Commit 6dfb4e78 authored by carlushuang's avatar carlushuang
Browse files

Merge remote-tracking branch 'origin/develop' into cpu_avx2

parents 397a68f2 1ced00a5
#pragma once
#include "common_header.hpp"
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r1.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "gridwise_gemm_pipeline_v1.hpp"
namespace ck {
// Implementation of "Merge" transformation primitive that uses division and mod. It is supposed to
// be used for low_lengths that are known at compile time and are power of 2, otherwise performance
// will be very bad
template <typename LowLengths>
struct Merge_v4_no_carry
{
static constexpr index_t NDimLow = LowLengths::Size();
using LowerIndex = MultiIndex<NDimLow>;
using UpperIndex = MultiIndex<1>;
using LowLengthsScan =
decltype(container_reverse_exclusive_scan(LowLengths{}, math::multiplies{}, Number<1>{}));
using UpLengths =
decltype(make_tuple(container_reduce(LowLengths{}, math::multiplies{}, Number<1>{})));
LowLengths low_lengths_;
LowLengthsScan low_lengths_scan_;
UpLengths up_lengths_;
__host__ __device__ constexpr Merge_v4_no_carry() = default;
__host__ __device__ constexpr Merge_v4_no_carry(const LowLengths& low_lengths)
: low_lengths_{low_lengths},
low_lengths_scan_{
container_reverse_exclusive_scan(low_lengths, math::multiplies{}, Number<1>{})},
up_lengths_{make_tuple(container_reduce(low_lengths, math::multiplies{}, Number<1>{}))}
{
static_assert(LowerIndex::Size() == NDimLow, "wrong!");
}
__host__ __device__ static constexpr index_t GetNumOfLowerDimension() { return NDimLow; }
__host__ __device__ static constexpr index_t GetNumOfUpperDimension() { return 1; }
__host__ __device__ constexpr const auto& GetUpperLengths() const { return up_lengths_; }
template <typename LowIdx, typename UpIdx>
__host__ __device__ constexpr void CalculateLowerIndex(LowIdx& idx_low,
const UpIdx& idx_up) const
{
static_assert(LowIdx::Size() == NDimLow && UpIdx::Size() == 1,
"wrong! inconsistent # of dimension");
index_t tmp = idx_up[Number<0>{}];
// division and mod
static_for<0, NDimLow - 1, 1>{}([&](auto i) {
idx_low(i) = tmp / this->low_lengths_scan_[i];
tmp %= this->low_lengths_scan_[i];
});
idx_low(Number<NDimLow - 1>{}) = tmp;
}
template <typename LowIdxDiff,
typename UpIdxDiff,
typename LowIdx,
typename UpIdx,
index_t Hack>
__host__ __device__ void UpdateLowerIndex(LowIdxDiff& idx_diff_low,
const UpIdxDiff& idx_up_diff,
LowIdx& idx_low,
const UpIdx& idx_up_new,
Number<Hack>) const
{
static_assert(LowIdxDiff::Size() == NDimLow && UpIdxDiff::Size() == 1 &&
LowIdx::Size() == NDimLow && UpIdx::Size() == 1,
"wrong! inconsistent # of dimension");
constexpr auto I0 = Number<0>{};
constexpr auto INm1 = Number<NDimLow - 1>{};
index_t tmp = idx_up_new[I0];
idx_low(INm1) = tmp;
idx_diff_low(INm1) = idx_up_diff[I0];
}
__host__ __device__ static constexpr bool IsLinearTransform() { return false; }
__host__ __device__ static constexpr bool IsValidUpperIndexAlwaysMappedToValidLowerIndex()
{
return true;
}
__host__ __device__ static constexpr bool IsKnownAtCompileTime()
{
return is_known_at_compile_time<LowLengths>::value &&
is_known_at_compile_time<LowLengthsScan>::value &&
is_known_at_compile_time<UpLengths>::value;
}
template <typename UpIdx>
__host__ __device__ static constexpr bool
IsValidUpperIndexMappedToValidLowerIndex(const UpIdx& /* idx_up */)
{
return true;
}
__host__ __device__ void Print() const
{
printf("{");
printf("Merge_v3_direct_division_mod_wrw, ");
printf("low_lengths_ ");
print_multi_index(low_lengths_);
printf("low_lengths_scan_ ");
print_multi_index(low_lengths_scan_);
printf("up_lengths_ ");
print_multi_index(up_lengths_);
printf("}");
}
};
template <typename LowLengths>
__host__ __device__ constexpr auto make_merge_transform_v4_no_carry(const LowLengths& low_lengths)
{
return Merge_v4_no_carry<LowLengths>{low_lengths};
}
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename AGridDesc_B_K0_M_K1,
typename BGridDesc_B_K0_N_K1,
typename CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename CBlockClusterAdaptor,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_bwd_weight(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const AGridDesc_B_K0_M_K1 a_b_k0_m_k1_grid_desc,
const BGridDesc_B_K0_N_K1 b_b_k0_n_k1_grid_desc,
const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op,
const CBlockClusterAdaptor c_block_cluster_adaptor)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
__shared__ FloatAB p_shared_block[shared_block_size];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_c_grid,
p_shared_block,
a_b_k0_m_k1_grid_desc,
b_b_k0_n_k1_grid_desc,
c_grid_desc_mblock_mperblock_nblock_nperblock,
a_element_op,
b_element_op,
c_element_op,
c_block_cluster_adaptor);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_c_grid;
ignore = a_b_k0_m_k1_grid_desc;
ignore = b_b_k0_n_k1_grid_desc;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = a_element_op;
ignore = b_element_op;
ignore = c_element_op;
ignore = c_block_cluster_adaptor;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename FloatC,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename AGridDesc_B_K0_M_K1,
typename BGridDesc_B_K0_N_K1,
typename CMNGridDesc,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t K1Value,
index_t MRepeat,
index_t NRepeat,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_K1,
bool AThreadTransferSrcResetCoordinateAfterRun,
bool ABlockLdsExtraM,
index_t ABlockLdsM1PerBlock,
index_t ABlockLdsM0PerBlock,
index_t ABlockLdsM1Padding,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_K1,
bool BThreadTransferSrcResetCoordinateAfterRun,
bool BBlockLdsExtraN,
index_t BBlockLdsN1PerBlock,
index_t BBlockLdsN0PerBlock,
index_t BBlockLdsN1Padding,
index_t CShuffleMRepeatPerShuffle,
index_t CShuffleNRepeatPerShuffle,
index_t CBlockTransferScalarPerVector_NWaveNPerXDL,
typename CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
bool ABlockLdsExtraM1Wrw = false,
bool BBlockLdsExtraN1Wrw = false,
index_t NumGemmKPrefetchStage = 1>
struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = GridwiseGemmPipeline_v1<NumGemmKPrefetchStage>;
// M0/M1/M1Padding
static constexpr auto M1PerBlock = Number<ABlockLdsM1PerBlock>{};
static constexpr auto M0PerBlock = Number<ABlockLdsM0PerBlock>{};
static constexpr auto M1Padding = Number<ABlockLdsM1Padding>{};
// N0/N1/N1Padding
static constexpr auto N1PerBlock = Number<BBlockLdsN1PerBlock>{};
static constexpr auto N0PerBlock = Number<BBlockLdsN0PerBlock>{};
static constexpr auto N1Padding = Number<BBlockLdsN1Padding>{};
__host__ __device__ static constexpr auto GetABlockDescriptor_K0PerBlock_MPerBlock_K1()
{
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_k0_m_k1 = [&]() {
if constexpr(ABlockLdsExtraM)
{
if constexpr(ABlockLdsExtraM1Wrw)
{
constexpr auto a_block_desc_k0_m0_m1_k1 = make_naive_tensor_descriptor(
make_tuple(
Number<K0PerBlock>{}, Number<M0PerBlock>{}, Number<M1PerBlock>{}, K1),
make_tuple(Number<M0PerBlock>{} * (Number<M1PerBlock>{} * K1 + M1Padding),
Number<M1PerBlock>{} * K1 + M1Padding,
K1,
I1));
constexpr auto a_block_desc_k0_m_k1_tmp = transform_tensor_descriptor(
a_block_desc_k0_m0_m1_k1,
make_tuple(make_pass_through_transform(Number<K0PerBlock>{}),
make_merge_transform_v3_division_mod(
make_tuple(Number<M0PerBlock>{}, Number<M1PerBlock>{})),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return a_block_desc_k0_m_k1_tmp;
}
else
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<MPerBlock + 1>{} * K1, K1, I1));
}
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
}
}();
return a_block_desc_k0_m_k1;
}
__host__ __device__ static constexpr auto GetABlockDescriptor_Batch_K0PerBlock_MPerBlock_K1()
{
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_b_k0_m_k1 = [&]() {
if constexpr(ABlockLdsExtraM)
{
if constexpr(ABlockLdsExtraM1Wrw)
{
constexpr auto a_block_desc_b_k0_m0_m1_k1 = make_naive_tensor_descriptor(
make_tuple(Number<1>{},
Number<K0PerBlock>{},
Number<M0PerBlock>{},
Number<M1PerBlock>{},
K1),
make_tuple(Number<K0PerBlock>{} * Number<M0PerBlock>{} *
(Number<M1PerBlock>{} * K1 + M1Padding),
Number<M0PerBlock>{} * (Number<M1PerBlock>{} * K1 + M1Padding),
Number<M1PerBlock>{} * K1 + M1Padding,
K1,
I1));
constexpr auto a_block_desc_b_k0_m_k1_tmp = transform_tensor_descriptor(
a_block_desc_b_k0_m0_m1_k1,
make_tuple(make_pass_through_transform(Number<1>{}),
make_pass_through_transform(Number<K0PerBlock>{}),
make_merge_transform_v4_no_carry(
make_tuple(Number<M0PerBlock>{}, Number<M1PerBlock>{})),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
return a_block_desc_b_k0_m_k1_tmp;
}
else
{
return make_naive_tensor_descriptor(
make_tuple(Number<1>{}, Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<K0PerBlock>{} * Number<MPerBlock + 1>{} * K1,
Number<MPerBlock + 1>{} * K1,
K1,
I1));
}
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<1>{}, Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
max_lds_align);
}
}();
return a_block_desc_b_k0_m_k1;
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_K0PerBlock_NPerBlock_K1()
{
constexpr auto max_lds_align = K1;
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_k0_n_k1 = [&]() {
if constexpr(BBlockLdsExtraN)
{
if constexpr(BBlockLdsExtraN1Wrw)
{
constexpr auto b_block_desc_k0_n0_n1_k1 = make_naive_tensor_descriptor(
make_tuple(
Number<K0PerBlock>{}, Number<N0PerBlock>{}, Number<N1PerBlock>{}, K1),
make_tuple(Number<N0PerBlock>{} * (Number<N1PerBlock>{} * K1 + N1Padding),
Number<N1PerBlock>{} * K1 + N1Padding,
K1,
I1));
constexpr auto b_block_desc_k0_n_k1_tmp = transform_tensor_descriptor(
b_block_desc_k0_n0_n1_k1,
make_tuple(make_pass_through_transform(Number<K0PerBlock>{}),
make_merge_transform_v3_division_mod(
make_tuple(Number<N0PerBlock>{}, Number<N1PerBlock>{})),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return b_block_desc_k0_n_k1_tmp;
}
else
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<NPerBlock + 1>{} * K1, K1, I1));
}
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
}
}();
return b_block_desc_k0_n_k1;
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_Batch_K0PerBlock_NPerBlock_K1()
{
constexpr auto max_lds_align = K1;
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_b_k0_n_k1 = [&]() {
if constexpr(BBlockLdsExtraN)
{
if constexpr(BBlockLdsExtraN1Wrw)
{
constexpr auto b_block_desc_b_k0_n0_n1_k1 = make_naive_tensor_descriptor(
make_tuple(Number<1>{},
Number<K0PerBlock>{},
Number<N0PerBlock>{},
Number<N1PerBlock>{},
K1),
make_tuple(Number<K0PerBlock>{} * Number<N0PerBlock>{} *
(Number<N1PerBlock>{} * K1 + N1Padding),
Number<N0PerBlock>{} * (Number<N1PerBlock>{} * K1 + N1Padding),
Number<N1PerBlock>{} * K1 + N1Padding,
K1,
I1));
constexpr auto b_block_desc_b_k0_n_k1_tmp = transform_tensor_descriptor(
b_block_desc_b_k0_n0_n1_k1,
make_tuple(make_pass_through_transform(Number<1>{}),
make_pass_through_transform(Number<K0PerBlock>{}),
make_merge_transform_v4_no_carry(
make_tuple(Number<N0PerBlock>{}, Number<N1PerBlock>{})),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
return b_block_desc_b_k0_n_k1_tmp;
}
else
{
return make_naive_tensor_descriptor(
make_tuple(Number<1>{}, Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<K0PerBlock>{} * Number<NPerBlock + 1>{} * K1,
Number<NPerBlock + 1>{} * K1,
K1,
I1));
}
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<1>{}, Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
max_lds_align);
}
}();
return b_block_desc_b_k0_n_k1;
}
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_b_k0_m_k1_block_desc = GetABlockDescriptor_Batch_K0PerBlock_MPerBlock_K1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_b_k0_n_k1_block_desc = GetBBlockDescriptor_Batch_K0PerBlock_NPerBlock_K1();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size = math::integer_least_multiple(
a_b_k0_m_k1_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size = math::integer_least_multiple(
b_b_k0_n_k1_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto c_block_size =
GetCBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock().GetElementSpaceSize();
return math::max((a_block_space_size + b_block_space_size) * sizeof(FloatAB),
c_block_size * sizeof(FloatC));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_B_K0_M_K1& a_b_k0_m_k1_grid_desc,
const BGridDesc_B_K0_N_K1& b_b_k0_n_k1_grid_desc,
const CMNGridDesc& c_m_n_grid_desc,
const Block2CTileMap& block_2_ctile_map)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
static_assert((MPerBlock % (MPerXDL * MRepeat) == 0) &&
(NPerBlock % (NRepeat * NPerXDL)) == 0,
"Invalid tuning param!");
const auto M = a_b_k0_m_k1_grid_desc.GetLength(I2);
const auto N = b_b_k0_n_k1_grid_desc.GetLength(I2);
const auto K0 = a_b_k0_m_k1_grid_desc.GetLength(I1);
const auto KBatch = a_b_k0_m_k1_grid_desc.GetLength(I0);
// check gridwise gemm pipeline
const auto num_k_loop = K0 / K0PerBlock;
if(!GridwiseGemmPipe::IsSupported(num_k_loop))
{
return false;
}
if(!(M == c_m_n_grid_desc.GetLength(I0) && N == c_m_n_grid_desc.GetLength(I1) &&
K0 == b_b_k0_n_k1_grid_desc.GetLength(I1) &&
K1 == a_b_k0_m_k1_grid_desc.GetLength(I3) &&
K1 == b_b_k0_n_k1_grid_desc.GetLength(I3) &&
KBatch == b_b_k0_n_k1_grid_desc.GetLength(I0)))
return false;
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % K0PerBlock == 0))
return false;
if(!block_2_ctile_map.CheckValidity(c_m_n_grid_desc))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr bool CalculateHasMainK0BlockLoop(index_t K0)
{
// const bool has_main_k0_block_loop = K0 > K0PerBlock;
const index_t num_loop = K0 / K0PerBlock;
return GridwiseGemmPipe::CalculateHasMainLoop(num_loop);
// return has_main_k0_block_loop;
}
__host__ __device__ static constexpr auto
MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(const CMNGridDesc& c_m_n_grid_desc)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
return transform_tensor_descriptor(
c_m_n_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto MakeCBlockClusterAdaptor(
const CMNGridDesc& c_m_n_grid_desc, index_t M01, index_t N01, index_t KBatch)
{
return BlockToCTileMap_KSplit_M00_N00_M01_N01<MPerBlock, NPerBlock, CMNGridDesc>(
c_m_n_grid_desc, M01, N01, KBatch);
}
__host__ __device__ static constexpr auto
GetCBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock()
{
constexpr index_t MWave = MPerBlock / (MRepeat * MPerXDL);
constexpr index_t NWave = NPerBlock / (NRepeat * NPerXDL);
return make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMRepeatPerShuffle * MWave * MPerXDL>{},
I1,
Number<CShuffleNRepeatPerShuffle * NWave * NPerXDL>{}));
}
using CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
decltype(MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(CMNGridDesc{}));
using CBlockClusterAdaptor = decltype(MakeCBlockClusterAdaptor(CMNGridDesc{}, 1, 1, 1));
template <bool HasMainKBlockLoop>
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
FloatAB* __restrict__ p_shared_block,
const AGridDesc_B_K0_M_K1& a_b_k0_m_k1_grid_desc,
const BGridDesc_B_K0_N_K1& b_b_k0_n_k1_grid_desc,
const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock&
c_grid_desc_mblock_mperblock_nblock_nperblock,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CElementwiseOperation& c_element_op,
const CBlockClusterAdaptor& c_block_cluster_adaptor)
{
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_b_k0_m_k1_grid_desc.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_b_k0_n_k1_grid_desc.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
const auto K0 = a_b_k0_m_k1_grid_desc.GetLength(I1);
// divide block work by [M, N]
const auto block_work_idx =
c_block_cluster_adaptor.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
const index_t k_batch_id = block_work_idx[I0];
if(!c_block_cluster_adaptor.ValidCTileIndex(
make_tuple(block_work_idx[I1], block_work_idx[I2]),
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I2] * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_k0_m_k1_block_desc = GetABlockDescriptor_K0PerBlock_MPerBlock_K1();
constexpr auto a_b_k0_m_k1_block_desc = GetABlockDescriptor_Batch_K0PerBlock_MPerBlock_K1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_k0_n_k1_block_desc = GetBBlockDescriptor_K0PerBlock_NPerBlock_K1();
constexpr auto b_b_k0_n_k1_block_desc = GetBBlockDescriptor_Batch_K0PerBlock_NPerBlock_K1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, K0PerBlock, MPerBlock, K1>,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(a_b_k0_m_k1_grid_desc),
decltype(a_b_k0_m_k1_block_desc),
ABlockTransferSrcAccessOrder,
Sequence<0, 2, 1, 3>,
ABlockTransferSrcVectorDim,
3,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true>(
a_b_k0_m_k1_grid_desc,
make_multi_index(k_batch_id, 0, m_block_data_idx_on_grid, 0),
a_element_op,
a_b_k0_m_k1_block_desc,
make_multi_index(0, 0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, K0PerBlock, NPerBlock, K1>,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(b_b_k0_n_k1_grid_desc),
decltype(b_b_k0_n_k1_block_desc),
BBlockTransferSrcAccessOrder,
Sequence<0, 2, 1, 3>,
BBlockTransferSrcVectorDim,
3,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true>(
b_b_k0_n_k1_grid_desc,
make_multi_index(k_batch_id, 0, n_block_data_idx_on_grid, 0),
b_element_op,
b_b_k0_n_k1_block_desc,
make_multi_index(0, 0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr index_t KPack =
math::max(K1, MfmaSelector<FloatAB, MPerXDL, NPerXDL>::selected_mfma.k_per_blk);
auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>{};
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k0_m_k1_block_desc.GetElementSpaceSize(), max_lds_align);
FloatAB* p_a_block = p_shared_block;
FloatAB* p_b_block = p_shared_block + a_block_space_size;
constexpr auto a_block_slice_copy_step = make_multi_index(0, K0PerBlock, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(0, K0PerBlock, 0, 0);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_a_block, a_k0_m_k1_block_desc.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_b_block, b_k0_n_k1_block_desc.GetElementSpaceSize());
// gridwise GEMM pipeline
const index_t K0BlockMainLoop = __builtin_amdgcn_readfirstlane(K0 / K0PerBlock);
GridwiseGemmPipe::template Run<HasMainKBlockLoop>(a_b_k0_m_k1_grid_desc,
a_b_k0_m_k1_block_desc,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_slice_copy_step,
b_b_k0_n_k1_grid_desc,
b_b_k0_n_k1_block_desc,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
blockwise_gemm,
c_thread_buf,
K0BlockMainLoop);
// output: register to global memory
{
constexpr index_t MWave = MPerBlock / (MRepeat * MPerXDL);
constexpr index_t NWave = NPerBlock / (NRepeat * NPerXDL);
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc =
blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc =
blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I0);
constexpr auto N0 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I1);
constexpr auto M1 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I2);
constexpr auto N1 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I3);
constexpr auto M2 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I4);
constexpr auto M3 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I5);
constexpr auto M4 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I6);
constexpr auto N2 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I7);
constexpr auto c_block_desc_mblock_mperblock_nblock_nperblock =
GetCBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatC*>(p_shared_block),
c_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
static_assert(M1 == MWave, "");
static_assert(N1 == NWave, "");
static_assert(M2 * M3 * M4 == MPerXDL, "");
static_assert(N2 == NPerXDL, "");
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0), // freeze mblock
make_unmerge_transform(make_tuple(CShuffleMRepeatPerShuffle,
M1,
M2,
M3,
M4)), // M1 = MWave, M2 * M3 * M4 = MPerXDL
make_freeze_transform(I0), // freeze nblock
make_unmerge_transform(make_tuple(CShuffleNRepeatPerShuffle,
N1,
N2))), // M1 = MWave, M2 * M3 * M4 = MPerXDL
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<FloatAcc,
FloatC,
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMRepeatPerShuffle,
CShuffleNRepeatPerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
// LDS to global
auto c_block_copy_lds_to_global = ThreadGroupTensorSliceTransfer_v6r1<
ThisThreadBlock, // index_t BlockSize,
CElementwiseOperation, // ElementwiseOperation,
CGlobalMemoryDataOperation, // DstInMemOp,
Sequence<1,
CShuffleMRepeatPerShuffle * MWave * MPerXDL,
1,
CShuffleNRepeatPerShuffle * NWave * NPerXDL>, // BlockSliceLengths,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
FloatC, // typename SrcData,
FloatC, // typename DstData,
decltype(c_block_desc_mblock_mperblock_nblock_nperblock),
decltype(c_grid_desc_mblock_mperblock_nblock_nperblock),
Sequence<0, 1, 2, 3>, // typename DimAccessOrder,
3, // index_t VectorDim,
CBlockTransferScalarPerVector_NWaveNPerXDL, // index_t ScalarPerVector,
true, // bool ThreadTransferSrcResetCoordinateAfterRun,
false> // bool ThreadTransferDstResetCoordinateAfterRun
{c_block_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(0, 0, 0, 0),
c_grid_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(block_work_idx[I1], 0, block_work_idx[I2], 0),
c_element_op};
constexpr auto mxdlperwave_forward_step =
make_multi_index(0, CShuffleMRepeatPerShuffle * MWave * MPerXDL, 0, 0);
constexpr auto nxdlperwave_forward_step =
make_multi_index(0, 0, 0, CShuffleNRepeatPerShuffle * NWave * NPerXDL);
constexpr auto nxdlperwave_backward_step =
make_multi_index(0, 0, 0, -CShuffleNRepeatPerShuffle * NWave * NPerXDL);
static_for<0, MRepeat, CShuffleMRepeatPerShuffle>{}([&](auto mxdlperwave_iter) {
constexpr auto mxdlperwave = mxdlperwave_iter;
static_for<0, NRepeat, CShuffleNRepeatPerShuffle>{}([&](auto nxdlperwave_iter) {
constexpr bool nxdlperwave_forward_sweep =
(mxdlperwave % (2 * CShuffleMRepeatPerShuffle) == 0);
constexpr index_t nxdlperwave_value =
nxdlperwave_forward_sweep
? nxdlperwave_iter
: (NRepeat - nxdlperwave_iter - CShuffleNRepeatPerShuffle);
constexpr auto nxdlperwave = Number<nxdlperwave_value>{};
// make sure it's safe to do ds_write
block_sync_lds();
// VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(
c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(mxdlperwave, nxdlperwave, I0, I0, I0, I0, I0, I0),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_block_buf);
// make sure it's safe to do ds_read
block_sync_lds();
// LDS to global
c_block_copy_lds_to_global.Run(c_block_desc_mblock_mperblock_nblock_nperblock,
c_block_buf,
c_grid_desc_mblock_mperblock_nblock_nperblock,
c_grid_buf);
// move on nxdlperwave dimension
if constexpr(nxdlperwave_forward_sweep &&
(nxdlperwave < NRepeat - CShuffleNRepeatPerShuffle))
{
c_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock,
nxdlperwave_forward_step);
}
else if constexpr((!nxdlperwave_forward_sweep) && (nxdlperwave > 0))
{
c_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock,
nxdlperwave_backward_step);
}
});
// move on mxdlperwave dimension
if constexpr(mxdlperwave < MRepeat - CShuffleMRepeatPerShuffle)
{
c_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock, mxdlperwave_forward_step);
}
});
}
}
}; // namespace ck
} // namespace ck
#pragma once
#include "common_header.hpp"
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
......@@ -185,12 +187,12 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01,
index_t N01)
const Block2CTileMap& block_2_ctile_map)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
......@@ -219,31 +221,15 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
return false;
}
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
if(!(M0 % M01 == 0 && N0 % N01 == 0))
if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / (K0PerBlock * K1);
......@@ -302,39 +288,11 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
__host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap(
const CGridDesc_M_N& c_grid_desc_m_n, index_t /* M01 */, index_t /* N01 */)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}));
const auto cblockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return cblockid_to_m0_n0_block_cluster_adaptor;
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n);
}
using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
......@@ -368,6 +326,14 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2.GetLength(I0),
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2.GetLength(I1))))
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
......
......@@ -5,6 +5,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
......@@ -167,12 +168,12 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const ABK0MK1GridDesc& a_b_k0_m_k1_grid_desc,
const BBK0NK1GridDesc& b_b_k0_n_k1_grid_desc,
const CMNGridDesc& c_m_n_grid_desc,
index_t M01,
index_t N01)
const Block2CTileMap& block_2_ctile_map)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
......@@ -196,31 +197,15 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % K0PerBlock == 0))
return false;
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
if(!(M0 % M01 == 0 && N0 % N01 == 0))
if(!block_2_ctile_map.CheckValidity(c_m_n_grid_desc))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CMNGridDesc& c_m_n_grid_desc, index_t KBatch)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock) * KBatch;
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainK0BlockLoop(index_t K0)
{
const bool has_main_k0_block_loop = K0 > K0PerBlock;
......@@ -280,39 +265,10 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto MakeCBlockClusterAdaptor(
const CMNGridDesc& c_m_n_grid_desc, index_t M01, index_t N01, index_t KBatch)
const CMNGridDesc& c_m_n_grid_desc, index_t /* M01 */, index_t /* N01 */, index_t KBatch)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto kbatch_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_pass_through_transform(KBatch),
make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3>{}, Sequence<2, 4>{}));
const auto cblockid_to_kbatch_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(KBatch, M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_kbatch_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(kbatch_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
cblockid_to_kbatch_m00_m01_n00_n01_block_cluster_adaptor);
return cblockid_to_kbatch_m0_n0_block_cluster_adaptor;
return BlockToCTileMap_KSplit_M00_N0_M01Adapt<MPerBlock, NPerBlock, CMNGridDesc>(
c_m_n_grid_desc, 8, KBatch);
}
using CM0N0M1N1M2M3M4N2GridDesc = decltype(MakeCM0N0M1N1M2M3M4N2GridDescriptor(CMNGridDesc{}));
......@@ -344,6 +300,14 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
const auto block_work_idx =
c_block_cluster_adaptor.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!c_block_cluster_adaptor.ValidCTileIndex(
make_tuple(block_work_idx[I1], block_work_idx[I2]),
make_tuple(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc.GetLength(I0),
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc.GetLength(I1))))
{
return;
}
const index_t k_batch_id = block_work_idx[I0];
// HACK: this force m/n_block_data_idx_on_grid into SGPR
......
......@@ -5,6 +5,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r1.hpp"
......@@ -174,12 +175,12 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_B_K0_M_K1& a_b_k0_m_k1_grid_desc,
const BGridDesc_B_K0_N_K1& b_b_k0_n_k1_grid_desc,
const CMNGridDesc& c_m_n_grid_desc,
index_t M01,
index_t N01)
const Block2CTileMap& block_2_ctile_map)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
......@@ -203,31 +204,15 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % K0PerBlock == 0))
return false;
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
if(!(M0 % M01 == 0 && N0 % N01 == 0))
if(!block_2_ctile_map.CheckValidity(c_m_n_grid_desc))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CMNGridDesc& c_m_n_grid_desc, index_t KBatch)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock) * KBatch;
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainK0BlockLoop(index_t K0)
{
const bool has_main_k0_block_loop = K0 > K0PerBlock;
......@@ -254,39 +239,10 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto MakeCBlockClusterAdaptor(
const CMNGridDesc& c_m_n_grid_desc, index_t M01, index_t N01, index_t KBatch)
const CMNGridDesc& c_m_n_grid_desc, index_t /* M01 */, index_t /* N01 */, index_t KBatch)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto kbatch_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_pass_through_transform(KBatch),
make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3>{}, Sequence<2, 4>{}));
const auto c_blockid_to_kbatch_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(KBatch, M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto c_blockid_to_kbatch_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(kbatch_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
c_blockid_to_kbatch_m00_m01_n00_n01_block_cluster_adaptor);
return c_blockid_to_kbatch_m0_n0_block_cluster_adaptor;
return BlockToCTileMap_KSplit_M00_N0_M01Adapt<MPerBlock, NPerBlock, CMNGridDesc>(
c_m_n_grid_desc, 8, KBatch);
}
__host__ __device__ static constexpr auto
......@@ -333,6 +289,14 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
const auto block_work_idx =
c_block_cluster_adaptor.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!c_block_cluster_adaptor.ValidCTileIndex(
make_tuple(block_work_idx[I1], block_work_idx[I2]),
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
const index_t k_batch_id = block_work_idx[I0];
// HACK: this force m/n_block_data_idx_on_grid into SGPR
......
......@@ -3,6 +3,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r1.hpp"
......@@ -223,12 +224,12 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01,
index_t N01)
const Block2CTileMap& block_2_ctile_map)
{
// static_assert(is_known_at_compile_time<remove_cv_t<decltype(AK1)>>::value &&
// is_known_at_compile_time<remove_cv_t<decltype(BK1)>>::value,
......@@ -256,31 +257,15 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
return false;
}
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
if(!(M0 % M01 == 0 && N0 % N01 == 0))
if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
......@@ -315,39 +300,11 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
__host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap(
const CGridDesc_M_N& c_grid_desc_m_n, index_t /* M01 */, index_t /* N01 */)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}));
const auto cblockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return cblockid_to_m0_n0_block_cluster_adaptor;
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n);
}
using CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl =
remove_cvref_t<decltype(
......@@ -357,7 +314,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
using DefaultBlock2CTileMap =
remove_cvref_t<decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}, 1, 1))>;
template <bool HasMainK0BlockLoop, typename Block2CTileMap = DefaultBlock2CTileMap>
template <bool HasMainK0BlockLoop, typename Block2CTileMap>
__device__ static void
Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
......@@ -385,6 +342,17 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl
.GetLength(I0),
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl
.GetLength(I3))))
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
......
......@@ -5,6 +5,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r2.hpp"
......@@ -230,12 +231,12 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01,
index_t N01)
const Block2CTileMap& block_2_ctile_map)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
......@@ -264,31 +265,15 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2
return false;
}
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
if(!(M0 % M01 == 0 && N0 % N01 == 0))
if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / (K0PerBlock * K1);
......@@ -324,40 +309,13 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
__host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap(
const CGridDesc_M_N& c_grid_desc_m_n, index_t /* M01 */, index_t /* N01 */)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}));
const auto cblockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return cblockid_to_m0_n0_block_cluster_adaptor;
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n);
}
using CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl =
remove_cvref_t<decltype(
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
......@@ -408,6 +366,17 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl
.GetLength(I0),
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl
.GetLength(I3))))
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
......
......@@ -3,6 +3,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r3.hpp"
......@@ -237,12 +238,12 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01,
index_t N01)
const Block2CTileMap& block_2_ctile_map)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
......@@ -271,31 +272,15 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
return false;
}
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
if(!(M0 % M01 == 0 && N0 % N01 == 0))
if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / (K0PerBlock * K1);
......@@ -331,39 +316,11 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
__host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap(
const CGridDesc_M_N& c_grid_desc_m_n, index_t /* M01 */, index_t /* N01 */)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}));
const auto cblockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return cblockid_to_m0_n0_block_cluster_adaptor;
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n);
}
using CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl =
remove_cvref_t<decltype(
......@@ -383,7 +340,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
using DefaultBlock2CTileMap =
remove_cvref_t<decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}, 1, 1))>;
template <bool HasMainKBlockLoop, typename Block2CTileMap = DefaultBlock2CTileMap>
template <bool HasMainKBlockLoop, typename Block2CTileMap>
__device__ static void
Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
......@@ -427,6 +384,17 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl
.GetLength(I0),
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl
.GetLength(I3))))
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
......
#ifndef CK_THREADWISE_CONTRACTION_DLOPS_HPP
#define CK_THREADWISE_CONTRACTION_DLOPS_HPP
#pragma once
#include "common_header.hpp"
#include "math.hpp"
......@@ -25,9 +23,9 @@ template <typename FloatA,
BThreadDesc_TK0_TN0_TN1_TK1::IsKnownAtCompileTime() &&
CThreadDesc_TM0_TM1_TN0_TN1::IsKnownAtCompileTime(),
bool>::type = false>
struct ThreadwiseGemmDlops_km0m1_kn0n1_m0m1n0n1
struct ThreadwiseGemmDl_km0m1_kn0n1_m0m1n0n1
{
__device__ constexpr ThreadwiseGemmDlops_km0m1_kn0n1_m0m1n0n1()
__device__ constexpr ThreadwiseGemmDl_km0m1_kn0n1_m0m1n0n1()
{
static_assert(AThreadDesc_TK0_TM0_TM1_TK1::IsKnownAtCompileTime() &&
BThreadDesc_TK0_TN0_TN1_TK1::IsKnownAtCompileTime() &&
......@@ -124,9 +122,9 @@ template <typename FloatA,
BThreadDesc_TK0_TN0_TN1_TK1::IsKnownAtCompileTime() &&
CThreadDesc_TM0_TM1_TN0_TN1::IsKnownAtCompileTime(),
bool>::type = false>
struct ThreadwiseContractionDlops_A_TK0_TM0_TM1_TK1_B_TK0_TN0_TN1_TK1_C_TM0_TM1_TN0_TN1
struct ThreadwiseContractionDl_A_TK0_TM0_TM1_TK1_B_TK0_TN0_TN1_TK1_C_TM0_TM1_TN0_TN1
{
__device__ constexpr ThreadwiseContractionDlops_A_TK0_TM0_TM1_TK1_B_TK0_TN0_TN1_TK1_C_TM0_TM1_TN0_TN1()
__device__ constexpr ThreadwiseContractionDl_A_TK0_TM0_TM1_TK1_B_TK0_TN0_TN1_TK1_C_TM0_TM1_TN0_TN1()
{
static_assert(AThreadDesc_TK0_TM0_TM1_TK1::IsKnownAtCompileTime() &&
BThreadDesc_TK0_TN0_TN1_TK1::IsKnownAtCompileTime() &&
......@@ -220,4 +218,3 @@ struct ThreadwiseContractionDlops_A_TK0_TM0_TM1_TK1_B_TK0_TN0_TN1_TK1_C_TM0_TM1_
};
} // namespace ck
#endif
#ifndef CK_THREADWISE_TENSOR_SLICE_TRANSFER_V5R1_HPP
#define CK_THREADWISE_TENSOR_SLICE_TRANSFER_V5R1_HPP
#pragma once
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
......@@ -609,4 +608,3 @@ struct ThreadwiseTensorSliceTransfer_v5r1
};
} // namespace ck
#endif
......@@ -25,6 +25,7 @@ enum struct MfmaInstr
mfma_f32_16x16x8bf16,
mfma_i32_32x32x8i8,
mfma_i32_16x16x16i8,
mfma_f64_16x16x4f64
};
template <MfmaInstr instr>
......@@ -383,12 +384,40 @@ struct mfma_type<MfmaInstr::mfma_i32_16x16x16i8>
}
};
template <>
struct mfma_type<MfmaInstr::mfma_f64_16x16x4f64>
{
static constexpr index_t group_size = 1;
static constexpr index_t num_groups_per_blk = 4;
static constexpr index_t num_regs_per_blk = 4; // group_size * num_groups_per_blk;
static constexpr index_t num_threads_per_blk = 16;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = 4; // wave_size / num_threads_per_blk;
static constexpr index_t num_output_blks = 1;
static constexpr index_t m_per_blk = 16;
static constexpr index_t n_per_blk = 16;
static constexpr index_t k_per_blk = 1;
static constexpr bool is_k_reduction = true;
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f64_16x16x4f64<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
template <typename base_type, index_t MPerXdlops, index_t NPerXdlops>
struct MfmaSelector
{
template <typename base_type_, index_t MPerXdlops_, index_t NPerXdlops_>
static constexpr auto GetMfma();
template <>
static constexpr auto GetMfma<double, 16, 16>()
{
return MfmaInstr::mfma_f64_16x16x4f64;
}
template <>
static constexpr auto GetMfma<float, 64, 64>()
{
......@@ -661,9 +690,10 @@ struct XdlopsGemm
template <class FloatA, class FloatB, class FloatC>
__device__ void Run(const FloatA& p_a_wave, const FloatB& p_b_wave, FloatC& p_c_thread) const
{
static_assert(is_same<base_type, float>::value || is_same<base_type, half_t>::value ||
is_same<base_type, bhalf_t>::value || is_same<base_type, int8_t>::value,
"base base_type must be float, half, bfloat16, and int8_t!");
static_assert(is_same<base_type, double>::value || is_same<base_type, float>::value ||
is_same<base_type, half_t>::value || is_same<base_type, bhalf_t>::value ||
is_same<base_type, int8_t>::value,
"base base_type must be double, float, half, bfloat16, and int8_t!");
static_for<0, KPack / mfma_instr.k_per_blk, 1>{}([&](auto k) {
mfma_instr.template run<MPerXdlops, NPerXdlops>(p_a_wave[k], p_b_wave[k], p_c_thread);
......
......@@ -259,6 +259,14 @@ __device__ float llvm_amdgcn_raw_buffer_atomic_add_fp32(
index_t soffset,
index_t glc_slc) __asm("llvm.amdgcn.raw.buffer.atomic.fadd.f32");
// buffer atomic-add fp32
__device__ double
llvm_amdgcn_raw_buffer_atomic_max_fp64(double vdata,
int32x4_t rsrc, // dst_wave_buffer_resource
int voffset, // dst_thread_addr_offset
int soffset, // dst_wave_addr_offset
int glc_slc) __asm("llvm.amdgcn.raw.buffer.atomic.fmax.f64");
template <typename T, index_t N>
__device__ typename vector_type<T, N>::type amd_buffer_load_impl(int32x4_t src_wave_buffer_resource,
index_t src_thread_addr_offset,
......@@ -916,6 +924,71 @@ __device__ void amd_buffer_atomic_add_impl(const typename vector_type<T, N>::typ
}
}
template <typename T, index_t N>
__device__ void amd_buffer_atomic_max_impl(const typename vector_type<T, N>::type src_thread_data,
int32x4_t dst_wave_buffer_resource,
index_t dst_thread_addr_offset,
index_t dst_wave_addr_offset)
{
static_assert((is_same<T, double>::value && (N == 1 || N == 2 || N == 4)),
"wrong! not implemented");
if constexpr(is_same<T, double>::value)
{
if constexpr(N == 1)
{
llvm_amdgcn_raw_buffer_atomic_max_fp64(src_thread_data,
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset,
0);
}
else if constexpr(N == 2)
{
vector_type<double, 2> tmp{src_thread_data};
llvm_amdgcn_raw_buffer_atomic_max_fp64(tmp.AsType<double>()[Number<0>{}],
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset,
0);
llvm_amdgcn_raw_buffer_atomic_max_fp64(tmp.AsType<double>()[Number<1>{}],
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset + sizeof(double),
0);
}
else if constexpr(N == 4)
{
vector_type<double, 4> tmp{src_thread_data};
llvm_amdgcn_raw_buffer_atomic_max_fp64(tmp.AsType<double>()[Number<0>{}],
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset,
0);
llvm_amdgcn_raw_buffer_atomic_max_fp64(tmp.AsType<double>()[Number<1>{}],
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset + sizeof(double),
0);
llvm_amdgcn_raw_buffer_atomic_max_fp64(tmp.AsType<double>()[Number<2>{}],
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset + 2 * sizeof(double),
0);
llvm_amdgcn_raw_buffer_atomic_max_fp64(tmp.AsType<double>()[Number<3>{}],
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset + 3 * sizeof(double),
0);
}
}
}
// buffer_load requires:
// 1) p_src_wave must point to global memory space
// 2) p_src_wave must be a wavewise pointer.
......@@ -1047,6 +1120,41 @@ amd_buffer_atomic_add(const typename vector_type_maker<T, N>::type::type src_thr
#endif
}
// buffer_atomic_max requires:
// 1) p_dst_wave must point to global memory
// 2) p_dst_wave must be a wavewise pointer.
// It is user's responsibility to make sure that is true.
template <typename T, index_t N>
__device__ void
amd_buffer_atomic_max(const typename vector_type_maker<T, N>::type::type src_thread_data,
T* p_dst_wave,
const index_t dst_thread_element_offset,
const bool dst_thread_element_valid,
const index_t dst_element_space_size)
{
const int32x4_t dst_wave_buffer_resource =
make_wave_buffer_resource(p_dst_wave, dst_element_space_size);
index_t dst_thread_addr_offset = dst_thread_element_offset * sizeof(T);
using vector_t = typename vector_type_maker<T, N>::type::type;
using scalar_t = typename scalar_type<vector_t>::type;
constexpr index_t vector_size = scalar_type<vector_t>::vector_size;
#if CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_MAX_OOB_CHECK_OFFSET_TRICK
uint32_t dst_addr_shift = dst_thread_element_valid ? 0 : 0x7fffffff;
amd_buffer_atomic_max_impl<scalar_t, vector_size>(
src_thread_data, dst_wave_buffer_resource, dst_addr_shift + dst_thread_addr_offset, 0);
#else
if(dst_thread_element_valid)
{
amd_buffer_atomic_max_impl<scalar_t, vector_size>(
src_thread_data, dst_wave_buffer_resource, dst_thread_addr_offset, 0);
}
#endif
}
} // namespace ck
#endif
......@@ -295,6 +295,25 @@ struct intrin_mfma_i32_16x16x16i8<16, 16>
}
};
template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f64_16x16x4f64;
template <>
struct intrin_mfma_f64_16x16x4f64<16, 16>
{
template <class FloatC>
__device__ static void Run(const double& reg_a, const double& reg_b, FloatC& reg_c)
{
#ifdef __gfx90a__
reg_c.template AsType<double4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f64_16x16x4f64(
reg_a, reg_b, reg_c.template AsType<double4_t>()[Number<0>{}], 0, 0, 0);
#else
ignore = reg_a;
ignore = reg_b;
ignore = reg_c;
#endif
}
};
} // namespace ck
#endif
#endif
......@@ -32,7 +32,7 @@
#include "debug.hpp"
#include "amd_buffer_addressing.hpp"
#include "generic_memory_space_atomic_add.hpp"
#include "generic_memory_space_atomic.hpp"
#include "get_id.hpp"
#include "synchronization.hpp"
#include "amd_address_space.hpp"
......
......@@ -3,7 +3,7 @@
#include "enable_if.hpp"
#include "c_style_pointer_cast.hpp"
#include "amd_buffer_addressing.hpp"
#include "generic_memory_space_atomic_add.hpp"
#include "generic_memory_space_atomic.hpp"
#ifndef CK_NOGPU
namespace ck {
......@@ -126,6 +126,10 @@ struct DynamicBuffer
{
this->template AtomicAdd<X>(i, is_valid_element, x);
}
else if constexpr(Op == InMemoryDataOperationEnum::AtomicMax)
{
this->template AtomicMax<X>(i, is_valid_element, x);
}
else if constexpr(Op == InMemoryDataOperationEnum::Add)
{
auto tmp = this->template Get<X>(i, is_valid_element);
......@@ -327,6 +331,42 @@ struct DynamicBuffer
}
}
template <typename X,
typename enable_if<is_same<typename scalar_type<remove_cvref_t<X>>::type,
typename scalar_type<remove_cvref_t<T>>::type>::value,
bool>::type = false>
__host__ __device__ void AtomicMax(index_t i, bool is_valid_element, const X& x)
{
// X contains multiple T
constexpr index_t scalar_per_t_vector = scalar_type<remove_cvref_t<T>>::vector_size;
constexpr index_t scalar_per_x_vector = scalar_type<remove_cvref_t<X>>::vector_size;
static_assert(scalar_per_x_vector % scalar_per_t_vector == 0,
"wrong! X should contain multiple T");
static_assert(GetAddressSpace() == AddressSpaceEnum::Global, "only support global mem");
#if CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64
using scalar_t = typename scalar_type<remove_cvref_t<T>>::type;
bool constexpr use_amd_buffer_addressing = is_same_v<remove_cvref_t<scalar_t>, double>;
#else
bool constexpr use_amd_buffer_addressing = false;
#endif
if constexpr(use_amd_buffer_addressing)
{
constexpr index_t t_per_x = scalar_per_x_vector / scalar_per_t_vector;
amd_buffer_atomic_max<remove_cvref_t<T>, t_per_x>(
x, p_data_, i, is_valid_element, element_space_size_);
}
else if(is_valid_element)
{
atomic_max<X>(c_style_pointer_cast<X*>(&p_data_[i]), x);
}
}
__host__ __device__ static constexpr bool IsStaticBuffer() { return false; }
__host__ __device__ static constexpr bool IsDynamicBuffer() { return true; }
......
#pragma once
#ifndef CK_NOGPU
#include "data_type.hpp"
#ifndef CK_NOGPU
namespace ck {
// Caution: DO NOT REMOVE
// intentionally have only declaration but no definition to cause compilation failure when trying to
// instantiate this template. The purpose is to make the implementation of atomic_add explicit for
// each datatype.
template <typename X>
__device__ X atomic_add(X* p_dst, const X& x);
......@@ -25,6 +30,12 @@ __device__ float atomic_add<float>(float* p_dst, const float& x)
return atomicAdd(p_dst, x);
}
template <>
__device__ double atomic_add<double>(double* p_dst, const double& x)
{
return atomicAdd(p_dst, x);
}
template <>
__device__ float2_t atomic_add<float2_t>(float2_t* p_dst, const float2_t& x)
{
......@@ -42,5 +53,71 @@ __device__ float2_t atomic_add<float2_t>(float2_t* p_dst, const float2_t& x)
return vy.template AsType<float2_t>()[I0];
}
template <>
__device__ double2_t atomic_add<double2_t>(double2_t* p_dst, const double2_t& x)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
const vector_type<double, 2> vx{x};
vector_type<double, 2> vy{0};
vy.template AsType<double>()(I0) =
atomicAdd(c_style_pointer_cast<double*>(p_dst), vx.template AsType<double>()[I0]);
vy.template AsType<double>()(I1) =
atomicAdd(c_style_pointer_cast<double*>(p_dst) + 1, vx.template AsType<double>()[I1]);
return vy.template AsType<double2_t>()[I0];
}
// Caution: DO NOT REMOVE
// intentionally have only declaration but no definition to cause compilation failure when trying to
// instantiate this template. The purpose is to make the implementation of atomic_max explicit for
// each datatype.
template <typename X>
__device__ X atomic_max(X* p_dst, const X& x);
template <>
__device__ int32_t atomic_max<int32_t>(int32_t* p_dst, const int32_t& x)
{
return atomicMax(p_dst, x);
}
template <>
__device__ uint32_t atomic_max<uint32_t>(uint32_t* p_dst, const uint32_t& x)
{
return atomicMax(p_dst, x);
}
template <>
__device__ float atomic_max<float>(float* p_dst, const float& x)
{
return atomicMax(p_dst, x);
}
template <>
__device__ double atomic_max<double>(double* p_dst, const double& x)
{
return atomicMax(p_dst, x);
}
template <>
__device__ float2_t atomic_max<float2_t>(float2_t* p_dst, const float2_t& x)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
const vector_type<float, 2> vx{x};
vector_type<float, 2> vy{0};
vy.template AsType<float>()(I0) =
atomicMax(c_style_pointer_cast<float*>(p_dst), vx.template AsType<float>()[I0]);
vy.template AsType<float>()(I1) =
atomicMax(c_style_pointer_cast<float*>(p_dst) + 1, vx.template AsType<float>()[I1]);
return vy.template AsType<float2_t>()[I0];
}
} // namespace ck
#endif
......@@ -12,11 +12,15 @@ __host__ __device__ constexpr index_t get_warp_size()
__device__ index_t get_thread_local_1d_id() { return threadIdx.x; }
__device__ index_t get_thread_global_1d_id() { return blockIdx.x * blockDim.x + threadIdx.x; }
__device__ index_t get_warp_local_1d_id() { return threadIdx.x / get_warp_size(); }
__device__ index_t get_block_1d_id() { return blockIdx.x; }
__device__ index_t get_grid_size() { return gridDim.x; }
__device__ index_t get_block_size() { return blockDim.x; }
} // namespace ck
#endif
\ No newline at end of file
#ifndef CK_INNER_PRODUCT_HPP
#define CK_INNER_PRODUCT_HPP
#pragma once
#include "data_type.hpp"
#ifndef CK_NOGPU
namespace ck {
......@@ -138,7 +136,7 @@ template <>
__device__ void
inner_product<int8x4_t, int8x4_t, int32_t>(const int8x4_t& a, const int8x4_t& b, int32_t& c)
{
#if defined(CK_USE_DOT4_I32_I8)
#if defined(CK_USE_AMD_V_DOT4_I32_I8)
#if CK_USE_AMD_INNER_PRODUCT_INLINE_ASM
asm volatile("\n \
v_dot4_i32_i8 %0, %1, %2, %0\n \
......@@ -203,4 +201,3 @@ inner_product<int8x16_t, int8x16_t, int32_t>(const int8x16_t& a, const int8x16_t
} // namespace ck
#endif
#endif
\ No newline at end of file
......@@ -3,11 +3,13 @@
#include <cmath>
#include "data_type.hpp"
#include "half.hpp"
#include "type.hpp"
namespace ck {
namespace math {
// math functions for the host, some are implemented by calling C++ std functions
static inline __host__ float abs(float x) { return std::abs(x); };
static inline __host__ double abs(double x) { return std::abs(x); };
......@@ -28,26 +30,26 @@ static inline __host__ int32_t abs(int32_t x)
static inline __host__ half_t abs(half_t x)
{
half_float::half xx = *reinterpret_cast<half_float::half*>(&x);
uint16_t xx = ck::bit_cast<uint16_t>(x);
half_float::half abs_xx = half_float::abs(xx);
uint16_t abs_xx = xx & 0x7fff;
half_t abs_x = *reinterpret_cast<half_t*>(&abs_xx);
half_t abs_x = ck::bit_cast<half_t>(abs_xx);
return abs_x;
};
static inline __host__ float isnan(float x) { return std::isnan(x); };
static inline __host__ bool isnan(float x) { return std::isnan(x); };
static inline __host__ double isnan(double x) { return std::isnan(x); };
static inline __host__ bool isnan(double x) { return std::isnan(x); };
static inline __host__ int8_t isnan(int8_t x)
static inline __host__ bool isnan(int8_t x)
{
(void)x;
return false;
};
static inline __host__ int32_t isnan(int32_t x)
static inline __host__ bool isnan(int32_t x)
{
(void)x;
return false;
......@@ -55,11 +57,59 @@ static inline __host__ int32_t isnan(int32_t x)
static inline __host__ bool isnan(half_t x)
{
half_float::half xx = *reinterpret_cast<half_float::half*>(&x);
uint16_t xx = ck::bit_cast<uint16_t>(x);
return (xx & 0x7FFF) > 0x7C00;
};
static inline __host__ float sqrt(float x) { return std::sqrt(x); };
static inline __host__ double sqrt(double x) { return std::sqrt(x); };
// math functions for the HIP kernel, some are implemented by calling hip builtin functions
static inline __device__ float abs(float x) { return ::abs(x); };
static inline __device__ double abs(double x) { return ::abs(x); };
static inline __device__ int8_t abs(int8_t x)
{
int8_t sgn = x >> (8 - 1);
return (x ^ sgn) - sgn;
};
static inline __device__ int32_t abs(int32_t x)
{
int32_t sgn = x >> (32 - 1);
return (x ^ sgn) - sgn;
};
static inline __device__ half_t abs(half_t x) { return ::__habs(x); };
static inline __device__ bool isnan(float x) { return ::isnan(x); };
static inline __device__ bool isnan(double x) { return ::isnan(x); };
static inline __device__ bool isnan(int8_t x)
{
(void)x;
return false;
};
return half_float::isnan(xx);
static inline __device__ bool isnan(int32_t x)
{
(void)x;
return false;
};
static inline __device__ bool isnan(half_t x) { return ::__hisnan(x); };
static inline __device__ float sqrt(float x) { return ::sqrtf(x); };
static inline __device__ double sqrt(double x) { return ::sqrt(x); };
} // namespace math
} // namespace ck
......
......@@ -27,6 +27,7 @@
#define CK_REDUCTION_FUNCTIONS_BINOP_HPP
#include "data_type.hpp"
#include "math_v2.hpp"
#include "reduction_common.hpp"
#include "reduction_operator.hpp"
......@@ -34,18 +35,6 @@
namespace ck {
namespace detail {
template <typename T>
static inline __device__ bool is_nan(T x)
{
return (isnan(x));
};
template <>
inline __device__ bool is_nan<half_t>(half_t x)
{
return (__hisnan(x));
};
template <bool PropagateNan, typename ReduceOperation, typename AccDataType>
struct AccumulateWithNanCheck;
......@@ -53,7 +42,7 @@ template <typename ReduceOperation, typename AccDataType>
struct AccumulateWithNanCheck<false, ReduceOperation, AccDataType>
{
// cppcheck-suppress constParameter
__device__ static inline void Calculate(AccDataType& accuVal, AccDataType currVal)
__host__ __device__ static inline void Calculate(AccDataType& accuVal, AccDataType currVal)
{
ReduceOperation{}(accuVal, currVal);
};
......@@ -62,9 +51,11 @@ struct AccumulateWithNanCheck<false, ReduceOperation, AccDataType>
template <typename ReduceOperation, typename AccDataType>
struct AccumulateWithNanCheck<true, ReduceOperation, AccDataType>
{
__device__ static inline void Calculate(AccDataType& accuVal, AccDataType currVal)
__host__ __device__ static inline void Calculate(AccDataType& accuVal, AccDataType currVal)
{
if(is_nan(currVal))
using ck::math::isnan;
if(isnan(currVal))
{
accuVal = currVal;
}
......@@ -81,7 +72,7 @@ struct AccumulateWithIndexAndNanCheck;
template <typename ReduceOperation, typename AccDataType, typename IndexDataType>
struct AccumulateWithIndexAndNanCheck<false, ReduceOperation, AccDataType, IndexDataType>
{
__device__ static inline void
__host__ __device__ static inline void
// cppcheck-suppress constParameter
Calculate(AccDataType& accuVal,
AccDataType currVal,
......@@ -101,12 +92,14 @@ template <typename ReduceOperation, typename AccDataType, typename IndexDataType
struct AccumulateWithIndexAndNanCheck<true, ReduceOperation, AccDataType, IndexDataType>
{
// The method is called when the ReduceOperation is indexable and the user asked for indices
__device__ static inline void Calculate(AccDataType& accuVal,
AccDataType currVal,
IndexDataType& accuIndex,
IndexDataType currIndex)
__host__ __device__ static inline void Calculate(AccDataType& accuVal,
AccDataType currVal,
IndexDataType& accuIndex,
IndexDataType currIndex)
{
if(is_nan(currVal))
using ck::math::isnan;
if(isnan(currVal))
{
accuVal = currVal;
accuIndex = currIndex;
......
......@@ -26,7 +26,8 @@
#ifndef CK_REDUCTION_OPERATOR_HPP
#define CK_REDUCTION_OPERATOR_HPP
#include "common_header.hpp"
#include "config.hpp"
#include "data_type.hpp"
namespace ck {
......@@ -35,18 +36,16 @@ namespace reduce {
// Every binary operator used in reduction is represented by a templated functor class. Each functor
// class must provide at least
// three members:
// 1) GetReductionZeroVal() -- the interface to return the "identity element" for the binary
// 1) GetIdentityValue() -- the interface to return the "identity element" for the binary
// operator, "identity element" is the unique
// element in the algebraic space that doesn't affect the value of other elements
// when operated against them, and the concept is similar to zero vector in
// vector space
// (http://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/linearalgebra/VectorSpaces.pdf).
// 2) indexable -- boolean value indicating whether indices of the operated elements could be
// recorded. Usually, Min/Max operator could
// need to record the indices of elements. For operator like Add/Mul, no need to
// record the indices.
// 3) operator() -- the first argument of the operator must be both an input & output, and the
// corresponding variable usually stores
// 2) IsCompatibleInMemoryDataOperation() -- return true if the reduction task corresponding to this
// operator can use the InMemoryDataOperation to finalize, or else it return false 3) operator() --
// the first argument of the operator must be both an input & output, and the corresponding variable
// usually stores
// the accumulated result of many operator() calls; the second argument is only an
// input. For indexable binary
// operator, the second version of operator() has third argument (which is an
......@@ -60,7 +59,14 @@ struct Add
{
using dataType = T;
__host__ __device__ static constexpr T GetReductionZeroVal() { return static_cast<T>(0.0f); };
__host__ __device__ static constexpr T GetIdentityValue() { return static_cast<T>(0.0f); };
__device__ static constexpr bool
IsCompatibleInMemoryDataOperation(InMemoryDataOperationEnum operation)
{
return operation == InMemoryDataOperationEnum::AtomicAdd ||
operation == InMemoryDataOperationEnum::Set;
};
__host__ __device__ inline constexpr void operator()(T& a, T b) const { a = a + b; }
};
......@@ -70,7 +76,13 @@ struct Mul
{
using dataType = T;
__host__ __device__ static constexpr T GetReductionZeroVal() { return static_cast<T>(1.0f); };
__host__ __device__ static constexpr T GetIdentityValue() { return static_cast<T>(1.0f); };
__device__ static constexpr bool
IsCompatibleInMemoryDataOperation(InMemoryDataOperationEnum operation)
{
return operation == InMemoryDataOperationEnum::Set;
};
__host__ __device__ inline constexpr void operator()(T& a, T b) const { a = a * b; }
};
......@@ -80,11 +92,18 @@ struct Max
{
using dataType = T;
__host__ __device__ static constexpr T GetReductionZeroVal()
__host__ __device__ static constexpr T GetIdentityValue()
{
return NumericLimits<T>::Lowest();
};
__device__ static constexpr bool
IsCompatibleInMemoryDataOperation(InMemoryDataOperationEnum operation)
{
// ToChange: atomic_max to be added
return operation == InMemoryDataOperationEnum::Set;
};
__host__ __device__ inline constexpr void operator()(T& a, T b) const
{
if(a < b)
......@@ -106,9 +125,13 @@ struct Min
{
using dataType = T;
__host__ __device__ static constexpr T GetReductionZeroVal()
__host__ __device__ static constexpr T GetIdentityValue() { return NumericLimits<T>::Max(); };
__device__ static constexpr bool
IsCompatibleInMemoryDataOperation(InMemoryDataOperationEnum operation)
{
return NumericLimits<T>::Max();
// ToChange: atomic_min to be added
return operation == InMemoryDataOperationEnum::Set;
};
__host__ __device__ inline constexpr void operator()(T& a, T b) const
......@@ -132,7 +155,14 @@ struct AMax
{
using dataType = T;
__host__ __device__ static constexpr T GetReductionZeroVal() { return static_cast<T>(0.0f); };
__host__ __device__ static constexpr T GetIdentityValue() { return static_cast<T>(0.0f); };
__device__ static constexpr bool
IsCompatibleInMemoryDataOperation(InMemoryDataOperationEnum operation)
{
// ToChange: atomic_max to be added
return operation == InMemoryDataOperationEnum::Set;
};
__host__ __device__ inline constexpr void operator()(T& a, T b) const
{
......@@ -150,6 +180,17 @@ struct AMax
}
};
template <typename T>
T GetIdentityValueueForInMemoryDataOperation(InMemoryDataOperationEnum operation)
{
T result = ck::type_convert<T>(0.0f);
if(operation == InMemoryDataOperationEnum::AtomicMax)
result = ck::NumericLimits<T>::Lowest();
return (result);
};
}; // end of namespace reduce
} // end of namespace ck
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment