Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
6dfb4e78
Commit
6dfb4e78
authored
Jun 12, 2022
by
carlushuang
Browse files
Merge remote-tracking branch 'origin/develop' into cpu_avx2
parents
397a68f2
1ced00a5
Changes
268
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
479 additions
and
994 deletions
+479
-994
test/gemm/gemm_xdl_fp16.cpp
test/gemm/gemm_xdl_fp16.cpp
+8
-3
test/gemm/gemm_xdl_fp32.cpp
test/gemm/gemm_xdl_fp32.cpp
+8
-3
test/gemm/gemm_xdl_fp64.cpp
test/gemm/gemm_xdl_fp64.cpp
+156
-0
test/gemm/gemm_xdl_int8.cpp
test/gemm/gemm_xdl_int8.cpp
+133
-0
test/grouped_gemm/grouped_gemm_fp16.cpp
test/grouped_gemm/grouped_gemm_fp16.cpp
+13
-3
test/reduce/reduce_no_index.cpp
test/reduce/reduce_no_index.cpp
+80
-481
test/reduce/reduce_util.hpp
test/reduce/reduce_util.hpp
+0
-19
test/reduce/reduce_with_index.cpp
test/reduce/reduce_with_index.cpp
+81
-485
No files found.
test/gemm/gemm_fp16.cpp
→
test/gemm/gemm_
xdl_
fp16.cpp
View file @
6dfb4e78
...
@@ -52,9 +52,10 @@ void add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances(
...
@@ -52,9 +52,10 @@ void add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances(
int
main
()
int
main
()
{
{
using
ADataType
=
ck
::
half_t
;
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
RowMajor
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
RowMajor
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
ColumnMajor
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ColumnMajor
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
@@ -74,6 +75,7 @@ int main()
...
@@ -74,6 +75,7 @@ int main()
ADataType
,
ADataType
,
BDataType
,
BDataType
,
CDataType
,
CDataType
,
AccDataType
,
ColumnMajor
,
ColumnMajor
,
RowMajor
,
RowMajor
,
RowMajor
,
RowMajor
,
...
@@ -96,6 +98,7 @@ int main()
...
@@ -96,6 +98,7 @@ int main()
ADataType
,
ADataType
,
BDataType
,
BDataType
,
CDataType
,
CDataType
,
AccDataType
,
ColumnMajor
,
ColumnMajor
,
ColumnMajor
,
ColumnMajor
,
RowMajor
,
RowMajor
,
...
@@ -118,6 +121,7 @@ int main()
...
@@ -118,6 +121,7 @@ int main()
ADataType
,
ADataType
,
BDataType
,
BDataType
,
CDataType
,
CDataType
,
AccDataType
,
RowMajor
,
RowMajor
,
RowMajor
,
RowMajor
,
RowMajor
,
RowMajor
,
...
@@ -142,6 +146,7 @@ int main()
...
@@ -142,6 +146,7 @@ int main()
ADataType
,
ADataType
,
BDataType
,
BDataType
,
CDataType
,
CDataType
,
AccDataType
,
RowMajor
,
RowMajor
,
ColumnMajor
,
ColumnMajor
,
RowMajor
,
RowMajor
,
...
...
test/gemm/gemm_fp32.cpp
→
test/gemm/gemm_
xdl_
fp32.cpp
View file @
6dfb4e78
...
@@ -53,9 +53,10 @@ void add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instances(std::vector<De
...
@@ -53,9 +53,10 @@ void add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instances(std::vector<De
int
main
()
int
main
()
{
{
using
ADataType
=
float
;
using
ADataType
=
float
;
using
BDataType
=
float
;
using
BDataType
=
float
;
using
CDataType
=
float
;
using
CDataType
=
float
;
using
AccDataType
=
float
;
using
RowMajor
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
RowMajor
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
ColumnMajor
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ColumnMajor
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
@@ -75,6 +76,7 @@ int main()
...
@@ -75,6 +76,7 @@ int main()
ADataType
,
ADataType
,
BDataType
,
BDataType
,
CDataType
,
CDataType
,
AccDataType
,
ColumnMajor
,
ColumnMajor
,
RowMajor
,
RowMajor
,
RowMajor
,
RowMajor
,
...
@@ -97,6 +99,7 @@ int main()
...
@@ -97,6 +99,7 @@ int main()
ADataType
,
ADataType
,
BDataType
,
BDataType
,
CDataType
,
CDataType
,
AccDataType
,
ColumnMajor
,
ColumnMajor
,
ColumnMajor
,
ColumnMajor
,
RowMajor
,
RowMajor
,
...
@@ -119,6 +122,7 @@ int main()
...
@@ -119,6 +122,7 @@ int main()
ADataType
,
ADataType
,
BDataType
,
BDataType
,
CDataType
,
CDataType
,
AccDataType
,
RowMajor
,
RowMajor
,
RowMajor
,
RowMajor
,
RowMajor
,
RowMajor
,
...
@@ -141,6 +145,7 @@ int main()
...
@@ -141,6 +145,7 @@ int main()
ADataType
,
ADataType
,
BDataType
,
BDataType
,
CDataType
,
CDataType
,
AccDataType
,
RowMajor
,
RowMajor
,
ColumnMajor
,
ColumnMajor
,
RowMajor
,
RowMajor
,
...
...
test/gemm/gemm_xdl_fp64.cpp
0 → 100644
View file @
6dfb4e78
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceGemmNoOpPtr
=
ck
::
tensor_operation
::
device
::
DeviceGemmPtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
;
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
void
add_device_gemm_xdl_f64_f64_f64_km_kn_mn_instances
(
std
::
vector
<
DeviceGemmNoOpPtr
>&
);
void
add_device_gemm_xdl_f64_f64_f64_km_nk_mn_instances
(
std
::
vector
<
DeviceGemmNoOpPtr
>&
);
void
add_device_gemm_xdl_f64_f64_f64_mk_nk_mn_instances
(
std
::
vector
<
DeviceGemmNoOpPtr
>&
);
void
add_device_gemm_xdl_f64_f64_f64_mk_kn_mn_instances
(
std
::
vector
<
DeviceGemmNoOpPtr
>&
);
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
inline
std
::
string
get_device_name
()
{
hipDeviceProp_t
props
{};
int
device
;
auto
status
=
hipGetDevice
(
&
device
);
if
(
status
!=
hipSuccess
)
{
return
std
::
string
();
}
status
=
hipGetDeviceProperties
(
&
props
,
device
);
if
(
status
!=
hipSuccess
)
{
return
std
::
string
();
}
const
std
::
string
name
(
props
.
gcnArchName
);
return
name
;
}
int
main
()
{
if
(
get_device_name
().
find
(
"gfx90a"
)
==
std
::
string
::
npos
)
{
std
::
cout
<<
"TestGemm ..... SUCCESS"
<<
std
::
endl
;
return
0
;
}
using
ADataType
=
double
;
using
BDataType
=
double
;
using
CDataType
=
double
;
using
AccDataType
=
double
;
using
RowMajor
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
ColumnMajor
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
bool
res
=
true
;
std
::
vector
<
DeviceGemmNoOpPtr
>
gemmPtrs
;
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_xdl_f64_f64_f64_km_kn_mn_instances
(
gemmPtrs
);
for
(
auto
&
gemmPtr
:
gemmPtrs
)
{
res
&=
ck
::
gemm_util
::
TestGemm
<
DeviceGemmNoOpPtr
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ColumnMajor
,
RowMajor
,
RowMajor
,
PassThrough
,
PassThrough
,
PassThrough
>
{}(
gemmPtr
);
}
gemmPtrs
.
clear
();
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_xdl_f64_f64_f64_km_nk_mn_instances
(
gemmPtrs
);
for
(
auto
&
gemmPtr
:
gemmPtrs
)
{
res
&=
ck
::
gemm_util
::
TestGemm
<
DeviceGemmNoOpPtr
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ColumnMajor
,
ColumnMajor
,
RowMajor
,
PassThrough
,
PassThrough
,
PassThrough
>
{}(
gemmPtr
);
}
gemmPtrs
.
clear
();
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_xdl_f64_f64_f64_mk_kn_mn_instances
(
gemmPtrs
);
for
(
auto
&
gemmPtr
:
gemmPtrs
)
{
res
&=
ck
::
gemm_util
::
TestGemm
<
DeviceGemmNoOpPtr
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
RowMajor
,
RowMajor
,
RowMajor
,
PassThrough
,
PassThrough
,
PassThrough
>
{}(
gemmPtr
);
}
gemmPtrs
.
clear
();
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_xdl_f64_f64_f64_mk_nk_mn_instances
(
gemmPtrs
);
for
(
auto
&
gemmPtr
:
gemmPtrs
)
{
res
&=
ck
::
gemm_util
::
TestGemm
<
DeviceGemmNoOpPtr
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
RowMajor
,
ColumnMajor
,
RowMajor
,
PassThrough
,
PassThrough
,
PassThrough
>
{}(
gemmPtr
);
}
std
::
cout
<<
"TestGemm ..... "
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
return
res
?
0
:
1
;
}
test/gemm/gemm_xdl_int8.cpp
0 → 100644
View file @
6dfb4e78
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceGemmNoOpPtr
=
ck
::
tensor_operation
::
device
::
DeviceGemmPtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
;
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
void
add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances
(
std
::
vector
<
DeviceGemmNoOpPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances
(
std
::
vector
<
DeviceGemmNoOpPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances
(
std
::
vector
<
DeviceGemmNoOpPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances
(
std
::
vector
<
DeviceGemmNoOpPtr
>&
);
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
int
main
()
{
using
ADataType
=
int8_t
;
using
BDataType
=
int8_t
;
using
CDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
RowMajor
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
ColumnMajor
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
std
::
vector
<
DeviceGemmNoOpPtr
>
gemmPtrs
;
bool
res
=
true
;
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances
(
gemmPtrs
);
for
(
auto
&
gemmPtr
:
gemmPtrs
)
{
res
&=
ck
::
gemm_util
::
TestGemm
<
DeviceGemmNoOpPtr
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ColumnMajor
,
RowMajor
,
RowMajor
,
PassThrough
,
PassThrough
,
PassThrough
>
{}(
gemmPtr
);
}
gemmPtrs
.
clear
();
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances
(
gemmPtrs
);
for
(
auto
&
gemmPtr
:
gemmPtrs
)
{
res
&=
ck
::
gemm_util
::
TestGemm
<
DeviceGemmNoOpPtr
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ColumnMajor
,
ColumnMajor
,
RowMajor
,
PassThrough
,
PassThrough
,
PassThrough
>
{}(
gemmPtr
);
}
gemmPtrs
.
clear
();
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances
(
gemmPtrs
);
for
(
auto
&
gemmPtr
:
gemmPtrs
)
{
res
&=
ck
::
gemm_util
::
TestGemm
<
DeviceGemmNoOpPtr
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
RowMajor
,
RowMajor
,
RowMajor
,
PassThrough
,
PassThrough
,
PassThrough
>
{}(
gemmPtr
);
}
gemmPtrs
.
clear
();
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances
(
gemmPtrs
);
for
(
auto
&
gemmPtr
:
gemmPtrs
)
{
res
&=
ck
::
gemm_util
::
TestGemm
<
DeviceGemmNoOpPtr
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
RowMajor
,
ColumnMajor
,
RowMajor
,
PassThrough
,
PassThrough
,
PassThrough
>
{}(
gemmPtr
);
}
std
::
cout
<<
"TestGemm ..... "
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
return
res
?
0
:
1
;
}
test/grouped_gemm/grouped_gemm_fp16.cpp
View file @
6dfb4e78
...
@@ -141,18 +141,28 @@ bool TestGroupedGemm(DeviceGroupedGemmPtr_& groupedGemmPtr)
...
@@ -141,18 +141,28 @@ bool TestGroupedGemm(DeviceGroupedGemmPtr_& groupedGemmPtr)
auto
c_element_op
=
PassThrough
{};
auto
c_element_op
=
PassThrough
{};
// do GEMM
// do GEMM
auto
invoker_ptr
=
groupedGemmPtr
->
MakeInvokerPointer
();
auto
invoker_ptr
=
groupedGemmPtr
->
MakeInvokerPointer
();
auto
argument_ptr
=
groupedGemmPtr
->
MakeArgumentPointer
(
auto
argument_ptr
=
groupedGemmPtr
->
MakeArgumentPointer
(
p_a
,
p_b
,
p_c
,
gemm_shapes
,
a_element_op
,
b_element_op
,
c_element_op
);
p_a
,
p_b
,
p_c
,
gemm_shapes
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_desc_workspace
(
groupedGemmPtr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
groupedGemmPtr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
gemm_desc_workspace
.
GetDeviceBuffer
());
invoker_ptr
->
Run
(
argument_ptr
.
get
());
invoker_ptr
->
Run
(
argument_ptr
.
get
());
for
(
std
::
size_t
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
for
(
std
::
size_t
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
());
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
());
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
BDataType
,
CDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
...
...
test/reduce/reduce_no_index.cpp
View file @
6dfb4e78
#include "getopt.h"
#include "getopt.h"
#include "check_err.hpp"
#include "host_common_util.hpp"
#include "device_reduce_instance.hpp"
#include "profile_reduce_impl.hpp"
#include "reduction_enums.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_reduction.hpp"
#include "reduce_util.hpp"
using
namespace
ck
;
using
namespace
ck
;
namespace
{
template
<
index_t
Rank
,
index_t
NumReduceDim
>
static
inline
std
::
vector
<
int
>
get_invariant_dims
(
const
std
::
vector
<
int
>&
reduceDims
)
{
assert
(
NumReduceDim
==
reduceDims
.
size
());
int
reduceFlag
=
0
;
// flag the bits for the reduceDims
for
(
int
i
=
0
;
i
<
NumReduceDim
;
i
++
)
{
reduceFlag
|=
1
<<
reduceDims
[
i
];
};
std
::
vector
<
int
>
invariantDims
;
// collect invariant dimensions
for
(
int
i
=
0
;
i
<
Rank
;
i
++
)
if
((
reduceFlag
&
(
1
<<
i
))
==
0
)
{
invariantDims
.
push_back
(
i
);
};
return
invariantDims
;
};
constexpr
int
Rank
=
4
;
constexpr
ReduceTensorOp
ReduceOpId
=
ReduceTensorOp
::
AVG
;
constexpr
NanPropagation
NanOpt
=
NanPropagation
::
PROPAGATE_NAN
;
constexpr
bool
PropagateNan
=
false
;
constexpr
ReduceTensorIndices
IndicesOpt
=
ReduceTensorIndices
::
NO_INDICES
;
constexpr
bool
NeedIndices
=
false
;
template
<
typename
InDataType
,
typename
AccDataType
,
typename
OutDataType
,
int
Rank
,
int
NumReduceDim
>
bool
test_reduce_no_index_impl
(
int
init_method
,
const
std
::
vector
<
size_t
>&
inLengths
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
)
{
using
namespace
ck
::
tensor_operation
::
device
;
using
namespace
ck
::
tensor_operation
::
device
::
device_reduce_instance
;
using
namespace
ck
::
host_reduce
;
constexpr
bool
out_support_atomic_add
=
std
::
is_same
<
OutDataType
,
float
>::
value
;
constexpr
bool
op_support_atomic_add
=
true
;
constexpr
bool
use_atomic_add
=
(
out_support_atomic_add
&&
op_support_atomic_add
);
Tensor
<
InDataType
>
in
(
inLengths
);
std
::
vector
<
size_t
>
outLengths
;
const
auto
invariantDims
=
get_invariant_dims
<
Rank
,
NumReduceDim
>
(
reduceDims
);
if
(
reduceDims
.
size
()
==
Rank
)
outLengths
.
push_back
(
1
);
else
for
(
auto
dim
:
invariantDims
)
outLengths
.
push_back
(
inLengths
[
dim
]);
Tensor
<
OutDataType
>
out_ref
(
outLengths
);
Tensor
<
OutDataType
>
out
(
outLengths
);
// only used when the OutDataType is bhalf_t
Tensor
<
float
>
out_ref_fp32
(
outLengths
);
Tensor
<
float
>
out_fp32
(
outLengths
);
auto
inStrides
=
in
.
mDesc
.
GetStrides
();
auto
outStrides
=
out
.
mDesc
.
GetStrides
();
size_t
invariant_total_length
=
out
.
mDesc
.
GetElementSize
();
size_t
reduce_total_length
=
in
.
mDesc
.
GetElementSize
()
/
invariant_total_length
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
},
num_thread
);
break
;
case
2
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
5.0
,
5.0
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
5.0
,
5.0
},
num_thread
);
}
if
(
beta
!=
0.0
f
)
for
(
size_t
i
=
0
;
i
<
out_ref
.
mDesc
.
GetElementSpace
();
i
++
)
out
.
mData
[
i
]
=
out_ref
.
mData
[
i
];
// these buffers are usually provided by the user application
DeviceMem
in_dev
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpace
());
DeviceMem
out_dev
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpace
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
if
(
beta
!=
0.0
f
)
out_dev
.
ToDevice
(
out
.
mData
.
data
());
using
InElementwiseOperation_0
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation_0
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
using
InElementwiseOperation_1
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
false
>::
InElementwiseOperation
;
using
AccElementwiseOperation_1
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
false
>::
AccElementwiseOperation
;
using
InElementwiseOperation_2
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
false
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation_2
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
false
,
true
>::
AccElementwiseOperation
;
using
DeviceReduceInstPtr0
=
DeviceReducePtr
<
InElementwiseOperation_0
,
AccElementwiseOperation_0
>
;
using
DeviceReduceInstPtr1
=
DeviceReducePtr
<
InElementwiseOperation_1
,
AccElementwiseOperation_1
>
;
using
DeviceReduceInstPtr2
=
DeviceReducePtr
<
InElementwiseOperation_2
,
AccElementwiseOperation_2
>
;
std
::
vector
<
DeviceReduceInstPtr0
>
reduce0_ptrs
;
std
::
vector
<
DeviceReduceInstPtr1
>
reduce1_ptrs
;
std
::
vector
<
DeviceReduceInstPtr2
>
reduce2_ptrs
;
add_device_reduce_instance_threadwise
<
InDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
ReduceOpId
,
NanOpt
,
IndicesOpt
>
(
reduce0_ptrs
);
add_device_reduce_instance_blockwise
<
InDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
ReduceOpId
,
NanOpt
,
IndicesOpt
>
(
reduce0_ptrs
);
if
constexpr
(
use_atomic_add
)
{
add_device_reduce_instance_multiblock_atomic_add
<
InDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
ReduceOpId
,
NanOpt
,
IndicesOpt
>
(
reduce0_ptrs
);
}
else
{
add_device_reduce_instance_multiblock_partial_reduce
<
InDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
ReduceOpId
,
NanOpt
,
IndicesOpt
>
(
reduce1_ptrs
);
};
// used for secondary reduction
if
constexpr
(
!
use_atomic_add
)
{
add_device_reduce_instance_blockwise_second_call
<
AccDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
ReduceOpId
,
NanOpt
,
IndicesOpt
>
(
reduce2_ptrs
);
};
if
(
reduce0_ptrs
.
empty
()
&&
reduce1_ptrs
.
empty
())
{
throw
std
::
runtime_error
(
"Wrong! No device REDUCE instance found"
);
};
bool
result
=
true
;
ReductionHost
<
InDataType
,
AccDataType
,
OutDataType
,
ReduceOpId
,
Rank
,
NumReduceDim
,
PropagateNan
,
NeedIndices
>
hostReduce
(
in
.
mDesc
,
out_ref
.
mDesc
,
invariantDims
,
reduceDims
);
hostReduce
.
Run
(
alpha
,
in
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
nullptr
);
const
auto
i_inLengths
=
to_int_vector
(
inLengths
);
const
auto
i_inStrides
=
to_int_vector
(
inStrides
);
const
auto
i_outLengths
=
to_int_vector
(
outLengths
);
const
auto
i_outStrides
=
to_int_vector
(
outStrides
);
for
(
auto
&
reduce_ptr
:
reduce0_ptrs
)
{
auto
wsSizeInBytes
=
reduce_ptr
->
GetWorkspaceSizeInBytes
(
i_inLengths
,
reduceDims
);
DeviceMem
ws_dev
(
wsSizeInBytes
);
InElementwiseOperation_0
in_elementwise_op_0
(
static_cast
<
int32_t
>
(
reduce_total_length
));
AccElementwiseOperation_0
acc_elementwise_op_0
(
static_cast
<
int32_t
>
(
reduce_total_length
));
auto
argument_ptr
=
reduce_ptr
->
MakeArgumentPointer
(
i_inLengths
,
i_inStrides
,
i_outLengths
,
i_outStrides
,
reduceDims
,
alpha
,
beta
,
in_dev
.
GetDeviceBuffer
(),
out_dev
.
GetDeviceBuffer
(),
nullptr
,
ws_dev
.
GetDeviceBuffer
(),
in_elementwise_op_0
,
acc_elementwise_op_0
);
if
(
!
reduce_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
continue
;
auto
invoker_ptr
=
reduce_ptr
->
MakeInvokerPointer
();
(
void
)
invoker_ptr
->
Run
(
argument_ptr
.
get
());
out_dev
.
FromDevice
(
out
.
mData
.
data
());
bool
single_result
=
true
;
if
constexpr
(
std
::
is_same
<
OutDataType
,
ck
::
half_t
>::
value
||
std
::
is_same
<
OutDataType
,
ck
::
bhalf_t
>::
value
)
{
reduce_util
::
to_f32_vector
(
out
,
out_fp32
);
reduce_util
::
to_f32_vector
(
out_ref
,
out_ref_fp32
);
single_result
=
ck
::
utils
::
check_err
(
out_fp32
.
mData
,
out_ref_fp32
.
mData
,
"Error: incorrect data result!"
);
}
else
{
single_result
=
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
,
"Error: incorrect data result!"
);
};
if
(
!
single_result
)
{
std
::
cout
<<
"Fail Info: "
<<
reduce_ptr
->
GetTypeString
()
<<
std
::
endl
;
result
=
false
;
}
};
for
(
auto
&
reduce_ptr
:
reduce1_ptrs
)
{
auto
wsSizeInBytes
=
reduce_ptr
->
GetWorkspaceSizeInBytes
(
i_inLengths
,
reduceDims
);
DeviceMem
ws_dev
(
wsSizeInBytes
);
InElementwiseOperation_1
in_elementwise_op_1
(
static_cast
<
int32_t
>
(
reduce_total_length
));
AccElementwiseOperation_1
acc_elementwise_op_1
(
static_cast
<
int32_t
>
(
reduce_total_length
));
auto
argument_ptr
=
reduce_ptr
->
MakeArgumentPointer
(
i_inLengths
,
i_inStrides
,
i_outLengths
,
i_outStrides
,
reduceDims
,
alpha
,
beta
,
in_dev
.
GetDeviceBuffer
(),
out_dev
.
GetDeviceBuffer
(),
nullptr
,
ws_dev
.
GetDeviceBuffer
(),
in_elementwise_op_1
,
acc_elementwise_op_1
);
if
(
!
reduce_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
continue
;
auto
invoker_ptr
=
reduce_ptr
->
MakeInvokerPointer
();
(
void
)
invoker_ptr
->
Run
(
argument_ptr
.
get
());
std
::
vector
<
int
>
inLengths2
=
reduce_ptr
->
GetWorkspace2dLengths
(
argument_ptr
.
get
());
std
::
vector
<
int
>
inStrides2
{
inLengths2
[
1
],
1
};
for
(
auto
&
reduce2_ptr
:
reduce2_ptrs
)
{
InElementwiseOperation_2
in_elementwise_op_2
(
static_cast
<
int32_t
>
(
reduce_total_length
));
AccElementwiseOperation_2
acc_elementwise_op_2
(
static_cast
<
int32_t
>
(
reduce_total_length
));
auto
argument2_ptr
=
reduce2_ptr
->
MakeArgumentPointer
(
inLengths2
,
inStrides2
,
i_outLengths
,
i_outStrides
,
reduceDims
,
alpha
,
beta
,
ws_dev
.
GetDeviceBuffer
(),
out_dev
.
GetDeviceBuffer
(),
nullptr
,
ws_dev
.
GetDeviceBuffer
(),
in_elementwise_op_2
,
acc_elementwise_op_2
);
if
(
!
reduce2_ptr
->
IsSupportedArgument
(
argument2_ptr
.
get
()))
continue
;
std
::
string
reduce2_name
=
reduce2_ptr
->
GetTypeString
();
auto
invoker2_ptr
=
reduce2_ptr
->
MakeInvokerPointer
();
(
void
)
invoker2_ptr
->
Run
(
argument2_ptr
.
get
());
out_dev
.
FromDevice
(
out
.
mData
.
data
());
bool
single_result
=
true
;
if
constexpr
(
std
::
is_same
<
OutDataType
,
ck
::
half_t
>::
value
||
std
::
is_same
<
OutDataType
,
ck
::
bhalf_t
>::
value
)
{
reduce_util
::
to_f32_vector
(
out
,
out_fp32
);
reduce_util
::
to_f32_vector
(
out_ref
,
out_ref_fp32
);
single_result
=
ck
::
utils
::
check_err
(
out_fp32
.
mData
,
out_ref_fp32
.
mData
,
"Error: incorrect data result!"
);
}
else
{
single_result
=
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
,
"Error: incorrect data result!"
);
};
if
(
!
single_result
)
{
std
::
cout
<<
"Fail Info: "
<<
reduce_ptr
->
GetTypeString
()
<<
" => "
<<
reduce2_ptr
->
GetTypeString
()
<<
std
::
endl
;
result
=
false
;
}
};
};
return
(
result
);
};
}
// anonymous namespace
static
struct
option
long_options
[]
=
{{
"inLengths"
,
required_argument
,
nullptr
,
'D'
},
static
struct
option
long_options
[]
=
{{
"inLengths"
,
required_argument
,
nullptr
,
'D'
},
{
"reduceDimensions"
,
required_argument
,
nullptr
,
'R'
},
{
"reduceDimensions"
,
required_argument
,
nullptr
,
'R'
},
{
"scales"
,
required_argument
,
nullptr
,
'S'
},
{
"scales"
,
required_argument
,
nullptr
,
'S'
},
...
@@ -387,48 +13,6 @@ static struct option long_options[] = {{"inLengths", required_argument, nullptr,
...
@@ -387,48 +13,6 @@ static struct option long_options[] = {{"inLengths", required_argument, nullptr,
class
SimpleAppArgs
class
SimpleAppArgs
{
{
template
<
typename
T
>
static
T
getSingleValueFromString
(
const
std
::
string
&
valueStr
)
{
std
::
istringstream
iss
(
valueStr
);
T
ret
;
iss
>>
ret
;
return
(
ret
);
};
template
<
typename
T
>
static
std
::
vector
<
T
>
getTypeValuesFromString
(
const
char
*
cstr_values
)
{
std
::
string
valuesStr
(
cstr_values
);
std
::
vector
<
T
>
values
;
std
::
size_t
pos
=
0
;
std
::
size_t
new_pos
;
new_pos
=
valuesStr
.
find
(
','
,
pos
);
while
(
new_pos
!=
std
::
string
::
npos
)
{
const
std
::
string
sliceStr
=
valuesStr
.
substr
(
pos
,
new_pos
-
pos
);
T
val
=
getSingleValueFromString
<
T
>
(
sliceStr
);
values
.
push_back
(
val
);
pos
=
new_pos
+
1
;
new_pos
=
valuesStr
.
find
(
','
,
pos
);
};
std
::
string
sliceStr
=
valuesStr
.
substr
(
pos
);
T
val
=
getSingleValueFromString
<
T
>
(
sliceStr
);
values
.
push_back
(
val
);
return
(
values
);
};
private:
private:
int
option_index
=
0
;
int
option_index
=
0
;
...
@@ -460,6 +44,8 @@ class SimpleAppArgs
...
@@ -460,6 +44,8 @@ class SimpleAppArgs
int
processArgs
(
int
argc
,
char
*
argv
[])
int
processArgs
(
int
argc
,
char
*
argv
[])
{
{
using
ck
::
host_common
::
getTypeValuesFromString
;
int
ch
;
int
ch
;
while
(
1
)
while
(
1
)
...
@@ -514,7 +100,7 @@ class SimpleAppArgs
...
@@ -514,7 +100,7 @@ class SimpleAppArgs
(
reduceDims
.
size
()
!=
1
&&
reduceDims
.
size
()
!=
3
&&
reduceDims
.
size
()
!=
4
))
(
reduceDims
.
size
()
!=
1
&&
reduceDims
.
size
()
!=
3
&&
reduceDims
.
size
()
!=
4
))
return
(
-
1
);
return
(
-
1
);
if
(
data_type
!=
0
&&
data_type
!=
1
&&
data_type
!=
3
&&
data_type
!=
5
)
if
(
data_type
!=
0
&&
data_type
!=
1
&&
data_type
!=
3
&&
data_type
!=
5
&&
data_type
!=
6
)
return
(
-
1
);
return
(
-
1
);
return
(
0
);
return
(
0
);
...
@@ -525,87 +111,92 @@ bool test_reduce_no_index(int data_type,
...
@@ -525,87 +111,92 @@ bool test_reduce_no_index(int data_type,
int
init_method
,
int
init_method
,
std
::
vector
<
int
>
reduceDims
,
std
::
vector
<
int
>
reduceDims
,
std
::
vector
<
size_t
>
inLengths
,
std
::
vector
<
size_t
>
inLengths
,
ReduceTensorOp
reduceOpId
,
bool
propagateNan
,
float
alpha
,
float
alpha
,
float
beta
)
float
beta
)
{
{
using
ck
::
profiler
::
profile_reduce_impl
;
bool
result
=
true
;
bool
result
=
true
;
if
(
data_type
==
0
)
if
(
data_type
==
0
)
{
{
switch
(
reduceDims
.
size
())
result
=
profile_reduce_impl
<
float
,
float
,
float
>
(
true
,
{
init_method
,
case
1
:
false
,
result
=
test_reduce_no_index_impl
<
float
,
float
,
float
,
Rank
,
1
>
(
false
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
inLengths
,
break
;
reduceDims
,
case
3
:
reduceOpId
,
result
=
test_reduce_no_index_impl
<
float
,
float
,
float
,
Rank
,
3
>
(
propagateNan
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
false
,
break
;
alpha
,
case
4
:
beta
);
result
=
test_reduce_no_index_impl
<
float
,
float
,
float
,
Rank
,
4
>
(
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
break
;
};
}
}
else
if
(
data_type
==
1
)
else
if
(
data_type
==
1
)
{
{
switch
(
reduceDims
.
size
())
result
=
profile_reduce_impl
<
ck
::
half_t
,
float
,
ck
::
half_t
>
(
true
,
{
init_method
,
case
1
:
false
,
result
=
test_reduce_no_index_impl
<
ck
::
half_t
,
float
,
ck
::
half_t
,
Rank
,
1
>
(
false
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
inLengths
,
break
;
reduceDims
,
case
3
:
reduceOpId
,
result
=
test_reduce_no_index_impl
<
ck
::
half_t
,
float
,
ck
::
half_t
,
Rank
,
3
>
(
propagateNan
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
false
,
break
;
alpha
,
case
4
:
beta
);
result
=
test_reduce_no_index_impl
<
ck
::
half_t
,
float
,
ck
::
half_t
,
Rank
,
4
>
(
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
break
;
};
}
}
else
if
(
data_type
==
3
)
else
if
(
data_type
==
3
)
{
{
switch
(
reduceDims
.
size
())
result
=
profile_reduce_impl
<
int8_t
,
int32_t
,
int8_t
>
(
true
,
{
init_method
,
case
1
:
false
,
result
=
test_reduce_no_index_impl
<
int8_t
,
int32_t
,
int8_t
,
Rank
,
1
>
(
false
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
inLengths
,
break
;
reduceDims
,
case
3
:
reduceOpId
,
result
=
test_reduce_no_index_impl
<
int8_t
,
int32_t
,
int8_t
,
Rank
,
3
>
(
propagateNan
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
false
,
break
;
alpha
,
case
4
:
beta
);
result
=
test_reduce_no_index_impl
<
int8_t
,
int32_t
,
int8_t
,
Rank
,
4
>
(
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
break
;
};
}
}
else
if
(
data_type
==
5
)
else
if
(
data_type
==
5
)
{
{
switch
(
reduceDims
.
size
())
result
=
profile_reduce_impl
<
ck
::
bhalf_t
,
float
,
ck
::
bhalf_t
>
(
true
,
{
init_method
,
case
1
:
false
,
result
=
test_reduce_no_index_impl
<
ck
::
bhalf_t
,
float
,
ck
::
bhalf_t
,
Rank
,
1
>
(
false
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
inLengths
,
break
;
reduceDims
,
case
3
:
reduceOpId
,
result
=
test_reduce_no_index_impl
<
ck
::
bhalf_t
,
float
,
ck
::
bhalf_t
,
Rank
,
3
>
(
propagateNan
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
false
,
break
;
alpha
,
case
4
:
beta
);
result
=
test_reduce_no_index_impl
<
ck
::
bhalf_t
,
float
,
ck
::
bhalf_t
,
Rank
,
4
>
(
}
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
else
if
(
data_type
==
6
)
break
;
{
};
result
=
profile_reduce_impl
<
double
,
double
,
double
>
(
true
,
init_method
,
false
,
false
,
inLengths
,
reduceDims
,
reduceOpId
,
propagateNan
,
false
,
alpha
,
beta
);
}
}
return
(
result
);
return
(
result
);
};
};
constexpr
ReduceTensorOp
reduceOpId
=
ReduceTensorOp
::
AVG
;
constexpr
bool
propagateNan
=
false
;
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
SimpleAppArgs
args
;
SimpleAppArgs
args
;
...
@@ -621,8 +212,14 @@ int main(int argc, char* argv[])
...
@@ -621,8 +212,14 @@ int main(int argc, char* argv[])
{
0
,
1
,
2
,
3
},
{
0
,
1
,
2
},
{
1
,
2
,
3
},
{
0
,
1
,
3
},
{
0
,
2
,
3
},
{
0
},
{
1
},
{
2
},
{
3
}};
{
0
,
1
,
2
,
3
},
{
0
,
1
,
2
},
{
1
,
2
,
3
},
{
0
,
1
,
3
},
{
0
,
2
,
3
},
{
0
},
{
1
},
{
2
},
{
3
}};
for
(
auto
&
reduceDims
:
v_reduceDims
)
for
(
auto
&
reduceDims
:
v_reduceDims
)
result
=
result
&&
test_reduce_no_index
(
result
=
result
&&
test_reduce_no_index
(
data_type
,
data_type
,
init_method
,
reduceDims
,
inLengths
,
1.0
f
,
0.0
f
);
init_method
,
reduceDims
,
inLengths
,
reduceOpId
,
propagateNan
,
1.0
f
,
0.0
f
);
}
}
else
else
{
{
...
@@ -636,6 +233,8 @@ int main(int argc, char* argv[])
...
@@ -636,6 +233,8 @@ int main(int argc, char* argv[])
args
.
init_method
,
args
.
init_method
,
args
.
reduceDims
,
args
.
reduceDims
,
args
.
inLengths
,
args
.
inLengths
,
reduceOpId
,
propagateNan
,
args
.
scales
[
0
],
args
.
scales
[
0
],
args
.
scales
[
1
]);
args
.
scales
[
1
]);
}
}
...
...
test/reduce/reduce_util.hpp
deleted
100644 → 0
View file @
397a68f2
#ifndef REDUCE_UTILS_HPP
#define REDUCE_UTILS_HPP
#include "data_type.hpp"
namespace
ck
{
namespace
reduce_util
{
template
<
typename
T
>
void
to_f32_vector
(
const
Tensor
<
T
>&
src
,
Tensor
<
float
>&
dst
)
{
for
(
std
::
size_t
i
=
0
;
i
<
src
.
mData
.
size
();
++
i
)
dst
.
mData
[
i
]
=
type_convert
<
float
>
(
src
.
mData
[
i
]);
}
}
// namespace reduce_util
}
// namespace ck
#endif
test/reduce/reduce_with_index.cpp
View file @
6dfb4e78
#include "getopt.h"
#include "getopt.h"
#include "device_reduce_instance.hpp"
#include "reduction_enums.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_reduction.hpp"
#include "check_err.hpp"
#include "reduce_util.hpp"
using
namespace
ck
;
#include "host_common_util.hpp"
#include "profile_reduce_impl.hpp"
namespace
{
template
<
index_t
Rank
,
index_t
NumReduceDim
>
static
inline
std
::
vector
<
int
>
get_invariant_dims
(
const
std
::
vector
<
int
>&
reduceDims
)
{
assert
(
NumReduceDim
==
reduceDims
.
size
());
int
reduceFlag
=
0
;
// flag the bits for the reduceDims
for
(
int
i
=
0
;
i
<
NumReduceDim
;
i
++
)
{
reduceFlag
|=
1
<<
reduceDims
[
i
];
};
std
::
vector
<
int
>
invariantDims
;
// collect invariant dimensions
for
(
int
i
=
0
;
i
<
Rank
;
i
++
)
if
((
reduceFlag
&
(
1
<<
i
))
==
0
)
{
invariantDims
.
push_back
(
i
);
};
return
invariantDims
;
};
constexpr
int
Rank
=
4
;
constexpr
ReduceTensorOp
ReduceOpId
=
ReduceTensorOp
::
AMAX
;
constexpr
NanPropagation
NanOpt
=
NanPropagation
::
PROPAGATE_NAN
;
constexpr
bool
PropagateNan
=
false
;
constexpr
ReduceTensorIndices
IndicesOpt
=
ReduceTensorIndices
::
FLATTENED_INDICES
;
constexpr
bool
NeedIndices
=
true
;
template
<
typename
InDataType
,
typename
AccDataType
,
typename
OutDataType
,
int
Rank
,
int
NumReduceDim
>
bool
test_reduce_with_index_impl
(
int
init_method
,
const
std
::
vector
<
size_t
>&
inLengths
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
)
{
using
namespace
ck
::
tensor_operation
::
device
;
using
namespace
ck
::
tensor_operation
::
device
::
device_reduce_instance
;
using
namespace
ck
::
host_reduce
;
Tensor
<
InDataType
>
in
(
inLengths
);
std
::
vector
<
size_t
>
outLengths
;
const
auto
invariantDims
=
get_invariant_dims
<
Rank
,
NumReduceDim
>
(
reduceDims
);
if
(
reduceDims
.
size
()
==
Rank
)
outLengths
.
push_back
(
1
);
else
for
(
auto
dim
:
invariantDims
)
outLengths
.
push_back
(
inLengths
[
dim
]);
Tensor
<
OutDataType
>
out_ref
(
outLengths
);
Tensor
<
OutDataType
>
out
(
outLengths
);
Tensor
<
int32_t
>
out_indices_ref
(
outLengths
);
Tensor
<
int32_t
>
out_indices
(
outLengths
);
// only used when the OutDataType is bhalf_t
Tensor
<
float
>
out_ref_fp32
(
outLengths
);
Tensor
<
float
>
out_fp32
(
outLengths
);
auto
inStrides
=
in
.
mDesc
.
GetStrides
();
auto
outStrides
=
out
.
mDesc
.
GetStrides
();
size_t
invariant_total_length
=
out
.
mDesc
.
GetElementSize
();
size_t
reduce_total_length
=
in
.
mDesc
.
GetElementSize
()
/
invariant_total_length
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
},
num_thread
);
break
;
case
2
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
5.0
,
5.0
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
5.0
,
5.0
},
num_thread
);
}
if
(
beta
!=
0.0
f
)
for
(
size_t
i
=
0
;
i
<
out_ref
.
mDesc
.
GetElementSpace
();
i
++
)
out
.
mData
[
i
]
=
out_ref
.
mData
[
i
];
// these buffers are usually provided by the user application
DeviceMem
in_dev
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpace
());
DeviceMem
out_dev
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpace
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
if
(
beta
!=
0.0
f
)
out_dev
.
ToDevice
(
out
.
mData
.
data
());
size_t
indicesSizeInBytes
=
NeedIndices
?
out
.
mDesc
.
GetElementSize
()
*
sizeof
(
int
)
:
0
;
DeviceMem
out_indices_dev
(
indicesSizeInBytes
);
using
InElementwiseOperation_0
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation_0
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
using
InElementwiseOperation_1
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
false
>::
InElementwiseOperation
;
using
AccElementwiseOperation_1
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
false
>::
AccElementwiseOperation
;
using
InElementwiseOperation_2
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
false
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation_2
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
false
,
true
>::
AccElementwiseOperation
;
using
DeviceReduceInstPtr0
=
DeviceReducePtr
<
InElementwiseOperation_0
,
AccElementwiseOperation_0
>
;
using
DeviceReduceInstPtr1
=
DeviceReducePtr
<
InElementwiseOperation_1
,
AccElementwiseOperation_1
>
;
using
DeviceReduceInstPtr2
=
DeviceReducePtr
<
InElementwiseOperation_2
,
AccElementwiseOperation_2
>
;
std
::
vector
<
DeviceReduceInstPtr0
>
reduce0_ptrs
;
std
::
vector
<
DeviceReduceInstPtr1
>
reduce1_ptrs
;
std
::
vector
<
DeviceReduceInstPtr2
>
reduce2_ptrs
;
add_device_reduce_instance_threadwise
<
InDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
ReduceOpId
,
NanOpt
,
IndicesOpt
>
(
reduce0_ptrs
);
add_device_reduce_instance_blockwise
<
InDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
ReduceOpId
,
NanOpt
,
IndicesOpt
>
(
reduce0_ptrs
);
add_device_reduce_instance_multiblock_partial_reduce
<
InDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
ReduceOpId
,
NanOpt
,
IndicesOpt
>
(
reduce1_ptrs
);
add_device_reduce_instance_blockwise_second_call
<
AccDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
ReduceOpId
,
NanOpt
,
IndicesOpt
>
(
reduce2_ptrs
);
if
(
reduce0_ptrs
.
empty
()
&&
reduce1_ptrs
.
empty
())
{
throw
std
::
runtime_error
(
"Wrong! No device REDUCE instance found"
);
};
bool
result
=
true
;
ReductionHost
<
InDataType
,
AccDataType
,
OutDataType
,
ReduceOpId
,
Rank
,
NumReduceDim
,
PropagateNan
,
NeedIndices
>
hostReduce
(
in
.
mDesc
,
out_ref
.
mDesc
,
invariantDims
,
reduceDims
);
hostReduce
.
Run
(
alpha
,
in
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
out_indices_ref
.
mData
.
data
());
const
auto
i_inLengths
=
to_int_vector
(
inLengths
);
const
auto
i_inStrides
=
to_int_vector
(
inStrides
);
const
auto
i_outLengths
=
to_int_vector
(
outLengths
);
const
auto
i_outStrides
=
to_int_vector
(
outStrides
);
for
(
auto
&
reduce_ptr
:
reduce0_ptrs
)
{
auto
wsSizeInBytes
=
reduce_ptr
->
GetWorkspaceSizeInBytes
(
i_inLengths
,
reduceDims
);
DeviceMem
ws_dev
(
wsSizeInBytes
);
InElementwiseOperation_0
in_elementwise_op_0
(
static_cast
<
int32_t
>
(
reduce_total_length
));
AccElementwiseOperation_0
acc_elementwise_op_0
(
static_cast
<
int32_t
>
(
reduce_total_length
));
auto
argument_ptr
=
reduce_ptr
->
MakeArgumentPointer
(
i_inLengths
,
i_inStrides
,
i_outLengths
,
i_outStrides
,
reduceDims
,
alpha
,
beta
,
in_dev
.
GetDeviceBuffer
(),
out_dev
.
GetDeviceBuffer
(),
out_indices_dev
.
GetDeviceBuffer
(),
ws_dev
.
GetDeviceBuffer
(),
in_elementwise_op_0
,
acc_elementwise_op_0
);
if
(
!
reduce_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
continue
;
auto
invoker_ptr
=
reduce_ptr
->
MakeInvokerPointer
();
(
void
)
invoker_ptr
->
Run
(
argument_ptr
.
get
());
out_dev
.
FromDevice
(
out
.
mData
.
data
());
bool
single_result
=
true
;
if
constexpr
(
std
::
is_same
<
OutDataType
,
ck
::
half_t
>::
value
||
std
::
is_same
<
OutDataType
,
ck
::
bhalf_t
>::
value
)
{
reduce_util
::
to_f32_vector
(
out
,
out_fp32
);
reduce_util
::
to_f32_vector
(
out_ref
,
out_ref_fp32
);
single_result
=
ck
::
utils
::
check_err
(
out_fp32
.
mData
,
out_ref_fp32
.
mData
,
"Error: incorrect data result!"
);
}
else
{
single_result
=
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
,
"Error: incorrect data result!"
);
};
if
(
NeedIndices
)
{
out_indices_dev
.
FromDevice
(
out_indices
.
mData
.
data
());
single_result
=
single_result
&&
ck
::
utils
::
check_err
(
out_indices_ref
.
mData
,
out_indices
.
mData
,
"Error: incorrect index result!"
);
};
if
(
!
single_result
)
using
namespace
ck
;
{
std
::
cout
<<
"Fail Info: "
<<
reduce_ptr
->
GetTypeString
()
<<
std
::
endl
;
result
=
false
;
}
};
for
(
auto
&
reduce_ptr
:
reduce1_ptrs
)
{
auto
wsSizeInBytes
=
reduce_ptr
->
GetWorkspaceSizeInBytes
(
i_inLengths
,
reduceDims
);
DeviceMem
ws_dev
(
wsSizeInBytes
);
InElementwiseOperation_1
in_elementwise_op_1
(
static_cast
<
int32_t
>
(
reduce_total_length
));
AccElementwiseOperation_1
acc_elementwise_op_1
(
static_cast
<
int32_t
>
(
reduce_total_length
));
auto
argument_ptr
=
reduce_ptr
->
MakeArgumentPointer
(
i_inLengths
,
i_inStrides
,
i_outLengths
,
i_outStrides
,
reduceDims
,
alpha
,
beta
,
in_dev
.
GetDeviceBuffer
(),
out_dev
.
GetDeviceBuffer
(),
out_indices_dev
.
GetDeviceBuffer
(),
ws_dev
.
GetDeviceBuffer
(),
in_elementwise_op_1
,
acc_elementwise_op_1
);
if
(
!
reduce_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
continue
;
std
::
string
reduce_name
=
reduce_ptr
->
GetTypeString
();
auto
invoker_ptr
=
reduce_ptr
->
MakeInvokerPointer
();
(
void
)
invoker_ptr
->
Run
(
argument_ptr
.
get
());
std
::
vector
<
int
>
inLengths2
=
reduce_ptr
->
GetWorkspace2dLengths
(
argument_ptr
.
get
());
std
::
vector
<
int
>
inStrides2
{
inLengths2
[
1
],
1
};
for
(
auto
&
reduce2_ptr
:
reduce2_ptrs
)
{
InElementwiseOperation_2
in_elementwise_op_2
(
static_cast
<
int32_t
>
(
reduce_total_length
));
AccElementwiseOperation_2
acc_elementwise_op_2
(
static_cast
<
int32_t
>
(
reduce_total_length
));
auto
argument2_ptr
=
reduce2_ptr
->
MakeArgumentPointer
(
inLengths2
,
inStrides2
,
i_outLengths
,
i_outStrides
,
reduceDims
,
alpha
,
beta
,
ws_dev
.
GetDeviceBuffer
(),
out_dev
.
GetDeviceBuffer
(),
out_indices_dev
.
GetDeviceBuffer
(),
ws_dev
.
GetDeviceBuffer
(),
in_elementwise_op_2
,
acc_elementwise_op_2
);
if
(
!
reduce2_ptr
->
IsSupportedArgument
(
argument2_ptr
.
get
()))
continue
;
std
::
string
reduce2_name
=
reduce2_ptr
->
GetTypeString
();
auto
invoker2_ptr
=
reduce2_ptr
->
MakeInvokerPointer
();
(
void
)
invoker2_ptr
->
Run
(
argument2_ptr
.
get
());
out_dev
.
FromDevice
(
out
.
mData
.
data
());
bool
single_result
=
true
;
if
constexpr
(
std
::
is_same
<
OutDataType
,
ck
::
half_t
>::
value
||
std
::
is_same
<
OutDataType
,
ck
::
bhalf_t
>::
value
)
{
reduce_util
::
to_f32_vector
(
out
,
out_fp32
);
reduce_util
::
to_f32_vector
(
out_ref
,
out_ref_fp32
);
single_result
=
ck
::
utils
::
check_err
(
out_fp32
.
mData
,
out_ref_fp32
.
mData
,
"Error: incorrect data result!"
);
}
else
{
single_result
=
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
,
"Error: incorrect data result!"
);
};
if
(
NeedIndices
)
{
out_indices_dev
.
FromDevice
(
out_indices
.
mData
.
data
());
single_result
=
single_result
&&
ck
::
utils
::
check_err
(
out_indices_ref
.
mData
,
out_indices
.
mData
,
"Error: incorrect index result!"
);
};
if
(
!
single_result
)
{
std
::
cout
<<
"Fail Info: "
<<
reduce_ptr
->
GetTypeString
()
<<
" => "
<<
reduce2_ptr
->
GetTypeString
()
<<
std
::
endl
;
result
=
false
;
}
};
};
return
(
result
);
};
}
// anonymous namespace
static
struct
option
long_options
[]
=
{{
"inLengths"
,
required_argument
,
nullptr
,
'D'
},
static
struct
option
long_options
[]
=
{{
"inLengths"
,
required_argument
,
nullptr
,
'D'
},
{
"reduceDimensions"
,
required_argument
,
nullptr
,
'R'
},
{
"reduceDimensions"
,
required_argument
,
nullptr
,
'R'
},
...
@@ -390,48 +13,6 @@ static struct option long_options[] = {{"inLengths", required_argument, nullptr,
...
@@ -390,48 +13,6 @@ static struct option long_options[] = {{"inLengths", required_argument, nullptr,
class
SimpleAppArgs
class
SimpleAppArgs
{
{
template
<
typename
T
>
static
T
getSingleValueFromString
(
const
std
::
string
&
valueStr
)
{
std
::
istringstream
iss
(
valueStr
);
T
ret
;
iss
>>
ret
;
return
(
ret
);
};
template
<
typename
T
>
static
std
::
vector
<
T
>
getTypeValuesFromString
(
const
char
*
cstr_values
)
{
std
::
string
valuesStr
(
cstr_values
);
std
::
vector
<
T
>
values
;
std
::
size_t
pos
=
0
;
std
::
size_t
new_pos
;
new_pos
=
valuesStr
.
find
(
','
,
pos
);
while
(
new_pos
!=
std
::
string
::
npos
)
{
const
std
::
string
sliceStr
=
valuesStr
.
substr
(
pos
,
new_pos
-
pos
);
T
val
=
getSingleValueFromString
<
T
>
(
sliceStr
);
values
.
push_back
(
val
);
pos
=
new_pos
+
1
;
new_pos
=
valuesStr
.
find
(
','
,
pos
);
};
std
::
string
sliceStr
=
valuesStr
.
substr
(
pos
);
T
val
=
getSingleValueFromString
<
T
>
(
sliceStr
);
values
.
push_back
(
val
);
return
(
values
);
};
private:
private:
int
option_index
=
0
;
int
option_index
=
0
;
...
@@ -463,6 +44,8 @@ class SimpleAppArgs
...
@@ -463,6 +44,8 @@ class SimpleAppArgs
int
processArgs
(
int
argc
,
char
*
argv
[])
int
processArgs
(
int
argc
,
char
*
argv
[])
{
{
using
ck
::
host_common
::
getTypeValuesFromString
;
int
ch
;
int
ch
;
while
(
1
)
while
(
1
)
...
@@ -517,7 +100,7 @@ class SimpleAppArgs
...
@@ -517,7 +100,7 @@ class SimpleAppArgs
(
reduceDims
.
size
()
!=
1
&&
reduceDims
.
size
()
!=
3
&&
reduceDims
.
size
()
!=
4
))
(
reduceDims
.
size
()
!=
1
&&
reduceDims
.
size
()
!=
3
&&
reduceDims
.
size
()
!=
4
))
return
(
-
1
);
return
(
-
1
);
if
(
data_type
!=
0
&&
data_type
!=
1
&&
data_type
!=
3
&&
data_type
!=
5
)
if
(
data_type
!=
0
&&
data_type
!=
1
&&
data_type
!=
3
&&
data_type
!=
5
&&
data_type
!=
6
)
return
(
-
1
);
return
(
-
1
);
return
(
0
);
return
(
0
);
...
@@ -528,87 +111,92 @@ bool test_reduce_with_index(int data_type,
...
@@ -528,87 +111,92 @@ bool test_reduce_with_index(int data_type,
int
init_method
,
int
init_method
,
std
::
vector
<
int
>
reduceDims
,
std
::
vector
<
int
>
reduceDims
,
std
::
vector
<
size_t
>
inLengths
,
std
::
vector
<
size_t
>
inLengths
,
ReduceTensorOp
reduceOpId
,
bool
propagateNan
,
float
alpha
,
float
alpha
,
float
beta
)
float
beta
)
{
{
using
ck
::
profiler
::
profile_reduce_impl
;
bool
result
=
true
;
bool
result
=
true
;
if
(
data_type
==
0
)
if
(
data_type
==
0
)
{
{
switch
(
reduceDims
.
size
())
result
=
profile_reduce_impl
<
float
,
float
,
float
>
(
true
,
{
init_method
,
case
1
:
false
,
result
=
test_reduce_with_index_impl
<
float
,
float
,
float
,
Rank
,
1
>
(
false
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
inLengths
,
break
;
reduceDims
,
case
3
:
reduceOpId
,
result
=
test_reduce_with_index_impl
<
float
,
float
,
float
,
Rank
,
3
>
(
propagateNan
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
true
,
break
;
alpha
,
case
4
:
beta
);
result
=
test_reduce_with_index_impl
<
float
,
float
,
float
,
Rank
,
4
>
(
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
break
;
};
}
}
else
if
(
data_type
==
1
)
else
if
(
data_type
==
1
)
{
{
switch
(
reduceDims
.
size
())
result
=
profile_reduce_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
>
(
true
,
{
init_method
,
case
1
:
false
,
result
=
test_reduce_with_index_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
Rank
,
1
>
(
false
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
inLengths
,
break
;
reduceDims
,
case
3
:
reduceOpId
,
result
=
test_reduce_with_index_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
Rank
,
3
>
(
propagateNan
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
true
,
break
;
alpha
,
case
4
:
beta
);
result
=
test_reduce_with_index_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
Rank
,
4
>
(
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
break
;
};
}
}
else
if
(
data_type
==
3
)
else
if
(
data_type
==
3
)
{
{
switch
(
reduceDims
.
size
())
result
=
profile_reduce_impl
<
int8_t
,
int8_t
,
int8_t
>
(
true
,
{
init_method
,
case
1
:
false
,
result
=
test_reduce_with_index_impl
<
int8_t
,
int8_t
,
int8_t
,
Rank
,
1
>
(
false
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
inLengths
,
break
;
reduceDims
,
case
3
:
reduceOpId
,
result
=
test_reduce_with_index_impl
<
int8_t
,
int8_t
,
int8_t
,
Rank
,
3
>
(
propagateNan
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
true
,
break
;
alpha
,
case
4
:
beta
);
result
=
test_reduce_with_index_impl
<
int8_t
,
int8_t
,
int8_t
,
Rank
,
4
>
(
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
break
;
};
}
}
else
if
(
data_type
==
5
)
else
if
(
data_type
==
5
)
{
{
switch
(
reduceDims
.
size
())
result
=
profile_reduce_impl
<
ck
::
bhalf_t
,
float
,
ck
::
bhalf_t
>
(
true
,
{
init_method
,
case
1
:
false
,
result
=
test_reduce_with_index_impl
<
ck
::
bhalf_t
,
float
,
ck
::
bhalf_t
,
Rank
,
1
>
(
false
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
inLengths
,
break
;
reduceDims
,
case
3
:
reduceOpId
,
result
=
test_reduce_with_index_impl
<
ck
::
bhalf_t
,
float
,
ck
::
bhalf_t
,
Rank
,
3
>
(
propagateNan
,
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
true
,
break
;
alpha
,
case
4
:
beta
);
result
=
test_reduce_with_index_impl
<
ck
::
bhalf_t
,
float
,
ck
::
bhalf_t
,
Rank
,
4
>
(
}
init_method
,
inLengths
,
reduceDims
,
alpha
,
beta
);
else
if
(
data_type
==
6
)
break
;
{
};
result
=
profile_reduce_impl
<
double
,
double
,
double
>
(
true
,
init_method
,
false
,
false
,
inLengths
,
reduceDims
,
reduceOpId
,
propagateNan
,
true
,
alpha
,
beta
);
}
}
return
(
result
);
return
(
result
);
};
};
constexpr
ReduceTensorOp
reduceOpId
=
ReduceTensorOp
::
AMAX
;
constexpr
bool
propagateNan
=
false
;
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
SimpleAppArgs
args
;
SimpleAppArgs
args
;
...
@@ -624,8 +212,14 @@ int main(int argc, char* argv[])
...
@@ -624,8 +212,14 @@ int main(int argc, char* argv[])
{
0
,
1
,
2
,
3
},
{
0
,
1
,
2
},
{
1
,
2
,
3
},
{
0
,
1
,
3
},
{
0
,
2
,
3
},
{
0
},
{
1
},
{
2
},
{
3
}};
{
0
,
1
,
2
,
3
},
{
0
,
1
,
2
},
{
1
,
2
,
3
},
{
0
,
1
,
3
},
{
0
,
2
,
3
},
{
0
},
{
1
},
{
2
},
{
3
}};
for
(
auto
&
reduceDims
:
v_reduceDims
)
for
(
auto
&
reduceDims
:
v_reduceDims
)
result
=
result
&&
test_reduce_with_index
(
result
=
result
&&
test_reduce_with_index
(
data_type
,
data_type
,
init_method
,
reduceDims
,
inLengths
,
1.0
f
,
0.0
f
);
init_method
,
reduceDims
,
inLengths
,
reduceOpId
,
propagateNan
,
1.0
f
,
0.0
f
);
}
}
else
else
{
{
...
@@ -639,6 +233,8 @@ int main(int argc, char* argv[])
...
@@ -639,6 +233,8 @@ int main(int argc, char* argv[])
args
.
init_method
,
args
.
init_method
,
args
.
reduceDims
,
args
.
reduceDims
,
args
.
inLengths
,
args
.
inLengths
,
reduceOpId
,
propagateNan
,
args
.
scales
[
0
],
args
.
scales
[
0
],
args
.
scales
[
1
]);
args
.
scales
[
1
]);
}
}
...
...
Prev
1
…
10
11
12
13
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment