(
argument
.
get
(),
nrepeat
);
float
ave_time
=
invoker
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
}
);
std
::
size_t
flop
=
ck
::
utils
::
conv
::
get_flops
(
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
...
...
@@ -322,7 +322,10 @@ int main(int argc, char* argv[])
in_device_buf
.
FromDevice
(
in_n_c_hi_wi_device_result
.
mData
.
data
());
check_error
(
in_n_c_hi_wi_host_result
,
in_n_c_hi_wi_device_result
);
return
ck
::
utils
::
check_err
(
in_n_c_hi_wi_device_result
.
mData
,
in_n_c_hi_wi_host_result
.
mData
)
?
0
:
1
;
};
switch
(
num_dim_spatial
)
...
...
@@ -347,4 +350,5 @@ int main(int argc, char* argv[])
}
}
}
return
0
;
}
example/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
View file @
6e3cf8b0
...
...
@@ -4,6 +4,7 @@
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
...
...
@@ -27,7 +28,9 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
DDataType
=
F32
;
using
DPtrsGlobal
=
ck
::
Tuple
<
DDataType
*
,
DDataType
*>
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
...
@@ -36,20 +39,31 @@ using CLayout = ck::tensor_layout::gemm::RowMajor;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
D1ElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
float
,
float
,
false
>
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
<
ReduceAccDataType
>
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
<
ReduceAccDataType
>
;
using
DxsReduceOp
=
ck
::
Tuple
<
D0ReduceOp
,
D1ReduceOp
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
ReduceAccDataType
,
ReduceAccDataType
,
false
>
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
ReduceAccDataType
,
ReduceAccDataType
,
false
>
;
using
DxsInElementOp
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
DxsOutElementOp
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnaryIdenticElementOp
>
;
using
DGlobalMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceBatchedGemmReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D
0| D1
| D
1
EleOp| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce|
Reduce
| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation|
Operation|
Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
AElementOp
,
BElementOp
,
CElementOp
,
D
0
ReduceOp
,
D
1ReduceOp
,
D1Element
Op
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc|
DData| A| B| C| D
xs| DxsInEleOp
| D
xsOut
EleOp|
D|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType|
Type
Tuple
| Elementwise| Elementwise| Elementwise|
Reduce|
| | MemoryData
| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | |
| Operation
| Operation| Operation| Operation|
| |
Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | |
|
| | | |
| |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
DPtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
D
xs
ReduceOp
,
D
xsInElementOp
,
DxsOutElementOp
,
DGlobalMem
Op
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
...
...
@@ -57,18 +71,18 @@ using ReferenceBatchedGemmInstance = ck::tensor_operation::host::
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
1
;
bool
do_verification
=
true
;
int
init_method
=
1
;
int
nrepeat
=
5
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
M
=
2048
;
ck
::
index_t
N
=
1920
;
ck
::
index_t
K
=
2048
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
ck
::
index_t
StrideA
=
2048
;
ck
::
index_t
StrideB
=
2048
;
ck
::
index_t
StrideC
=
1920
;
ck
::
index_t
BatchCount
=
4
;
...
...
@@ -80,13 +94,13 @@ int main(int argc, char* argv[])
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
11
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
...
...
@@ -96,13 +110,13 @@ int main(int argc, char* argv[])
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
BatchCount
=
std
::
stoi
(
argv
[
9
]);
BatchCount
=
std
::
stoi
(
argv
[
10
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3:
run
kernel
# of times (>1
)
\n
"
);
printf
(
"arg3:
time
kernel
(0=n0, 1=yes
)
\n
"
);
printf
(
"arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC, BatchCount
\n
"
);
exit
(
0
);
}
...
...
@@ -172,9 +186,8 @@ int main(int argc, char* argv[])
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
d0_reduce_op
=
D0ReduceOp
{};
auto
d1_reduce_op
=
D1ReduceOp
{};
auto
d1_element_op
=
D1ElementOp
{};
auto
dxs_global
=
ck
::
make_tuple
(
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()));
// do GEMM
auto
batched_gemm
=
DeviceBatchedGemmReduceInstance
{};
...
...
@@ -183,8 +196,7 @@ int main(int argc, char* argv[])
batched_gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()),
dxs_global
,
M
,
N
,
K
,
...
...
@@ -194,7 +206,8 @@ int main(int argc, char* argv[])
a_element_op
,
b_element_op
,
c_element_op
,
d1_element_op
,
DxsInElementOp
{},
DxsOutElementOp
{},
BatchCount
);
if
(
!
batched_gemm
.
IsSupportedArgument
(
argument
))
...
...
@@ -204,30 +217,13 @@ int main(int argc, char* argv[])
"not support this GEMM problem"
);
}
// warm up
invoker
.
Run
(
argument
);
// timing
float
total_time
=
0
;
for
(
int
i
=
0
;
i
<
nrepeat
;
++
i
)
{
// init DO, D1 to 0
d0_device_buf
.
SetZero
();
d1_device_buf
.
SetZero
();
KernelTimer
timer
;
timer
.
Start
();
invoker
.
Run
(
argument
);
timer
.
End
();
total_time
+=
timer
.
GetElapsedTime
();
}
float
ave_time
=
total_time
/
nrepeat
;
// if time_kernel == true, kernel will run multiple times. This kernel use atomic-add so result
// will not be correct. need to set time_kernel = false for correctness test
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
BatchCount
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
BatchCount
*
M
*
K
+
...
...
@@ -241,6 +237,7 @@ int main(int argc, char* argv[])
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
batched_gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_g_m_n_device_result
.
mData
.
data
());
...
...
@@ -255,6 +252,9 @@ int main(int argc, char* argv[])
ref_invoker
.
Run
(
ref_argument
);
auto
d0_reduce_op
=
D0ReduceOp
{};
auto
d1_reduce_op
=
D1ReduceOp
{};
for
(
int
batch
=
0
;
batch
<
BatchCount
;
++
batch
)
{
for
(
int
m
=
0
;
m
<
M
;
++
m
)
...
...
@@ -264,10 +264,12 @@ int main(int argc, char* argv[])
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
float
d0_val
=
ck
::
type_convert
<
float
>
(
c_g_m_n_host_result
(
m
,
n
));
float
d1_val
;
float
c_val
=
ck
::
type_convert
<
float
>
(
c_g_m_n_host_result
(
batch
,
m
,
n
));
float
d0_val
=
0
;
float
d1_val
=
0
;
d1_element_op
(
d1_val
,
d0_val
);
UnaryIdenticElementOp
{}(
d0_val
,
c_val
);
UnarySquareElementOp
{}(
d1_val
,
c_val
);
d0_reduce_op
(
d0_acc
,
d0_val
);
d1_reduce_op
(
d1_acc
,
d1_val
);
}
...
...
@@ -277,10 +279,20 @@ int main(int argc, char* argv[])
}
}
check_error
(
c_g_m_n_host_result
,
c_g_m_n_device_result
);
check_error
(
d0_g_m_host_result
,
d0_g_m_device_result
);
check_error
(
d1_g_m_host_result
,
d1_g_m_device_result
);
pass
=
ck
::
utils
::
check_err
(
c_g_m_n_host_result
.
mData
,
c_g_m_n_device_result
.
mData
,
"Error: Incorrect results c"
)
&&
ck
::
utils
::
check_err
(
d0_g_m_device_result
.
mData
,
d0_g_m_host_result
.
mData
,
"Error: Incorrect results! D0"
,
1e-4
,
1e-5
)
&&
ck
::
utils
::
check_err
(
d1_g_m_device_result
.
mData
,
d1_g_m_host_result
.
mData
,
"Error: Incorrect results! D1"
,
1e-3
,
1e-5
);
}
return
0
;
return
pass
?
0
:
1
;
}
example/19_binary_elementwise/CMakeLists.txt
0 → 100644
View file @
6e3cf8b0
add_example_executable
(
example_broadcast_add_2d broadcast_add_2d.cpp
)
add_example_executable
(
example_elementwise_add_1d elementwise_add_1d.cpp
)
add_example_executable
(
example_elementwise_add_4d elementwise_add_4d.cpp
)
\ No newline at end of file
example/19_binary_elementwise/broadcast_add_2d.cpp
0 → 100644
View file @
6e3cf8b0
#include <iostream>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
Add
=
ck
::
tensor_operation
::
binary_element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
Add
,
2
,
8
>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
,
int
broadcastDim
>
void
host_broadcast2D
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
int
M
,
int
N
,
Functor
functor
)
{
using
ctype
=
ck
::
remove_reference_t
<
decltype
(
C
(
0
,
0
))
>
;
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ComputeDataType
Amn
=
static_cast
<
ComputeDataType
>
(
A
(
m
,
n
));
ComputeDataType
Cmn
=
0
;
if
constexpr
(
broadcastDim
==
0
)
{
ComputeDataType
Bn
=
static_cast
<
ComputeDataType
>
(
B
(
n
));
functor
(
Cmn
,
Amn
,
Bn
);
}
else
{
ComputeDataType
Bm
=
static_cast
<
ComputeDataType
>
(
B
(
m
));
functor
(
Cmn
,
Amn
,
Bm
);
}
C
(
m
,
n
)
=
static_cast
<
ctype
>
(
Cmn
);
}
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
Stride
=
1024
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
};
Tensor
<
ABDataType
>
a_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
Tensor
<
ABDataType
>
b_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
CDataType
>
c_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
a_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_m_n_device_buf
(
sizeof
(
ABDataType
)
*
a_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
b_n_device_buf
(
sizeof
(
ABDataType
)
*
b_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n
.
mDesc
.
GetElementSpace
());
a_m_n_device_buf
.
ToDevice
(
a_m_n
.
mData
.
data
());
b_n_device_buf
.
ToDevice
(
b_n
.
mData
.
data
());
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
a_m_n_device_buf
.
GetDeviceBuffer
(),
b_n_device_buf
.
GetDeviceBuffer
(),
c_m_n_device_buf
.
GetDeviceBuffer
(),
{
M
,
N
},
{
Stride
,
1
},
{
0
,
1
},
// broadcast in first dimension
{
Stride
,
1
},
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwise_2D instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
float
ave_time
=
broadcastAdd_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_m_n_device_buf
.
FromDevice
(
c_m_n
.
mData
.
data
());
Tensor
<
CDataType
>
host_c_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
host_broadcast2D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
,
0
>
(
host_c_m_n
,
a_m_n
,
b_n
,
M
,
N
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c_m_n
.
mData
,
host_c_m_n
.
mData
,
"Error: Incorrect results d1"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/19_binary_elementwise/elementwise_add_1d.cpp
0 → 100644
View file @
6e3cf8b0
#include <iostream>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
Add
=
ck
::
tensor_operation
::
binary_element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
Add
,
1
,
8
>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
>
void
host_elementwise1D
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
int
M
,
Functor
functor
)
{
using
ctype
=
ck
::
remove_reference_t
<
decltype
(
C
(
0
))
>
;
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
ComputeDataType
Am
=
static_cast
<
ComputeDataType
>
(
A
(
m
));
ComputeDataType
Bm
=
static_cast
<
ComputeDataType
>
(
B
(
m
));
ComputeDataType
Cm
=
0
;
functor
(
Cm
,
Am
,
Bm
);
C
(
m
)
=
static_cast
<
ctype
>
(
Cm
);
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
ck
::
index_t
M
=
1024
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
Tensor
<
ABDataType
>
a_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
ABDataType
>
b_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
CDataType
>
c_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
a_m
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b_m
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_m_device_buf
(
sizeof
(
ABDataType
)
*
a_m
.
mDesc
.
GetElementSpace
());
DeviceMem
b_m_device_buf
(
sizeof
(
ABDataType
)
*
b_m
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_device_buf
(
sizeof
(
CDataType
)
*
c_m
.
mDesc
.
GetElementSpace
());
a_m_device_buf
.
ToDevice
(
a_m
.
mData
.
data
());
b_m_device_buf
.
ToDevice
(
b_m
.
mData
.
data
());
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
a_m_device_buf
.
GetDeviceBuffer
(),
b_m_device_buf
.
GetDeviceBuffer
(),
c_m_device_buf
.
GetDeviceBuffer
(),
{
M
},
{
1
},
{
1
},
{
1
},
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwise_2D instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
float
ave_time
=
broadcastAdd_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_m_device_buf
.
FromDevice
(
c_m
.
mData
.
data
());
Tensor
<
CDataType
>
host_c_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
host_elementwise1D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
>
(
host_c_m
,
a_m
,
b_m
,
M
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c_m
.
mData
,
host_c_m
.
mData
,
"Error: Incorrect results d1"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/19_binary_elementwise/elementwise_add_4d.cpp
0 → 100644
View file @
6e3cf8b0
#include <iostream>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
Add
=
ck
::
tensor_operation
::
binary_element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
Add
,
4
,
8
>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
const
std
::
vector
<
std
::
size_t
>&
shape
,
Functor
functor
)
{
using
ctype
=
ck
::
remove_reference_t
<
decltype
(
C
(
0
,
0
,
0
,
0
))
>
;
for
(
std
::
size_t
n
=
0
;
n
<
shape
[
0
];
++
n
)
for
(
std
::
size_t
c
=
0
;
c
<
shape
[
1
];
++
c
)
for
(
std
::
size_t
h
=
0
;
h
<
shape
[
2
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
shape
[
3
];
++
w
)
{
ComputeDataType
a_val
=
static_cast
<
ComputeDataType
>
(
A
(
n
,
c
,
h
,
w
));
ComputeDataType
b_val
=
static_cast
<
ComputeDataType
>
(
B
(
n
,
c
,
h
,
w
));
ComputeDataType
c_val
=
0
;
functor
(
c_val
,
a_val
,
b_val
);
C
(
n
,
c
,
h
,
w
)
=
static_cast
<
ctype
>
(
c_val
);
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
4
,
16
,
32
,
32
};
Tensor
<
ABDataType
>
a
(
nchw
);
Tensor
<
ABDataType
>
b
(
nchw
);
Tensor
<
CDataType
>
c
(
nchw
);
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ABDataType
)
*
a
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
ABDataType
)
*
b
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b
.
mData
.
data
());
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
std
::
vector
<
ck
::
index_t
>
{
nchw
.
begin
(),
nchw
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
a
.
mDesc
.
GetStrides
().
begin
(),
a
.
mDesc
.
GetStrides
().
end
()},
std
::
vector
<
ck
::
index_t
>
{
b
.
mDesc
.
GetStrides
().
begin
(),
b
.
mDesc
.
GetStrides
().
end
()},
std
::
vector
<
ck
::
index_t
>
{
c
.
mDesc
.
GetStrides
().
begin
(),
c
.
mDesc
.
GetStrides
().
end
()},
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwise_2D instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
float
ave_time
=
broadcastAdd_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c
.
mData
.
data
());
Tensor
<
CDataType
>
host_c
(
nchw
);
host_elementwise4D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
>
(
host_c
,
a
,
b
,
nchw
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c
.
mData
,
host_c
.
mData
,
"Error: Incorrect results d1"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/20_convnd_bwd_weight_xdl/CMakeLists.txt
0 → 100644
View file @
6e3cf8b0
add_example_executable
(
example_convnd_bwd_weight_xdl convnd_bwd_weight_xdl.cpp
)
target_link_libraries
(
example_convnd_bwd_weight_xdl PRIVATE conv_util
)
\ No newline at end of file
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl.cpp
0 → 100644
View file @
6e3cf8b0
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "conv_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "element_wise_operation.hpp"
#include "device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "reference_conv_backward_weight.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvBwdWeightDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardWeightSpecialization
::
Default
;
using
DeviceConvBwdWeightBasePtr
=
ck
::
tensor_operation
::
device
::
DeviceConvBwdWeightPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// clang-format off
template
<
ck
::
index_t
NumDimSpatial
>
using
DeviceConvndBwdWeightInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvBwdWeightDefault
,
// ConvolutionBackwardWeightSpecialization
NumDimSpatial
,
// NumDimSpatial
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
1
,
4
,
16
,
4
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
0
,
3
,
1
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
4
,
16
,
4
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
0
,
3
,
1
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
template
<
ck
::
index_t
NumDimSpatial
>
using
ReferenceConvBwdWeightInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdWeight
<
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
NumDimSpatial
>
;
void
print_use_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=random value, 2= init to 1 )
\n
"
<<
"arg3: time kernel (0=n0, 1=yes)
\n
"
<<
"arg4: is show log (0=no, 1=yes)
\n
"
<<
"arg5: split-k
\n
"
<<
"arg6: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N, K, C,
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <input image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
<<
" <strides>, (ie Sy, Sx for 2D)
\n
"
<<
" <dilations>, (ie Dy, Dx for 2D)
\n
"
<<
" <left padding>, (ie LeftPy, LeftPx for 2D)
\n
"
<<
" <right padding>, (ie RightPy, RightPx for 2D)
\n
"
<<
std
::
endl
;
}
ck
::
utils
::
conv
::
ConvParams
parse_conv_params
(
int
num_dim_spatial
,
char
*
argv
[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
ck
::
utils
::
conv
::
ConvParams
params
;
int
arg_idx
=
7
;
params
.
num_dim_spatial_
=
num_dim_spatial
;
params
.
N_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
K_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
C_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
filter_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
filter_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_strides_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_strides_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_dilations_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_dilations_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_left_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_left_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_right_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_right_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
return
params
;
}
DeviceConvBwdWeightBasePtr
get_conv_instance
(
int
num_dim_spatial
)
{
switch
(
num_dim_spatial
)
{
case
3
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance
<
3
>>
();
}
case
2
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance
<
2
>>
();
}
case
1
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance
<
1
>>
();
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
num_dim_spatial
=
2
;
int
do_log
=
0
;
int
split_k
=
1
;
ck
::
utils
::
conv
::
ConvParams
params
;
params
.
C_
=
128
;
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
do_log
=
std
::
stoi
(
argv
[
4
]);
split_k
=
std
::
stoi
(
argv
[
5
]);
}
else
if
(
argc
>
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
do_log
=
std
::
stoi
(
argv
[
4
]);
split_k
=
std
::
stoi
(
argv
[
5
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
6
]);
// check args number
int
conv_args
=
3
+
num_dim_spatial
*
6
;
int
cmdline_nargs
=
conv_args
+
7
;
if
(
cmdline_nargs
!=
argc
)
{
print_use_msg
();
exit
(
1
);
}
params
=
parse_conv_params
(
num_dim_spatial
,
argv
);
}
else
if
(
argc
!=
1
)
{
print_use_msg
();
exit
(
1
);
}
std
::
vector
<
std
::
size_t
>
input_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
input_dims
.
insert
(
std
::
end
(
input_dims
),
std
::
begin
(
params
.
input_spatial_lengths_
),
std
::
end
(
params
.
input_spatial_lengths_
));
std
::
vector
<
std
::
size_t
>
filter_dims
{
static_cast
<
std
::
size_t
>
(
params
.
K_
),
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
filter_dims
.
insert
(
std
::
end
(
filter_dims
),
std
::
begin
(
params
.
filter_spatial_lengths_
),
std
::
end
(
params
.
filter_spatial_lengths_
));
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
=
params
.
GetOutputSpatialLengths
();
std
::
vector
<
std
::
size_t
>
output_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
static_cast
<
std
::
size_t
>
(
params
.
K_
)};
output_dims
.
insert
(
std
::
end
(
output_dims
),
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
));
Tensor
<
InDataType
>
in_n_c_hi_wi
(
ck
::
utils
::
conv
::
get_input_host_tensor_descriptor
(
input_dims
,
num_dim_spatial
));
Tensor
<
WeiDataType
>
wei_k_c_y_x_host_result
(
ck
::
utils
::
conv
::
get_filters_host_tensor_descriptor
(
filter_dims
,
num_dim_spatial
));
Tensor
<
WeiDataType
>
wei_k_c_y_x_device_result
(
ck
::
utils
::
conv
::
get_filters_host_tensor_descriptor
(
filter_dims
,
num_dim_spatial
));
Tensor
<
OutDataType
>
out_n_k_ho_wo
(
ck
::
utils
::
conv
::
get_output_host_tensor_descriptor
(
output_dims
,
num_dim_spatial
));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
2
,
2
});
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
2
,
2
});
break
;
default:
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
});
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
1
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
out_device_buf
.
ToDevice
(
out_n_k_ho_wo
.
mData
.
data
());
// reset input to zero
wei_device_buf
.
SetZero
();
// do GEMM
auto
conv
=
get_conv_instance
(
num_dim_spatial
);
auto
invoker
=
conv
->
MakeInvokerPointer
();
auto
argument
=
conv
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
params
.
N_
,
params
.
K_
,
params
.
C_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{},
split_k
);
if
(
!
conv
->
IsSupportedArgument
(
argument
.
get
()))
{
std
::
cout
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
1
;
}
float
ave_time
=
invoker
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
ck
::
utils
::
conv
::
get_flops
(
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
std
::
size_t
num_btype
=
ck
::
utils
::
conv
::
get_btype
<
InDataType
,
WeiDataType
,
OutDataType
>
(
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
auto
verify_f
=
[
&
](
const
auto
&
ref_conv
)
{
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_n_c_hi_wi
,
wei_k_c_y_x_host_result
,
out_n_k_ho_wo
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
wei_device_buf
.
FromDevice
(
wei_k_c_y_x_device_result
.
mData
.
data
());
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out: "
,
out_n_k_ho_wo
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei_device(after): "
,
wei_k_c_y_x_device_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei_host : "
,
wei_k_c_y_x_host_result
.
mData
,
","
)
<<
std
::
endl
;
}
return
ck
::
utils
::
check_err
(
wei_k_c_y_x_device_result
.
mData
,
wei_k_c_y_x_host_result
.
mData
)
?
0
:
1
;
};
switch
(
num_dim_spatial
)
{
case
3
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
3
>
();
verify_f
(
ref_conv
);
break
;
}
case
2
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
2
>
();
verify_f
(
ref_conv
);
break
;
}
case
1
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
1
>
();
verify_f
(
ref_conv
);
break
;
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
return
0
;
}
example/CMakeLists.txt
View file @
6e3cf8b0
...
...
@@ -19,13 +19,22 @@ include_directories(BEFORE
add_custom_target
(
examples
)
function
(
add_example_executable EXAMPLE_NAME
)
function
(
add_example_executable EXAMPLE_NAME
FILE_NAME
)
message
(
"adding example
${
EXAMPLE_NAME
}
"
)
add_executable
(
${
EXAMPLE_NAME
}
${
ARGN
}
)
add_executable
(
${
EXAMPLE_NAME
}
${
FILE_NAME
}
)
target_link_libraries
(
${
EXAMPLE_NAME
}
PRIVATE host_tensor
)
add_test
(
NAME
${
EXAMPLE_NAME
}
COMMAND $<TARGET_FILE:
${
EXAMPLE_NAME
}
>
${
ARGN
}
)
add_dependencies
(
examples
${
EXAMPLE_NAME
}
)
add_dependencies
(
check
${
EXAMPLE_NAME
}
)
endfunction
(
add_example_executable EXAMPLE_NAME
)
function
(
add_example_executable_no_testing EXAMPLE_NAME FILE_NAME
)
message
(
"adding example
${
EXAMPLE_NAME
}
"
)
add_executable
(
${
EXAMPLE_NAME
}
${
FILE_NAME
}
)
target_link_libraries
(
${
EXAMPLE_NAME
}
PRIVATE host_tensor
)
add_dependencies
(
examples
${
EXAMPLE_NAME
}
)
endfunction
(
add_example_executable_no_testing EXAMPLE_NAME
)
add_subdirectory
(
01_gemm
)
add_subdirectory
(
02_gemm_alpha_beta
)
add_subdirectory
(
03_gemm_bias_relu
)
...
...
@@ -42,3 +51,5 @@ add_subdirectory(17_convnd_bwd_data_xdl)
add_subdirectory
(
15_grouped_gemm
)
add_subdirectory
(
16_gemm_reduce
)
add_subdirectory
(
18_batched_gemm_reduce
)
add_subdirectory
(
19_binary_elementwise
)
add_subdirectory
(
20_convnd_bwd_weight_xdl
)
include/ck/config.hpp
View file @
6e3cf8b0
...
...
@@ -76,6 +76,12 @@
#define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 0
#endif
#if defined(__gfx90a__) // for GPU code
#define CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64 1
#else
#define CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64 0
#endif
// inline asm
#define CK_USE_AMD_INLINE_ASM 1
...
...
@@ -91,10 +97,11 @@
// experimental feature: static tensor descriptor
#define CK_EXPERIMENTAL_STATIC_TENSOR_DESCRIPTOR 0
// experimental feature: buffer load/store/atomic-add OOB trick
// experimental feature: buffer load/store/atomic-add
/
OOB trick
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 0
#define CK_EXPERIMENTAL_USE_BUFFER_STORE_OOB_CHECK_OFFSET_TRICK 1
#define CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_ADD_OOB_CHECK_OFFSET_TRICK 1
#define CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_MAX_OOB_CHECK_OFFSET_TRICK 1
// experimental feature: in-regsiter sub-dword transpose
#define CK_EXPERIMENTAL_USE_IN_REGISTER_SUB_DWORD_TRANSPOSE 1
...
...
@@ -142,9 +149,23 @@ enum struct InMemoryDataOperationEnum
{
Set
,
AtomicAdd
,
AtomicMax
,
Add
};
template
<
InMemoryDataOperationEnum
...
Is
>
struct
InMemoryDataOperationEnumSequence
{
static
constexpr
int
mSize
=
sizeof
...(
Is
);
__host__
__device__
static
constexpr
InMemoryDataOperationEnum
At
(
int
I
)
{
// the last dummy element is to prevent compiler complain about empty array, when mSize = 0
const
InMemoryDataOperationEnum
mData
[
mSize
+
1
]
=
{
Is
...,
InMemoryDataOperationEnum
::
Set
};
return
mData
[
I
];
}
};
// TODO: no longer needed, remove this
enum
struct
ActivTypeEnum
{
...
...
include/ck/hip_version.hpp.in
deleted
100644 → 0
View file @
4ad62d7f
#pragma once
// "_PACKAGE_" to avoid name contentions: the macros like
// HIP_VERSION_MAJOR are defined in HIP_VERSION.h.
// clang-format off
#define CK_HIP_PACKAGE_VERSION_MAJOR @CK_HIP_VERSION_MAJOR@
#define CK_HIP_PACKAGE_VERSION_MINOR @CK_HIP_VERSION_MINOR@
#define CK_HIP_PACKAGE_VERSION_PATCH @CK_HIP_VERSION_PATCH@
// clang-format on
#ifndef CK_HIP_PACKAGE_VERSION_MAJOR
#define CK_HIP_PACKAGE_VERSION_MAJOR 0
#endif
#ifndef CK_HIP_PACKAGE_VERSION_MINOR
#define CK_HIP_PACKAGE_VERSION_MINOR 0
#endif
#ifndef CK_HIP_PACKAGE_VERSION_PATCH
#define CK_HIP_PACKAGE_VERSION_PATCH 0
#endif
// 3 decimal digits for major and minor, 6 digits for patch number.
// Max number is 999,999,999999 == 0xE8,D4A5,0FFF that fits into 64-bit math.
#if CK_HIP_PACKAGE_VERSION_MAJOR > 999 || CK_HIP_PACKAGE_VERSION_MAJOR > 999 || \
CK_HIP_PACKAGE_VERSION_PATCH > 999999
#error "Too big HIP version number(s)"
#endif
#define CK_HIP_PACKAGE_VERSION_FLAT \
((CK_HIP_PACKAGE_VERSION_MAJOR * 1000ULL + CK_HIP_PACKAGE_VERSION_MINOR) * 1000000 + \
CK_HIP_PACKAGE_VERSION_PATCH)
Prev
1
2
3
4
5
6
…
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment