Commit 6b1b28eb authored by Jehandad Khan's avatar Jehandad Khan
Browse files

add client app example

parent 7ae84cc3
cmake_minimum_required(VERSION 3.15)
project(ck_app)
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD_REQUIRED True)
find_package(composable_kernel 1.0.0 COMPONENTS device_operations host_tensor)
find_package(hip REQUIRED PATHS /opt/rocm)
message(STATUS "Build with HIP ${hip_VERSION}")
# target_flags(HIP_COMPILER_FLAGS hip::device)
# Remove cuda arch flags
#string(REGEX REPLACE --cuda-gpu-arch=[a-z0-9]+ "" HIP_COMPILER_FLAGS "${HIP_COMPILER_FLAGS}")
#string(REGEX REPLACE --offload-arch=[a-z0-9]+ "" HIP_COMPILER_FLAGS "${HIP_COMPILER_FLAGS}")
#string(REPLACE "$<LINK_LANGUAGE:CXX>" "1" HIP_COMPILER_FLAGS "${HIP_COMPILER_FLAGS}")
#string(REPLACE "SHELL:" "" HIP_COMPILER_FLAGS "${HIP_COMPILER_FLAGS}")
add_executable(myexe client_app.cpp)
target_link_libraries(myexe PRIVATE composable_kernel::device_operations composable_kernel::host_tensor hip::host)
#
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include <vector>
#include "client_app_impl.hpp"
enum ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
};
enum ConvInputLayout
{
NCHW, // 0
NHWC, // 1
};
enum ConvWeightLayout
{
KCYX, // 0
KYXC, // 1
};
enum ConvOutputLayout
{
NKHW, // 0
NHWK, // 1
};
int main(int argc, char* argv[])
{
if(argc != 25)
{
printf("arg1: tensor operation (conv_fwd: ForwardConvolution)\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: input tensor layout (0: NCHW; 1: NHWC)\n");
printf("arg4: weight tensor layout (0: KCYX; 1: KYXC)\n");
printf("arg5: output tensor layout (0: NKHW; 1: NHWK)\n");
printf("arg6: verification (0: no; 1: yes)\n");
printf("arg7: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg8: print tensor value (0: no; 1: yes)\n");
printf("arg9: run kernel # of times (>1)\n");
printf("arg10 to 24: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(1);
}
const int data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const int in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const int wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const int out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const int init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
const int nrepeat = std::stoi(argv[9]);
const ck::index_t N = std::stoi(argv[10]);
const ck::index_t K = std::stoi(argv[11]);
const ck::index_t C = std::stoi(argv[12]);
const ck::index_t Y = std::stoi(argv[13]);
const ck::index_t X = std::stoi(argv[14]);
const ck::index_t Hi = std::stoi(argv[15]);
const ck::index_t Wi = std::stoi(argv[16]);
const ck::index_t conv_stride_h = std::stoi(argv[17]);
const ck::index_t conv_stride_w = std::stoi(argv[18]);
const ck::index_t conv_dilation_h = std::stoi(argv[19]);
const ck::index_t conv_dilation_w = std::stoi(argv[20]);
const ck::index_t in_left_pad_h = std::stoi(argv[21]);
const ck::index_t in_left_pad_w = std::stoi(argv[22]);
const ck::index_t in_right_pad_h = std::stoi(argv[23]);
const ck::index_t in_right_pad_w = std::stoi(argv[24]);
const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
ck::app::profile_conv_fwd_impl<2,
float,
float,
float,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
do_verification,
init_method,
do_log,
nrepeat,
N,
K,
C,
std::vector<ck::index_t>{Hi, Wi},
std::vector<ck::index_t>{Y, X},
std::vector<ck::index_t>{Ho, Wo},
std::vector<ck::index_t>{conv_stride_h, conv_stride_w},
std::vector<ck::index_t>{conv_dilation_h, conv_dilation_w},
std::vector<ck::index_t>{in_left_pad_h, in_left_pad_w},
std::vector<ck::index_t>{in_right_pad_h, in_right_pad_w});
return 1;
}
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "tensor_layout.hpp"
#include "device_conv_fwd.hpp"
#include "element_wise_operation.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_fwd_instance {
using DeviceConvFwdNoOpPtr = DeviceConvFwdPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(
std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(std::vector<DeviceConvFwdNoOpPtr>&);
} // namespace device_conv2d_fwd_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace app {
template <int NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout>
void profile_conv_fwd_impl(int do_verification,
int init_method,
bool do_log,
int nrepeat,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
{
const ck::index_t Y = filter_spatial_lengths[0];
const ck::index_t X = filter_spatial_lengths[1];
const ck::index_t Hi = input_spatial_lengths[0];
const ck::index_t Wi = input_spatial_lengths[1];
const ck::index_t Ho = output_spatial_lengths[0];
const ck::index_t Wo = output_spatial_lengths[1];
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
const auto in_sz = 1000;
const auto wei_sz = 1000;
const auto out_sz = 1000;
DeviceMem in_device_buf(sizeof(InDataType) * in_sz);
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_sz);
DeviceMem out_device_buf(sizeof(OutDataType) * out_sz);
// data is already on device!
// in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
// wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceConvFwdNoOpPtr =
ck::tensor_operation::device::DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>;
// add device Conv instances
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
if(conv_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device Conv instance found");
}
std::string best_conv_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device Conv instances
for(auto& conv_ptr : conv_ptrs)
{
auto argument_ptr = conv_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
auto invoker_ptr = conv_ptr->MakeInvokerPointer();
if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::string conv_name = conv_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
sizeof(WeiDataType) * (K * C * Y * X) +
sizeof(OutDataType) * (N * K * Ho * Wo);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << conv_name << std::endl;
if(tflops > best_tflops)
{
best_conv_name = conv_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_conv_name << std::endl;
}
} // namespace profiler
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment