Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
6dfb4e78
Commit
6dfb4e78
authored
Jun 12, 2022
by
carlushuang
Browse files
Merge remote-tracking branch 'origin/develop' into cpu_avx2
parents
397a68f2
1ced00a5
Changes
268
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2273 additions
and
110 deletions
+2273
-110
example/12_reduce/reduce_blockwise_two_call.cpp
example/12_reduce/reduce_blockwise_two_call.cpp
+290
-0
example/13_pool2d_fwd/CMakeLists.txt
example/13_pool2d_fwd/CMakeLists.txt
+3
-1
example/13_pool2d_fwd/README.md
example/13_pool2d_fwd/README.md
+27
-8
example/13_pool2d_fwd/pool2d_fwd_common.hpp
example/13_pool2d_fwd/pool2d_fwd_common.hpp
+281
-0
example/13_pool2d_fwd/pool2d_fwd_fp16.cpp
example/13_pool2d_fwd/pool2d_fwd_fp16.cpp
+114
-0
example/13_pool2d_fwd/pool2d_fwd_fp32.cpp
example/13_pool2d_fwd/pool2d_fwd_fp32.cpp
+114
-0
example/14_gemm_xdl_requant_relu_requant/gemm_xdl_requant_relu_requant_int8.cpp
...quant_relu_requant/gemm_xdl_requant_relu_requant_int8.cpp
+7
-2
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
+8
-3
example/16_gemm_reduce/CMakeLists.txt
example/16_gemm_reduce/CMakeLists.txt
+2
-1
example/16_gemm_reduce/gemm_reduce_xdl_max_fp16.cpp
example/16_gemm_reduce/gemm_reduce_xdl_max_fp16.cpp
+266
-0
example/16_gemm_reduce/gemm_reduce_xdl_mean_squaremean_fp16.cpp
...e/16_gemm_reduce/gemm_reduce_xdl_mean_squaremean_fp16.cpp
+93
-52
example/17_convnd_bwd_data_xdl/convnd_bwd_data_xdl.cpp
example/17_convnd_bwd_data_xdl/convnd_bwd_data_xdl.cpp
+3
-6
example/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
...e/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
+56
-37
example/19_binary_elementwise/CMakeLists.txt
example/19_binary_elementwise/CMakeLists.txt
+4
-0
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
+165
-0
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
+124
-0
example/19_binary_elementwise/elementwise_add_1d.cpp
example/19_binary_elementwise/elementwise_add_1d.cpp
+145
-0
example/19_binary_elementwise/elementwise_add_4d.cpp
example/19_binary_elementwise/elementwise_add_4d.cpp
+147
-0
example/20_convnd_bwd_weight_xdl/CMakeLists.txt
example/20_convnd_bwd_weight_xdl/CMakeLists.txt
+2
-0
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl.cpp
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl.cpp
+422
-0
No files found.
example/12_reduce/reduce_blockwise_two_call.cpp
0 → 100644
View file @
6dfb4e78
#include <iostream>
#include <numeric>
#include <sstream>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "check_err.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_reduce_multiblock.hpp"
#include "host_common_util.hpp"
#include "host_reduction.hpp"
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
using
InOutDataType
=
ck
::
half_t
;
using
InOutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
constexpr
ReduceTensorOp
ReduceOpId
=
ReduceTensorOp
::
NORM2
;
constexpr
bool
PropagateNan
=
true
;
constexpr
bool
OutputIndex
=
false
;
using
ReduceOperation
=
typename
reduce_binary_operator
<
AccDataType
,
ReduceOpId
>::
opType
;
using
InElementwiseOperation
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
using
PassThroughOp
=
tensor_operation
::
element_wise
::
UnaryIdentic
<
AccDataType
,
AccDataType
>
;
using
DeviceReduceInstance_1
=
DeviceReduceMultiBlock
<
InOutDataType
,
AccDataType
,
InOutDataType
,
5
,
// Rank
1
,
// NumReduceDim
ReduceOperation
,
InElementwiseOperation
,
PassThroughOp
,
InMemoryDataOperationEnum
::
Set
,
PropagateNan
,
OutputIndex
,
false
,
// HaveIndexInputIfOutputIndex
256
,
32
,
8
,
1
,
1
,
1
,
// vector dim
1
,
1
>
;
using
DeviceReduceInstance_2
=
DeviceReduceMultiBlock
<
InOutDataType
,
AccDataType
,
InOutDataType
,
4
,
// Rank
1
,
// NumReduceDim
ReduceOperation
,
PassThroughOp
,
AccElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
PropagateNan
,
OutputIndex
,
false
,
// HaveIndexInputIfOutputIndex
256
,
128
,
2
,
1
,
1
,
1
,
// vector dim
1
,
1
>
;
static
bool
do_verify
;
static
int
init_method
;
static
float
alpha
;
static
float
beta
;
static
bool
time_kernel
;
int
main
(
int
argc
,
char
*
argv
[])
{
// used by the device reduction
const
std
::
vector
<
int
>
reduceDims_1
=
{
4
};
const
std
::
vector
<
int
>
invariantDims_1
=
{
0
,
1
,
2
,
3
};
const
std
::
vector
<
int
>
reduceDims_2
=
{
3
};
const
std
::
vector
<
int
>
invariantDims_2
=
{
0
,
1
,
2
};
// used by the host reduction
const
std
::
vector
<
int
>
reduceDims
=
{
3
,
4
};
const
std
::
vector
<
int
>
invariantDims
=
{
0
,
1
,
2
};
const
std
::
vector
<
size_t
>
inLengths_1
=
{
64
,
320
,
80
,
4
,
128
};
// input lengths of the second reduction, which is also the output lengths of the first
// reduction
const
std
::
vector
<
size_t
>
inLengths_2
=
{
64
,
320
,
80
,
4
};
const
std
::
vector
<
size_t
>
outLengths
=
{
64
,
320
,
80
};
if
(
argc
==
1
)
{
do_verify
=
true
;
init_method
=
2
;
time_kernel
=
true
;
}
else
if
(
argc
==
4
)
{
do_verify
=
static_cast
<
bool
>
(
argv
[
1
]);
init_method
=
atoi
(
argv
[
2
]);
time_kernel
=
static_cast
<
bool
>
(
atoi
(
argv
[
3
]));
}
else
{
std
::
ostringstream
ostr
;
ostr
<<
"Wrong parameter! "
<<
std
::
endl
<<
"Usage: "
<<
argv
[
0
]
<<
"[verify 0/1] init_method time_kernel"
<<
std
::
endl
;
throw
std
::
runtime_error
(
ostr
.
str
());
};
alpha
=
1.0
f
;
beta
=
0.0
f
;
Tensor
<
InOutDataType
>
in_1
(
inLengths_1
);
Tensor
<
InOutDataType
>
out_ref
(
outLengths
);
Tensor
<
InOutDataType
>
in_2
(
inLengths_2
);
// also the output tensor of the first reduction
Tensor
<
InOutDataType
>
out
(
outLengths
);
auto
inStrides_1
=
in_1
.
mDesc
.
GetStrides
();
auto
inStrides_2
=
in_2
.
mDesc
.
GetStrides
();
auto
outStrides
=
out
.
mDesc
.
GetStrides
();
size_t
invariant_total_length
=
out
.
mDesc
.
GetElementSize
();
size_t
reduce_total_length
=
in_1
.
mDesc
.
GetElementSize
()
/
invariant_total_length
;
std
::
size_t
num_thread
=
1
;
if
(
do_verify
)
{
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_1
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
break
;
case
2
:
in_1
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
in_1
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
}
if
(
beta
!=
0.0
f
)
for
(
size_t
i
=
0
;
i
<
out_ref
.
mDesc
.
GetElementSpace
();
i
++
)
out
.
mData
[
i
]
=
out_ref
.
mData
[
i
];
};
DeviceMem
in_1_dev
(
sizeof
(
InOutDataType
)
*
in_1
.
mDesc
.
GetElementSpace
());
DeviceMem
in_2_dev
(
sizeof
(
InOutDataType
)
*
in_2
.
mDesc
.
GetElementSpace
());
DeviceMem
out_dev
(
sizeof
(
InOutDataType
)
*
out
.
mDesc
.
GetElementSpace
());
in_1_dev
.
ToDevice
(
in_1
.
mData
.
data
());
if
(
beta
!=
0.0
f
)
out_dev
.
ToDevice
(
out
.
mData
.
data
());
if
(
do_verify
)
{
ReductionHost
<
InOutDataType
,
AccDataType
,
InOutDataType
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
5
,
// Rank
2
,
// NumReduceDim
PropagateNan
,
OutputIndex
>
hostReduce
(
in_1
.
mDesc
,
out_ref
.
mDesc
,
invariantDims
,
reduceDims
);
hostReduce
.
Run
(
alpha
,
in_1
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
nullptr
);
};
std
::
vector
<
ck
::
index_t
>
i_inLengths_1
;
std
::
vector
<
ck
::
index_t
>
i_inStrides_1
;
std
::
vector
<
ck
::
index_t
>
i_inLengths_2
;
std
::
vector
<
ck
::
index_t
>
i_inStrides_2
;
std
::
vector
<
ck
::
index_t
>
i_outLengths
;
std
::
vector
<
ck
::
index_t
>
i_outStrides
;
i_inLengths_1
.
assign
(
inLengths_1
.
begin
(),
inLengths_1
.
end
());
i_inStrides_1
.
assign
(
inStrides_1
.
begin
(),
inStrides_1
.
end
());
i_inLengths_2
.
assign
(
inLengths_2
.
begin
(),
inLengths_2
.
end
());
i_inStrides_2
.
assign
(
inStrides_2
.
begin
(),
inStrides_2
.
end
());
i_outLengths
.
assign
(
outLengths
.
begin
(),
outLengths
.
end
());
i_outStrides
.
assign
(
outStrides
.
begin
(),
outStrides
.
end
());
auto
reduce_1
=
DeviceReduceInstance_1
{};
auto
argument_ptr_1
=
reduce_1
.
MakeArgumentPointer
(
i_inLengths_1
,
i_inStrides_1
,
i_inLengths_2
,
i_inStrides_2
,
reduceDims_1
,
1.0
f
,
0.0
f
,
in_1_dev
.
GetDeviceBuffer
(),
nullptr
,
in_2_dev
.
GetDeviceBuffer
(),
nullptr
,
InElementwiseOperation
{
static_cast
<
int32_t
>
(
reduce_total_length
)},
PassThroughOp
{});
if
(
!
reduce_1
.
IsSupportedArgument
(
argument_ptr_1
.
get
()))
{
std
::
cout
<<
"The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<<
std
::
endl
;
};
auto
invoker_ptr_1
=
reduce_1
.
MakeInvokerPointer
();
auto
reduce_2
=
DeviceReduceInstance_2
{};
auto
argument_ptr_2
=
reduce_2
.
MakeArgumentPointer
(
i_inLengths_2
,
i_inStrides_2
,
i_outLengths
,
i_outStrides
,
reduceDims_2
,
alpha
,
beta
,
in_2_dev
.
GetDeviceBuffer
(),
nullptr
,
out_dev
.
GetDeviceBuffer
(),
nullptr
,
PassThroughOp
{},
AccElementwiseOperation
{
static_cast
<
int32_t
>
(
reduce_total_length
)});
if
(
!
reduce_2
.
IsSupportedArgument
(
argument_ptr_2
.
get
()))
{
std
::
cout
<<
"The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<<
std
::
endl
;
};
auto
invoker_ptr_2
=
reduce_2
.
MakeInvokerPointer
();
float
avg_time_1
=
invoker_ptr_1
->
Run
(
argument_ptr_1
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
float
avg_time_2
=
invoker_ptr_2
->
Run
(
argument_ptr_2
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
invariant_total_length
*
reduce_total_length
*
sizeof
(
InOutDataType
)
+
invariant_total_length
*
sizeof
(
InOutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
(
avg_time_1
+
avg_time_2
);
std
::
cout
<<
"Perf: "
<<
avg_time_1
+
avg_time_2
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
reduce_1
.
GetTypeString
()
<<
" => "
<<
reduce_2
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verify
)
{
out_dev
.
FromDevice
(
out
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
};
return
(
pass
?
0
:
1
);
}
example/13_pool2d_fwd/CMakeLists.txt
View file @
6dfb4e78
add_example_executable
(
example_pool2d_fwd pool2d_fwd.cpp
)
add_example_executable
(
example_pool2d_fwd_fp16 pool2d_fwd_fp16.cpp
)
add_example_executable
(
example_pool2d_fwd_fp32 pool2d_fwd_fp32.cpp
)
example/13_pool2d_fwd/README.md
View file @
6dfb4e78
# Instructions for ```example_pool2d_fwd``` Example
# Instructions for ```example_pool2d_fwd``` Example
s
## Run ```example_pool2d_fwd```
## Run ```example_pool2d_fwd
_fp16
```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3:
run
kernel
# of times (>1
)
#arg3:
time
kernel
(0=no, 1=yes
)
#arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, RightPx
./bin/example_pool2d_fwd 1 1 1
0
./bin/example_pool2d_fwd
_fp16
1 1 1
```
Result
...
...
@@ -14,9 +14,28 @@ Result
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
out_n_c_ho_wo: dim 4, lengths {128, 192, 36, 36}, strides {248832, 1, 6912, 192}
launch_and_time_kernel: grid_dim {124416, 1, 1}, block_dim {64, 1, 1}
Warm up
Warm up
1 time
Start running 10 times...
Perf: 0.415453 ms, 1.37996 TFlops, 749.726 GB/s
error: 0
max_diff: 0, 1, 1
Perf: 0.397436 ms, 1.44252 TFlops, 783.713 GB/s
```
## Run ```example_pool2d_fwd_fp32```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
#arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, RightPx
./bin/example_pool2d_fwd_fp32 1 1 1
```
Result
```
./bin/example_pool2d_fwd_fp32 1 1 1
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
out_n_c_ho_wo: dim 4, lengths {128, 192, 36, 36}, strides {248832, 1, 6912, 192}
launch_and_time_kernel: grid_dim {124416, 1, 1}, block_dim {64, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 1.01823 ms, 0.563045 TFlops, 611.8 GB/s
```
example/13_pool2d_fwd/pool2d_fwd
.c
pp
→
example/13_pool2d_fwd/pool2d_fwd
_common.h
pp
View file @
6dfb4e78
#pragma once
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "check_err.hpp"
#include "config.hpp"
...
...
@@ -10,89 +8,67 @@
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_reduce_util.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "reduction_operator.hpp"
#include "device_pool2d_fwd_nhwc_nhwc.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
#if 1
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
MAX
;
#else
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
#endif
static
constexpr
bool
NeedIndices
=
false
;
static
constexpr
bool
PropagateNan
=
false
;
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
#include "reduction_functions_accumulate.hpp"
using
DevicePoolFwdInstance
=
ck
::
tensor_operation
::
device
::
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
<
InDataType
,
// InDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
ReduceOpId
,
NeedIndices
,
64
,
// BlockSize
64
,
// ReduceMThreadClusterSize
1
,
// ReduceKThreadClusterSize
4
,
// ReduceMThreadSliceSize
1
,
// ReduceKThreadSliceSize
4
>
;
// InSrcOutDstVectorSize
#include "device_pool2d_fwd_nhwc_nhwc.hpp"
template
<
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
IndexDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
NeedIndices
>
bool
OutputIndex
>
static
void
pool_host_verify
(
const
Tensor
<
InDataType
>&
in
,
Tensor
<
OutDataType
>&
out
,
Tensor
<
int
>&
out_indices
,
Tensor
<
IndexDataType
>&
out_indices
,
const
std
::
array
<
ck
::
index_t
,
2
>&
window_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
2
>&
window_strides
,
const
std
::
array
<
ck
::
index_t
,
2
>&
in_left_pads
,
const
std
::
array
<
ck
::
index_t
,
2
>&
/*in_right_pads*/
)
{
using
namespace
ck
::
host_reduce
;
const
int32_t
divider
=
window_spatial_lengths
[
0
]
*
window_spatial_lengths
[
1
]
;
const
int
divider
=
window_spatial_lengths
[
0
]
*
window_spatial_lengths
[
1
];
using
ReduceOperation
=
typename
ck
::
reduce_binary_operator
<
AccDataType
,
ReduceOpId
>::
opType
;
using
InElementwiseOperation
=
typename
ck
::
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
ck
::
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
const
auto
PreUnaryOp
=
PreUnaryOpFn
<
AccDataType
,
ReduceOpId
>
(
divider
);
const
auto
PosUnaryOp
=
PosUnaryOpFn
<
AccDataType
,
ReduceOpId
>
(
divider
);
const
InElementwiseOperation
in_elementwise_op
(
divider
);
const
AccElementwiseOperation
acc_elementwise_op
(
divider
);
if
constexpr
(
!
NeedIndices
)
if
constexpr
(
!
OutputIndex
)
{
auto
opReduce
=
ReduceOpFn
<
AccDataType
,
ReduceOpId
>
();
using
Accumulation
=
ck
::
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
>
;
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOp
Z
er
oVal
<
AccDataType
,
ReduceOpId
>
();
auto
accuVal
=
ReduceOper
ation
::
GetIdentityValue
();
for
(
in
t
y
=
0
;
y
<
window_spatial_lengths
[
0
];
++
y
)
for
(
ck
::
index_
t
y
=
0
;
y
<
window_spatial_lengths
[
0
];
++
y
)
{
in
t
hi
=
ho
*
window_strides
[
0
]
+
y
-
in_left_pads
[
0
];
for
(
in
t
x
=
0
;
x
<
window_spatial_lengths
[
1
];
++
x
)
ck
::
index_
t
hi
=
ho
*
window_strides
[
0
]
+
y
-
in_left_pads
[
0
];
for
(
ck
::
index_
t
x
=
0
;
x
<
window_spatial_lengths
[
1
];
++
x
)
{
in
t
wi
=
wo
*
window_strides
[
1
]
+
x
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
ck
::
type_convert
<
in
t
>
(
in
.
mDesc
.
GetLengths
()[
2
])
&&
wi
>=
0
&&
wi
<
ck
::
type_convert
<
in
t
>
(
in
.
mDesc
.
GetLengths
()[
3
]))
ck
::
index_
t
wi
=
wo
*
window_strides
[
1
]
+
x
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_
t
>
(
in
.
mDesc
.
GetLengths
()[
2
])
&&
wi
>=
0
&&
wi
<
static_cast
<
ck
::
index_
t
>
(
in
.
mDesc
.
GetLengths
()[
3
]))
{
AccDataType
currVal
=
static_cast
<
AccDataType
>
(
in
(
n
,
c
,
hi
,
wi
));
PreUnaryOp
(
currVal
);
in_elementwise_op
(
currVal
,
currVal
);
binop_with_nan_check
<
AccDataType
,
PropagateNan
>
(
opReduce
,
accuVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
);
}
}
}
PosUnaryOp
(
accuVal
);
acc_elementwise_op
(
accuVal
,
accuVal
);
out
(
n
,
c
,
ho
,
wo
)
=
accuVal
;
};
...
...
@@ -105,33 +81,34 @@ static void pool_host_verify(const Tensor<InDataType>& in,
}
else
{
auto
opReduce
=
ReduceOpFn2
<
AccDataType
,
ReduceOpId
>
();
using
Accumulation
=
ck
::
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
,
IndexDataType
>
;
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOp
Z
er
oVal
<
AccDataType
,
ReduceOpId
>
();
int
accuIndex
=
0
;
auto
accuVal
=
ReduceOper
ation
::
GetIdentityValue
();
IndexDataType
accuIndex
=
0
;
for
(
in
t
y
=
0
;
y
<
window_spatial_lengths
[
0
];
++
y
)
for
(
ck
::
index_
t
y
=
0
;
y
<
window_spatial_lengths
[
0
];
++
y
)
{
in
t
hi
=
ho
*
window_strides
[
0
]
+
y
-
in_left_pads
[
0
];
for
(
in
t
x
=
0
;
x
<
window_spatial_lengths
[
1
];
++
x
)
ck
::
index_
t
hi
=
ho
*
window_strides
[
0
]
+
y
-
in_left_pads
[
0
];
for
(
ck
::
index_
t
x
=
0
;
x
<
window_spatial_lengths
[
1
];
++
x
)
{
in
t
wi
=
wo
*
window_strides
[
1
]
+
x
-
in_left_pads
[
1
];
ck
::
index_
t
wi
=
wo
*
window_strides
[
1
]
+
x
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
in
.
mDesc
.
GetLengths
()[
2
]
&&
wi
>=
0
&&
wi
<
in
.
mDesc
.
GetLengths
()[
3
])
{
AccDataType
currVal
=
static_cast
<
AccDataType
>
(
in
(
n
,
c
,
hi
,
wi
));
int
currIndex
=
y
*
window_spatial_lengths
[
1
]
+
x
;
IndexDataType
currIndex
=
y
*
window_spatial_lengths
[
1
]
+
x
;
PreUnaryOp
(
currVal
);
in_elementwise_op
(
currVal
,
currVal
);
binop_with_nan_check2
<
AccDataType
,
PropagateNan
>
(
opReduce
,
accuVal
,
currVal
,
accuIndex
,
currIndex
);
Accumulation
::
Calculate
(
accuVal
,
currVal
,
accuIndex
,
currIndex
);
}
}
}
PosUnaryOp
(
accuVal
);
acc_elementwise_op
(
accuVal
,
accuVal
);
out
(
n
,
c
,
ho
,
wo
)
=
accuVal
;
out_indices
(
n
,
c
,
ho
,
wo
)
=
accuIndex
;
...
...
@@ -145,62 +122,44 @@ static void pool_host_verify(const Tensor<InDataType>& in,
};
}
int
main
(
int
argc
,
char
*
argv
[])
template
<
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
IndexDataType
,
typename
InLayout
,
typename
OutLayout
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
OutputIndex
>
bool
pool_test
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
Y
,
ck
::
index_t
X
,
ck
::
index_t
Hi
,
ck
::
index_t
Wi
,
ck
::
index_t
window_stride_h
,
ck
::
index_t
window_stride_w
,
ck
::
index_t
in_left_pad_h
,
ck
::
index_t
in_left_pad_w
,
ck
::
index_t
in_right_pad_h
,
ck
::
index_t
in_right_pad_w
)
{
using
namespace
ck
::
host_reduce
;
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// Pool shape
ck
::
index_t
N
=
128
;
ck
::
index_t
C
=
192
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
71
;
ck
::
index_t
Wi
=
71
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
16
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
N
=
std
::
stoi
(
argv
[
4
]);
C
=
std
::
stoi
(
argv
[
5
]);
Y
=
std
::
stoi
(
argv
[
6
]);
X
=
std
::
stoi
(
argv
[
7
]);
Hi
=
std
::
stoi
(
argv
[
8
]);
Wi
=
std
::
stoi
(
argv
[
9
]);
window_stride_h
=
std
::
stoi
(
argv
[
10
]);
window_stride_w
=
std
::
stoi
(
argv
[
11
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
12
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
13
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
14
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
15
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
0
);
}
using
DevicePoolFwdInstance
=
ck
::
tensor_operation
::
device
::
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
<
InDataType
,
// InDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
ReduceOpId
,
OutputIndex
,
64
,
// BlockSize
64
,
// ReduceMThreadClusterSize
1
,
// ReduceKThreadClusterSize
4
,
// ReduceMThreadSliceSize
1
,
// ReduceKThreadSliceSize
4
>
;
// InSrcOutDstVectorSize
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Y
)
/
window_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
X
)
/
window_stride_w
+
1
;
...
...
@@ -228,9 +187,11 @@ int main(int argc, char* argv[])
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
OutDataType
>
out_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
int
>
out_indices_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
IndexDataType
>
out_indices_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
int
>
out_indices_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
IndexDataType
>
out_indices_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
,
OutLayout
{}));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_c_ho_wo: "
<<
out_n_c_ho_wo_host
.
mDesc
<<
std
::
endl
;
...
...
@@ -245,17 +206,17 @@ int main(int argc, char* argv[])
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_c_ho_wo_device
.
mDesc
.
GetElementSpace
());
DeviceMem
out_indices_device_buf
(
sizeof
(
int
)
*
DeviceMem
out_indices_device_buf
(
sizeof
(
IndexDataType
)
*
out_indices_n_c_ho_wo_device
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
auto
pool
=
DevicePoolFwdInstance
{};
auto
invoker_ptr
=
pool
.
MakeInvokerPointer
();
auto
argument_ptr
=
pool
.
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
auto
argument_ptr
=
pool
.
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
int
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
N
,
C
,
std
::
array
<
ck
::
index_t
,
2
>
{{
Hi
,
Wi
}},
...
...
@@ -286,14 +247,16 @@ int main(int argc, char* argv[])
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
pool_host_verify
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
ReduceOpId
,
PropagateNan
,
NeedIndices
>
(
in_n_c_hi_wi
,
OutputIndex
>
(
in_n_c_hi_wi
,
out_n_c_ho_wo_host
,
out_indices_n_c_ho_wo_host
,
window_spatial_lengths
,
...
...
@@ -303,15 +266,16 @@ int main(int argc, char* argv[])
out_device_buf
.
FromDevice
(
out_n_c_ho_wo_device
.
mData
.
data
());
pass
&
=
ck
::
utils
::
check_err
(
out_n_c_ho_wo_device
.
mData
,
out_n_c_ho_wo_host
.
mData
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_n_c_ho_wo_device
.
mData
,
out_n_c_ho_wo_host
.
mData
);
if
constexpr
(
NeedIndices
)
if
constexpr
(
OutputIndex
)
{
out_indices_device_buf
.
FromDevice
(
out_indices_n_c_ho_wo_device
.
mData
.
data
());
pass
&
=
ck
::
utils
::
check_err
(
out_indices_n_c_ho_wo_device
.
mData
,
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_indices_n_c_ho_wo_device
.
mData
,
out_indices_n_c_ho_wo_host
.
mData
);
};
}
return
pass
?
0
:
1
;
}
return
(
pass
);
};
example/13_pool2d_fwd/pool2d_fwd_fp16.cpp
0 → 100644
View file @
6dfb4e78
#include <iostream>
#include <cstdlib>
#include "config.hpp"
#include "tensor_layout.hpp"
#include "reduction_enums.hpp"
#include "pool2d_fwd_common.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
IndexDataType
=
int32_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
#if 1
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
MAX
;
#else
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
#endif
static
constexpr
bool
OutputIndex
=
false
;
static
constexpr
bool
PropagateNan
=
false
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
;
int
init_method
;
bool
time_kernel
;
// Pool shape
ck
::
index_t
N
=
128
;
ck
::
index_t
C
=
192
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
71
;
ck
::
index_t
Wi
=
71
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
if
(
argc
==
1
)
{
do_verification
=
true
;
init_method
=
1
;
time_kernel
=
true
;
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
stoi
(
argv
[
3
]));
}
else
if
(
argc
==
16
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
stoi
(
argv
[
3
]));
N
=
std
::
stoi
(
argv
[
4
]);
C
=
std
::
stoi
(
argv
[
5
]);
Y
=
std
::
stoi
(
argv
[
6
]);
X
=
std
::
stoi
(
argv
[
7
]);
Hi
=
std
::
stoi
(
argv
[
8
]);
Wi
=
std
::
stoi
(
argv
[
9
]);
window_stride_h
=
std
::
stoi
(
argv
[
10
]);
window_stride_w
=
std
::
stoi
(
argv
[
11
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
12
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
13
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
14
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
15
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
0
);
}
bool
pass
=
pool_test
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
InLayout
,
OutLayout
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
do_verification
,
init_method
,
time_kernel
,
N
,
C
,
Y
,
X
,
Hi
,
Wi
,
window_stride_h
,
window_stride_w
,
in_left_pad_h
,
in_left_pad_w
,
in_right_pad_h
,
in_right_pad_w
);
return
(
pass
?
0
:
1
);
}
example/13_pool2d_fwd/pool2d_fwd_fp32.cpp
0 → 100644
View file @
6dfb4e78
#include <iostream>
#include <cstdlib>
#include "config.hpp"
#include "tensor_layout.hpp"
#include "reduction_enums.hpp"
#include "pool2d_fwd_common.hpp"
using
InDataType
=
float
;
using
OutDataType
=
float
;
using
AccDataType
=
float
;
using
IndexDataType
=
int32_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
#if 1
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
MAX
;
#else
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
#endif
static
constexpr
bool
OutputIndex
=
false
;
static
constexpr
bool
PropagateNan
=
false
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
;
int
init_method
;
bool
time_kernel
;
// Pool shape
ck
::
index_t
N
=
128
;
ck
::
index_t
C
=
192
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
71
;
ck
::
index_t
Wi
=
71
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
if
(
argc
==
1
)
{
do_verification
=
true
;
init_method
=
1
;
time_kernel
=
true
;
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
stoi
(
argv
[
3
]));
}
else
if
(
argc
==
16
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
stoi
(
argv
[
3
]));
N
=
std
::
stoi
(
argv
[
4
]);
C
=
std
::
stoi
(
argv
[
5
]);
Y
=
std
::
stoi
(
argv
[
6
]);
X
=
std
::
stoi
(
argv
[
7
]);
Hi
=
std
::
stoi
(
argv
[
8
]);
Wi
=
std
::
stoi
(
argv
[
9
]);
window_stride_h
=
std
::
stoi
(
argv
[
10
]);
window_stride_w
=
std
::
stoi
(
argv
[
11
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
12
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
13
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
14
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
15
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
0
);
}
bool
pass
=
pool_test
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
InLayout
,
OutLayout
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
do_verification
,
init_method
,
time_kernel
,
N
,
C
,
Y
,
X
,
Hi
,
Wi
,
window_stride_h
,
window_stride_w
,
in_left_pad_h
,
in_left_pad_w
,
in_right_pad_h
,
in_right_pad_w
);
return
(
pass
?
0
:
1
);
}
example/14_gemm_xdl_requant_relu_requant/gemm_xdl_requant_relu_requant_int8.cpp
View file @
6dfb4e78
...
...
@@ -100,8 +100,13 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
16
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock>
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
RequantReluRequant
>
;
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
float
,
PassThrough
,
PassThrough
,
RequantReluRequant
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
View file @
6dfb4e78
...
...
@@ -56,7 +56,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemmXdl
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
...
...
@@ -78,7 +78,7 @@ int main(int argc, char* argv[])
exit
(
0
);
}
int
group_count
=
4
;
int
group_count
=
rand
()
%
16
+
1
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmShape
>
gemm_shapes
;
...
...
@@ -189,12 +189,17 @@ int main(int argc, char* argv[])
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_c
,
gemm_shapes
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
...
...
example/16_gemm_reduce/CMakeLists.txt
View file @
6dfb4e78
add_example_executable
(
example_gemm_reduce_xdl_fp16 gemm_reduce_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_reduce_xdl_max_fp16 gemm_reduce_xdl_max_fp16.cpp
)
add_example_executable
(
example_gemm_reduce_xdl_mean_squaremean_fp16 gemm_reduce_xdl_mean_squaremean_fp16.cpp
)
example/16_gemm_reduce/gemm_reduce_xdl_max_fp16.cpp
0 → 100644
View file @
6dfb4e78
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "element_wise_reduce_operation.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F64
=
double
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
ReduceAccDataType
=
F32
;
using
DDataType
=
F64
;
using
DPtrsGlobal
=
ck
::
Tuple
<
DDataType
*>
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DsReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
<
ReduceAccDataType
>>
;
using
DsElementOp
=
ck
::
Tuple
<
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
ReduceAccDataType
,
ReduceAccDataType
,
false
>>
;
using
DGlobalMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
ReduceAccDataType
,
DPtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
DsReduceOp
,
DsElementOp
,
DsElementOp
,
DGlobalMemOp
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
DDataType
>
void
DumpGemmLayerNormPerf
(
float
gemm_reduce_time
,
int
M
,
int
N
,
int
K
)
{
std
::
size_t
gemm_flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
+
sizeof
(
DDataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
gemm_flop
)
/
1.E9
/
gemm_reduce_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
gemm_reduce_time
;
std
::
cout
<<
"gemm + reduceMax Perf: "
<<
gemm_reduce_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_m: "
<<
d_m_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_m_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
ds_element_op
=
DsElementOp
{};
auto
p_ds_global
=
ck
::
make_tuple
(
static_cast
<
DDataType
*>
(
d_device_buf
.
GetDeviceBuffer
()));
// do GEMM
auto
gemm
=
DeviceGemmReduceInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
p_ds_global
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
,
ds_element_op
,
ds_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
// [CAUSION]: launch_and_time_kernel will not initialize D.
// If we evaluate kernel multiple time but without initialize D. Verification will fail
d_device_buf
.
SetValue
(
ck
::
NumericLimits
<
DDataType
>::
Lowest
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
d_device_buf
.
FromDevice
(
d_m_device_result
.
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
auto
d_reduce_op
=
DsReduceOp
{}[
ck
::
Number
<
0
>
{}];
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
ReduceAccDataType
d_acc
=
d_reduce_op
.
GetIdentityValue
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
d_reduce_op
(
d_acc
,
c_m_n_host_result
(
m
,
n
));
d_m_host_result
(
m
)
=
d_acc
;
}
pass
=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
,
"Error: Incorrect results c"
)
&&
ck
::
utils
::
check_err
(
d_m_device_result
.
mData
,
d_m_host_result
.
mData
,
"Error: Incorrect results d"
,
1e-3
,
1e-3
);
}
if
(
time_kernel
)
{
float
gemm_reduceMax_ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
true
});
DumpGemmLayerNormPerf
<
ADataType
,
BDataType
,
CDataType
,
DDataType
>
(
gemm_reduceMax_ave_time
,
M
,
N
,
K
);
}
return
pass
?
0
:
1
;
}
example/16_gemm_reduce/gemm_reduce_xdl_fp16.cpp
→
example/16_gemm_reduce/gemm_reduce_xdl_
mean_squaremean_
fp16.cpp
View file @
6dfb4e78
...
...
@@ -3,7 +3,7 @@
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
...
...
@@ -29,7 +29,10 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
ReduceAccDataType
=
F32
;
using
DDataType
=
F32
;
using
DPtrsGlobal
=
ck
::
Tuple
<
DDataType
*
,
DDataType
*>
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
...
@@ -38,24 +41,57 @@ using CLayout = ck::tensor_layout::gemm::RowMajor;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
D1ElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
float
,
float
,
false
>
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
<
ReduceAccDataType
>
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
<
ReduceAccDataType
>
;
using
DxsReduceOp
=
ck
::
Tuple
<
D0ReduceOp
,
D1ReduceOp
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
ReduceAccDataType
,
ReduceAccDataType
,
false
>
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
ReduceAccDataType
,
ReduceAccDataType
,
true
>
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
ReduceAccDataType
,
ReduceAccDataType
,
false
>
;
using
DxsInElementOp
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
DxsOutElementOp
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
using
DGlobalMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D
0| D1| D1EleOp|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce|
Reduce
| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation|
Operation|
Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
AElementOp
,
BElementOp
,
CElementOp
,
D
0
ReduceOp
,
D
1ReduceOp
,
D1Element
Op
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc|
DData| A| B| C| D
xs| DxsInEleOp| DxsAccEleOp| D|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType|
Type
Tuple
| Elementwise| Elementwise| Elementwise|
Reduce|
| | MemoryData
| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | |
| Operation
| Operation| Operation| Operation|
| |
Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | |
|
| | | |
| |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
DPtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
D
xs
ReduceOp
,
D
xsInElementOp
,
DxsOutElementOp
,
DGlobalMem
Op
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
DDataType
>
void
DumpGemmLayerNormPerf
(
float
gemm_reduce_time
,
int
M
,
int
N
,
int
K
)
{
std
::
size_t
gemm_flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
+
sizeof
(
DDataType
)
*
M
+
sizeof
(
DDataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
gemm_flop
)
/
1.E9
/
gemm_reduce_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
gemm_reduce_time
;
std
::
cout
<<
"gemm + reduce_mean + reduce_mean_square Perf: "
<<
gemm_reduce_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
...
...
@@ -165,7 +201,11 @@ int main(int argc, char* argv[])
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
d1_element_op
=
D1ElementOp
{};
auto
dxs_global
=
ck
::
make_tuple
(
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()));
auto
dxs_in_element_op
=
DxsInElementOp
{};
auto
dxs_out_element_op
=
DxsOutElementOp
{
M
,
M
};
// do GEMM
auto
gemm
=
DeviceGemmReduceInstance
{};
...
...
@@ -173,8 +213,7 @@ int main(int argc, char* argv[])
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()),
dxs_global
,
M
,
N
,
K
,
...
...
@@ -184,7 +223,8 @@ int main(int argc, char* argv[])
a_element_op
,
b_element_op
,
c_element_op
,
d1_element_op
);
dxs_in_element_op
,
dxs_out_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
...
...
@@ -199,20 +239,9 @@ int main(int argc, char* argv[])
// if time_kernel == true, kernel will run multiple times. This kernel use atomic-add so result
// will not be correct. need to set time_kernel = false for correctness test
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
...
...
@@ -232,35 +261,47 @@ int main(int argc, char* argv[])
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
float
d0_acc
=
d0_reduce_op
.
Get
ReductionZero
Val
();
float
d1_acc
=
d1_reduce_op
.
Get
ReductionZero
Val
();
float
d0_acc
=
d0_reduce_op
.
Get
Identity
Val
ue
();
float
d1_acc
=
d1_reduce_op
.
Get
Identity
Val
ue
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
float
d0_val
=
ck
::
type_convert
<
float
>
(
c_m_n_host_result
(
m
,
n
));
float
d1_val
;
float
c_val
=
ck
::
type_convert
<
float
>
(
c_m_n_host_result
(
m
,
n
));
float
d0_val
=
0
;
float
d1_val
=
0
;
d1_element_op
(
d1_val
,
d0_val
);
dxs_in_element_op
(
ck
::
Number
<
0
>
{})(
d0_val
,
c_val
);
dxs_in_element_op
(
ck
::
Number
<
1
>
{})(
d1_val
,
c_val
);
d0_reduce_op
(
d0_acc
,
d0_val
);
d1_reduce_op
(
d1_acc
,
d1_val
);
}
dxs_out_element_op
(
ck
::
Number
<
0
>
{})(
d0_acc
,
d0_acc
);
dxs_out_element_op
(
ck
::
Number
<
1
>
{})(
d1_acc
,
d1_acc
);
d0_m_host_result
(
m
)
=
ck
::
type_convert
<
DDataType
>
(
d0_acc
);
d1_m_host_result
(
m
)
=
ck
::
type_convert
<
DDataType
>
(
d1_acc
);
}
pass
&=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
,
"Error: Incorrect results c"
);
pass
&=
ck
::
utils
::
check_err
(
d0_m_device_result
.
mData
,
pass
=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
,
"Error: Incorrect results c"
)
&&
ck
::
utils
::
check_err
(
d0_m_device_result
.
mData
,
d0_m_host_result
.
mData
,
"Error: Incorrect results d0"
,
1e-
3
,
1e-
3
);
pass
&=
ck
::
utils
::
check_err
(
d1_m_device_result
.
mData
,
1e-
4
,
1e-
5
)
&&
ck
::
utils
::
check_err
(
d1_m_device_result
.
mData
,
d1_m_host_result
.
mData
,
"Error: Incorrect results d1"
,
1e-3
,
1e-3
);
1e-5
);
}
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
true
});
DumpGemmLayerNormPerf
<
ADataType
,
BDataType
,
CDataType
,
DDataType
>
(
ave_time
,
M
,
N
,
K
);
}
return
pass
?
0
:
1
;
...
...
example/17_convnd_bwd_data_xdl/convnd_bwd_data_xdl.cpp
View file @
6dfb4e78
...
...
@@ -332,18 +332,15 @@ int main(int argc, char* argv[])
{
case
3
:
{
auto
ref_conv
=
ReferenceConvBwdDataInstance
<
3
>
();
verify_f
(
ref_conv
);
break
;
return
verify_f
(
ref_conv
);
}
case
2
:
{
auto
ref_conv
=
ReferenceConvBwdDataInstance
<
2
>
();
verify_f
(
ref_conv
);
break
;
return
verify_f
(
ref_conv
);
}
case
1
:
{
auto
ref_conv
=
ReferenceConvBwdDataInstance
<
1
>
();
verify_f
(
ref_conv
);
break
;
return
verify_f
(
ref_conv
);
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
...
...
example/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
View file @
6dfb4e78
...
...
@@ -28,7 +28,9 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
DDataType
=
F32
;
using
DPtrsGlobal
=
ck
::
Tuple
<
DDataType
*
,
DDataType
*>
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
...
@@ -37,20 +39,31 @@ using CLayout = ck::tensor_layout::gemm::RowMajor;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
<
float
>
;
using
D1ElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
float
,
float
,
false
>
;
using
D0ReduceOp
=
ck
::
reduce
::
Add
<
ReduceAccDataType
>
;
using
D1ReduceOp
=
ck
::
reduce
::
Add
<
ReduceAccDataType
>
;
using
DxsReduceOp
=
ck
::
Tuple
<
D0ReduceOp
,
D1ReduceOp
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryIdentic
<
ReduceAccDataType
,
ReduceAccDataType
,
false
>
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
<
ReduceAccDataType
,
ReduceAccDataType
,
false
>
;
using
DxsInElementOp
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
DxsOutElementOp
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnaryIdenticElementOp
>
;
using
DGlobalMemOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceBatchedGemmReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D
0| D1
| D
1
EleOp| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce|
Reduce
| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation|
Operation|
Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
AElementOp
,
BElementOp
,
CElementOp
,
D
0
ReduceOp
,
D
1ReduceOp
,
D1Element
Op
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc|
DData| A| B| C| D
xs| DxsInEleOp
| D
xsAcc
EleOp|
D|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType|
Type
Tuple
| Elementwise| Elementwise| Elementwise|
Reduce|
| | MemoryData
| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | |
| Operation
| Operation| Operation| Operation|
| |
Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | |
|
| | | |
| |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
DPtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
D
xs
ReduceOp
,
D
xsInElementOp
,
DxsOutElementOp
,
DGlobalMem
Op
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
...
...
@@ -173,9 +186,8 @@ int main(int argc, char* argv[])
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
d0_reduce_op
=
D0ReduceOp
{};
auto
d1_reduce_op
=
D1ReduceOp
{};
auto
d1_element_op
=
D1ElementOp
{};
auto
dxs_global
=
ck
::
make_tuple
(
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()));
// do GEMM
auto
batched_gemm
=
DeviceBatchedGemmReduceInstance
{};
...
...
@@ -184,8 +196,7 @@ int main(int argc, char* argv[])
batched_gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()),
dxs_global
,
M
,
N
,
K
,
...
...
@@ -195,7 +206,8 @@ int main(int argc, char* argv[])
a_element_op
,
b_element_op
,
c_element_op
,
d1_element_op
,
DxsInElementOp
{},
DxsOutElementOp
{},
BatchCount
);
if
(
!
batched_gemm
.
IsSupportedArgument
(
argument
))
...
...
@@ -240,19 +252,24 @@ int main(int argc, char* argv[])
ref_invoker
.
Run
(
ref_argument
);
auto
d0_reduce_op
=
D0ReduceOp
{};
auto
d1_reduce_op
=
D1ReduceOp
{};
for
(
int
batch
=
0
;
batch
<
BatchCount
;
++
batch
)
{
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
float
d0_acc
=
d0_reduce_op
.
Get
ReductionZero
Val
();
float
d1_acc
=
d1_reduce_op
.
Get
ReductionZero
Val
();
float
d0_acc
=
d0_reduce_op
.
Get
Identity
Val
ue
();
float
d1_acc
=
d1_reduce_op
.
Get
Identity
Val
ue
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
float
d0_val
=
ck
::
type_convert
<
float
>
(
c_g_m_n_host_result
(
batch
,
m
,
n
));
float
d1_val
;
float
c_val
=
ck
::
type_convert
<
float
>
(
c_g_m_n_host_result
(
batch
,
m
,
n
));
float
d0_val
=
0
;
float
d1_val
=
0
;
d1_element_op
(
d1_val
,
d0_val
);
UnaryIdenticElementOp
{}(
d0_val
,
c_val
);
UnarySquareElementOp
{}(
d1_val
,
c_val
);
d0_reduce_op
(
d0_acc
,
d0_val
);
d1_reduce_op
(
d1_acc
,
d1_val
);
}
...
...
@@ -262,17 +279,19 @@ int main(int argc, char* argv[])
}
}
pass
&=
ck
::
utils
::
check_err
(
c_g_m_n_host_result
.
mData
,
c_g_m_n_device_result
.
mData
);
pass
&=
ck
::
utils
::
check_err
(
d0_g_m_device_result
.
mData
,
pass
=
ck
::
utils
::
check_err
(
c_g_m_n_host_result
.
mData
,
c_g_m_n_device_result
.
mData
,
"Error: Incorrect results c"
)
&&
ck
::
utils
::
check_err
(
d0_g_m_device_result
.
mData
,
d0_g_m_host_result
.
mData
,
"Error: Incorrect results! D0"
,
1e-
3
,
1e-
3
);
pass
&=
ck
::
utils
::
check_err
(
d1_g_m_device_result
.
mData
,
1e-
4
,
1e-
5
)
&&
ck
::
utils
::
check_err
(
d1_g_m_device_result
.
mData
,
d1_g_m_host_result
.
mData
,
"Error: Incorrect results! D1"
,
1e-3
,
1e-
3
);
1e-
5
);
}
return
pass
?
0
:
1
;
...
...
example/19_binary_elementwise/CMakeLists.txt
0 → 100644
View file @
6dfb4e78
add_example_executable
(
example_broadcast_add_2d_amn_bn broadcast_add_2d_amn_bn.cpp
)
add_example_executable
(
example_broadcast_add_3d_am_bmnk broadcast_add_3d_am_bmnk.cpp
)
add_example_executable
(
example_elementwise_add_1d elementwise_add_1d.cpp
)
add_example_executable
(
example_elementwise_add_4d elementwise_add_4d.cpp
)
\ No newline at end of file
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
0 → 100644
View file @
6dfb4e78
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include <iostream>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
Add
=
ck
::
tensor_operation
::
binary_element_wise
::
Add
<
EltwiseComputeDataType
,
EltwiseComputeDataType
,
EltwiseComputeDataType
>
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
Add
,
2
,
8
,
8
,
8
,
8
>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
,
int
broadcastDim
>
void
host_broadcast2D
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
int
M
,
int
N
,
Functor
functor
)
{
using
ctype
=
ck
::
remove_reference_t
<
decltype
(
C
(
0
,
0
))
>
;
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ComputeDataType
Amn
=
ck
::
type_convert
<
ComputeDataType
>
(
A
(
m
,
n
));
ComputeDataType
Cmn
=
0
;
if
constexpr
(
broadcastDim
==
0
)
{
ComputeDataType
Bn
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
n
));
functor
(
Cmn
,
Amn
,
Bn
);
}
else
{
ComputeDataType
Bm
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
m
));
functor
(
Cmn
,
Amn
,
Bm
);
}
C
(
m
,
n
)
=
ck
::
type_convert
<
ctype
>
(
Cmn
);
}
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
Stride
=
1024
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
};
Tensor
<
ABDataType
>
a_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
Tensor
<
ABDataType
>
b_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
CDataType
>
c_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
a_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_m_n_device_buf
(
sizeof
(
ABDataType
)
*
a_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
b_n_device_buf
(
sizeof
(
ABDataType
)
*
b_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n
.
mDesc
.
GetElementSpace
());
a_m_n_device_buf
.
ToDevice
(
a_m_n
.
mData
.
data
());
b_n_device_buf
.
ToDevice
(
b_n
.
mData
.
data
());
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
a_m_n_device_buf
.
GetDeviceBuffer
(),
b_n_device_buf
.
GetDeviceBuffer
(),
c_m_n_device_buf
.
GetDeviceBuffer
(),
{
M
,
N
},
{
Stride
,
1
},
{
0
,
1
},
// broadcast in first dimension
{
Stride
,
1
},
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwise instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
float
ave_time
=
broadcastAdd_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_m_n_device_buf
.
FromDevice
(
c_m_n
.
mData
.
data
());
Tensor
<
CDataType
>
host_c_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
host_broadcast2D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
,
0
>
(
host_c_m_n
,
a_m_n
,
b_n
,
M
,
N
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c_m_n
.
mData
,
host_c_m_n
.
mData
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
0 → 100644
View file @
6dfb4e78
#include <iostream>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
Add
=
ck
::
tensor_operation
::
binary_element_wise
::
Add
<
EltwiseComputeDataType
,
EltwiseComputeDataType
,
EltwiseComputeDataType
>
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
Add
,
3
,
8
,
1
,
8
,
8
>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
>
void
host_broadcast3D_am_bmnk
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
const
std
::
vector
<
std
::
size_t
>&
shape
,
Functor
functor
)
{
using
ctype
=
ck
::
remove_reference_t
<
decltype
(
C
(
0
,
0
))
>
;
for
(
std
::
size_t
m
=
0
;
m
<
shape
[
0
];
++
m
)
for
(
std
::
size_t
n
=
0
;
n
<
shape
[
1
];
++
n
)
for
(
std
::
size_t
k
=
0
;
k
<
shape
[
2
];
++
k
)
{
ComputeDataType
a_val
=
ck
::
type_convert
<
ComputeDataType
>
(
A
(
m
));
ComputeDataType
b_val
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
m
,
n
,
k
));
ComputeDataType
c_val
=
0
;
functor
(
c_val
,
a_val
,
b_val
);
C
(
m
,
n
,
k
)
=
ck
::
type_convert
<
ctype
>
(
c_val
);
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
std
::
vector
<
std
::
size_t
>
mnk
=
{
4
,
16
,
32
};
ck
::
index_t
M
=
mnk
[
0
];
Tensor
<
ABDataType
>
a_m
({
M
});
Tensor
<
ABDataType
>
b_m_n_k
(
mnk
);
Tensor
<
CDataType
>
c_m_n_k
(
mnk
);
a_m
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b_m_n_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_m_device_buf
(
sizeof
(
ABDataType
)
*
a_m
.
mDesc
.
GetElementSpace
());
DeviceMem
b_m_n_k_device_buf
(
sizeof
(
ABDataType
)
*
b_m_n_k
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n_k_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_k
.
mDesc
.
GetElementSpace
());
a_m_device_buf
.
ToDevice
(
a_m
.
mData
.
data
());
b_m_n_k_device_buf
.
ToDevice
(
b_m_n_k
.
mData
.
data
());
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
a_m_device_buf
.
GetDeviceBuffer
(),
b_m_n_k_device_buf
.
GetDeviceBuffer
(),
c_m_n_k_device_buf
.
GetDeviceBuffer
(),
std
::
vector
<
ck
::
index_t
>
{
mnk
.
begin
(),
mnk
.
end
()},
{
1
,
0
,
0
},
// broadcast A on second and third dimension
std
::
vector
<
ck
::
index_t
>
{
b_m_n_k
.
mDesc
.
GetStrides
().
begin
(),
b_m_n_k
.
mDesc
.
GetStrides
().
end
()},
std
::
vector
<
ck
::
index_t
>
{
c_m_n_k
.
mDesc
.
GetStrides
().
begin
(),
c_m_n_k
.
mDesc
.
GetStrides
().
end
()},
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwise instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
float
ave_time
=
broadcastAdd_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_m_n_k_device_buf
.
FromDevice
(
c_m_n_k
.
mData
.
data
());
Tensor
<
CDataType
>
host_c_m_n_k
(
mnk
);
host_broadcast3D_am_bmnk
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
>
(
host_c_m_n_k
,
a_m
,
b_m_n_k
,
mnk
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c_m_n_k
.
mData
,
host_c_m_n_k
.
mData
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/19_binary_elementwise/elementwise_add_1d.cpp
0 → 100644
View file @
6dfb4e78
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include <iostream>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
Add
=
ck
::
tensor_operation
::
binary_element_wise
::
Add
<
EltwiseComputeDataType
,
EltwiseComputeDataType
,
EltwiseComputeDataType
>
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
Add
,
1
,
8
,
8
,
8
,
8
>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
>
void
host_elementwise1D
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
int
M
,
Functor
functor
)
{
using
ctype
=
ck
::
remove_reference_t
<
decltype
(
C
(
0
))
>
;
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
ComputeDataType
Am
=
ck
::
type_convert
<
ComputeDataType
>
(
A
(
m
));
ComputeDataType
Bm
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
m
));
ComputeDataType
Cm
=
0
;
functor
(
Cm
,
Am
,
Bm
);
C
(
m
)
=
ck
::
type_convert
<
ctype
>
(
Cm
);
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
ck
::
index_t
M
=
1024
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
Tensor
<
ABDataType
>
a_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
ABDataType
>
b_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
CDataType
>
c_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
a_m
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b_m
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_m_device_buf
(
sizeof
(
ABDataType
)
*
a_m
.
mDesc
.
GetElementSpace
());
DeviceMem
b_m_device_buf
(
sizeof
(
ABDataType
)
*
b_m
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_device_buf
(
sizeof
(
CDataType
)
*
c_m
.
mDesc
.
GetElementSpace
());
a_m_device_buf
.
ToDevice
(
a_m
.
mData
.
data
());
b_m_device_buf
.
ToDevice
(
b_m
.
mData
.
data
());
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
a_m_device_buf
.
GetDeviceBuffer
(),
b_m_device_buf
.
GetDeviceBuffer
(),
c_m_device_buf
.
GetDeviceBuffer
(),
{
M
},
{
1
},
{
1
},
{
1
},
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwise instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
float
ave_time
=
broadcastAdd_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_m_device_buf
.
FromDevice
(
c_m
.
mData
.
data
());
Tensor
<
CDataType
>
host_c_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
host_elementwise1D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
>
(
host_c_m
,
a_m
,
b_m
,
M
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c_m
.
mData
,
host_c_m
.
mData
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/19_binary_elementwise/elementwise_add_4d.cpp
0 → 100644
View file @
6dfb4e78
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include <iostream>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
Add
=
ck
::
tensor_operation
::
binary_element_wise
::
Add
<
EltwiseComputeDataType
,
EltwiseComputeDataType
,
EltwiseComputeDataType
>
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
Add
,
4
,
8
,
8
,
8
,
8
>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
const
std
::
vector
<
std
::
size_t
>&
shape
,
Functor
functor
)
{
using
ctype
=
ck
::
remove_reference_t
<
decltype
(
C
(
0
,
0
,
0
,
0
))
>
;
for
(
std
::
size_t
n
=
0
;
n
<
shape
[
0
];
++
n
)
for
(
std
::
size_t
c
=
0
;
c
<
shape
[
1
];
++
c
)
for
(
std
::
size_t
h
=
0
;
h
<
shape
[
2
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
shape
[
3
];
++
w
)
{
ComputeDataType
a_val
=
ck
::
type_convert
<
ComputeDataType
>
(
A
(
n
,
c
,
h
,
w
));
ComputeDataType
b_val
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
n
,
c
,
h
,
w
));
ComputeDataType
c_val
=
0
;
functor
(
c_val
,
a_val
,
b_val
);
C
(
n
,
c
,
h
,
w
)
=
ck
::
type_convert
<
ctype
>
(
c_val
);
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
4
,
16
,
32
,
32
};
Tensor
<
ABDataType
>
a
(
nchw
);
Tensor
<
ABDataType
>
b
(
nchw
);
Tensor
<
CDataType
>
c
(
nchw
);
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ABDataType
)
*
a
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
ABDataType
)
*
b
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b
.
mData
.
data
());
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
std
::
vector
<
ck
::
index_t
>
{
nchw
.
begin
(),
nchw
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
a
.
mDesc
.
GetStrides
().
begin
(),
a
.
mDesc
.
GetStrides
().
end
()},
std
::
vector
<
ck
::
index_t
>
{
b
.
mDesc
.
GetStrides
().
begin
(),
b
.
mDesc
.
GetStrides
().
end
()},
std
::
vector
<
ck
::
index_t
>
{
c
.
mDesc
.
GetStrides
().
begin
(),
c
.
mDesc
.
GetStrides
().
end
()},
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwise instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
float
ave_time
=
broadcastAdd_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c
.
mData
.
data
());
Tensor
<
CDataType
>
host_c
(
nchw
);
host_elementwise4D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
>
(
host_c
,
a
,
b
,
nchw
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c
.
mData
,
host_c
.
mData
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/20_convnd_bwd_weight_xdl/CMakeLists.txt
0 → 100644
View file @
6dfb4e78
add_example_executable
(
example_convnd_bwd_weight_xdl convnd_bwd_weight_xdl.cpp
)
target_link_libraries
(
example_convnd_bwd_weight_xdl PRIVATE conv_util
)
\ No newline at end of file
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl.cpp
0 → 100644
View file @
6dfb4e78
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "conv_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "element_wise_operation.hpp"
#include "device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "reference_conv_backward_weight.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvBwdWeightDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardWeightSpecialization
::
Default
;
using
DeviceConvBwdWeightBasePtr
=
ck
::
tensor_operation
::
device
::
DeviceConvBwdWeightPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// clang-format off
template
<
ck
::
index_t
NumDimSpatial
>
using
DeviceConvndBwdWeightInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvBwdWeightDefault
,
// ConvolutionBackwardWeightSpecialization
NumDimSpatial
,
// NumDimSpatial
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
1
,
4
,
16
,
4
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
0
,
3
,
1
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
4
,
16
,
4
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
0
,
3
,
1
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
template
<
ck
::
index_t
NumDimSpatial
>
using
ReferenceConvBwdWeightInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdWeight
<
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
NumDimSpatial
>
;
void
print_use_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=random value, 2= init to 1 )
\n
"
<<
"arg3: time kernel (0=n0, 1=yes)
\n
"
<<
"arg4: is show log (0=no, 1=yes)
\n
"
<<
"arg5: split-k
\n
"
<<
"arg6: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N, K, C,
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <input image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
<<
" <strides>, (ie Sy, Sx for 2D)
\n
"
<<
" <dilations>, (ie Dy, Dx for 2D)
\n
"
<<
" <left padding>, (ie LeftPy, LeftPx for 2D)
\n
"
<<
" <right padding>, (ie RightPy, RightPx for 2D)
\n
"
<<
std
::
endl
;
}
ck
::
utils
::
conv
::
ConvParams
parse_conv_params
(
int
num_dim_spatial
,
char
*
argv
[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
ck
::
utils
::
conv
::
ConvParams
params
;
int
arg_idx
=
7
;
params
.
num_dim_spatial_
=
num_dim_spatial
;
params
.
N_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
K_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
C_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
filter_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
filter_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_strides_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_strides_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_dilations_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_dilations_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_left_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_left_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_right_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_right_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
return
params
;
}
DeviceConvBwdWeightBasePtr
get_conv_instance
(
int
num_dim_spatial
)
{
switch
(
num_dim_spatial
)
{
case
3
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance
<
3
>>
();
}
case
2
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance
<
2
>>
();
}
case
1
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance
<
1
>>
();
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
num_dim_spatial
=
2
;
int
do_log
=
0
;
int
split_k
=
1
;
ck
::
utils
::
conv
::
ConvParams
params
;
params
.
C_
=
128
;
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
do_log
=
std
::
stoi
(
argv
[
4
]);
split_k
=
std
::
stoi
(
argv
[
5
]);
}
else
if
(
argc
>
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
do_log
=
std
::
stoi
(
argv
[
4
]);
split_k
=
std
::
stoi
(
argv
[
5
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
6
]);
// check args number
int
conv_args
=
3
+
num_dim_spatial
*
6
;
int
cmdline_nargs
=
conv_args
+
7
;
if
(
cmdline_nargs
!=
argc
)
{
print_use_msg
();
exit
(
1
);
}
params
=
parse_conv_params
(
num_dim_spatial
,
argv
);
}
else
if
(
argc
!=
1
)
{
print_use_msg
();
exit
(
1
);
}
std
::
vector
<
std
::
size_t
>
input_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
input_dims
.
insert
(
std
::
end
(
input_dims
),
std
::
begin
(
params
.
input_spatial_lengths_
),
std
::
end
(
params
.
input_spatial_lengths_
));
std
::
vector
<
std
::
size_t
>
filter_dims
{
static_cast
<
std
::
size_t
>
(
params
.
K_
),
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
filter_dims
.
insert
(
std
::
end
(
filter_dims
),
std
::
begin
(
params
.
filter_spatial_lengths_
),
std
::
end
(
params
.
filter_spatial_lengths_
));
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
=
params
.
GetOutputSpatialLengths
();
std
::
vector
<
std
::
size_t
>
output_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
static_cast
<
std
::
size_t
>
(
params
.
K_
)};
output_dims
.
insert
(
std
::
end
(
output_dims
),
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
));
Tensor
<
InDataType
>
in_n_c_hi_wi
(
ck
::
utils
::
conv
::
get_input_host_tensor_descriptor
(
input_dims
,
num_dim_spatial
));
Tensor
<
WeiDataType
>
wei_k_c_y_x_host_result
(
ck
::
utils
::
conv
::
get_filters_host_tensor_descriptor
(
filter_dims
,
num_dim_spatial
));
Tensor
<
WeiDataType
>
wei_k_c_y_x_device_result
(
ck
::
utils
::
conv
::
get_filters_host_tensor_descriptor
(
filter_dims
,
num_dim_spatial
));
Tensor
<
OutDataType
>
out_n_k_ho_wo
(
ck
::
utils
::
conv
::
get_output_host_tensor_descriptor
(
output_dims
,
num_dim_spatial
));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
2
,
2
});
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
2
,
2
});
break
;
default:
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
});
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
out_device_buf
.
ToDevice
(
out_n_k_ho_wo
.
mData
.
data
());
// reset input to zero
wei_device_buf
.
SetZero
();
// do GEMM
auto
conv
=
get_conv_instance
(
num_dim_spatial
);
auto
invoker
=
conv
->
MakeInvokerPointer
();
auto
argument
=
conv
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
params
.
N_
,
params
.
K_
,
params
.
C_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{},
split_k
);
// alloc work space
size_t
bwd_weight_workspace_size
=
conv
->
GetWorkSpaceSize
(
argument
.
get
());
float
ave_time
=
0.
f
;
if
(
std
::
is_same
<
InDataType
,
ck
::
bhalf_t
>::
value
&&
split_k
>
1
)
{
DeviceMem
wei_work_space_device_buf
(
bwd_weight_workspace_size
);
wei_work_space_device_buf
.
SetZero
();
argument
=
conv
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
AccDataType
*>
(
wei_work_space_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
params
.
N_
,
params
.
K_
,
params
.
C_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{},
split_k
);
if
(
!
conv
->
IsSupportedArgument
(
argument
.
get
()))
{
std
::
cout
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
1
;
}
ave_time
=
invoker
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
}
else
{
if
(
!
conv
->
IsSupportedArgument
(
argument
.
get
()))
{
std
::
cout
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
1
;
}
ave_time
=
invoker
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
}
std
::
size_t
flop
=
ck
::
utils
::
conv
::
get_flops
(
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
std
::
size_t
num_btype
=
ck
::
utils
::
conv
::
get_btype
<
InDataType
,
WeiDataType
,
OutDataType
>
(
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
auto
verify_f
=
[
&
](
const
auto
&
ref_conv
)
{
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_n_c_hi_wi
,
wei_k_c_y_x_host_result
,
out_n_k_ho_wo
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
wei_device_buf
.
FromDevice
(
wei_k_c_y_x_device_result
.
mData
.
data
());
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out: "
,
out_n_k_ho_wo
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei_device(after): "
,
wei_k_c_y_x_device_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei_host : "
,
wei_k_c_y_x_host_result
.
mData
,
","
)
<<
std
::
endl
;
}
return
ck
::
utils
::
check_err
(
wei_k_c_y_x_device_result
.
mData
,
wei_k_c_y_x_host_result
.
mData
)
?
0
:
1
;
};
switch
(
num_dim_spatial
)
{
case
3
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
3
>
();
return
verify_f
(
ref_conv
);
}
case
2
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
2
>
();
return
verify_f
(
ref_conv
);
}
case
1
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
1
>
();
return
verify_f
(
ref_conv
);
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
return
0
;
}
Prev
1
2
3
4
5
6
…
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment