Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
66052232
Commit
66052232
authored
Feb 13, 2023
by
danyao12
Browse files
sync attn-bwd-dropout
parents
5eb5e316
bf80ceee
Changes
13
Hide whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
1814 additions
and
3219 deletions
+1814
-3219
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
+4
-0
example/32_batched_gemm_scale_softmax_gemm/batched_multihead_attention_backward_fp16.cpp
...oftmax_gemm/batched_multihead_attention_backward_fp16.cpp
+153
-26
example/32_batched_gemm_scale_softmax_gemm/batched_multihead_attention_backward_fp16_dropout.cpp
...emm/batched_multihead_attention_backward_fp16_dropout.cpp
+0
-808
example/32_batched_gemm_scale_softmax_gemm/grouped_multihead_attention_forward_fp16.cpp
...softmax_gemm/grouped_multihead_attention_forward_fp16.cpp
+5
-0
example/32_batched_gemm_scale_softmax_gemm/run_grouped_multihead_attention_forward.inc
..._softmax_gemm/run_grouped_multihead_attention_forward.inc
+20
-0
include/ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute.hpp
...n/gpu/device/device_grouped_gemm_softmax_gemm_permute.hpp
+5
-0
include/ck/tensor_operation/gpu/device/impl/device_batched_multihead_attention_backward_xdl_cshuffle.hpp
...ice_batched_multihead_attention_backward_xdl_cshuffle.hpp
+105
-11
include/ck/tensor_operation/gpu/device/impl/device_grouped_multihead_attention_forward_xdl_cshuffle
...l/device_grouped_multihead_attention_forward_xdl_cshuffle
+1058
-0
include/ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_backward_xdl_cshuffle_v1.hpp
..._batched_multihead_attention_backward_xdl_cshuffle_v1.hpp
+257
-51
include/ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_backward_xdl_cshuffle_v2.hpp
..._batched_multihead_attention_backward_xdl_cshuffle_v2.hpp
+0
-2316
include/ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_forward_xdl_cshuffle.hpp
...wise_batched_multihead_attention_forward_xdl_cshuffle.hpp
+168
-1
include/ck/utility/data_type.hpp
include/ck/utility/data_type.hpp
+36
-0
include/ck/utility/philox_rand.hpp
include/ck/utility/philox_rand.hpp
+3
-6
No files found.
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
View file @
66052232
...
...
@@ -10,8 +10,12 @@ add_example_executable(example_batched_multihead_attention_forward_fp16 batched_
add_example_executable
(
example_grouped_multihead_attention_forward_bf16 grouped_multihead_attention_forward_bf16.cpp
)
add_example_executable
(
example_batched_multihead_attention_forward_bf16 batched_multihead_attention_forward_bf16.cpp
)
add_example_executable
(
example_batched_multihead_attention_backward_fp16 batched_multihead_attention_backward_fp16.cpp
)
<<<<<<< HEAD
add_example_executable
(
example_batched_multihead_attention_backward_pt1_fp16 batched_multihead_attention_backward_pt1_fp16.cpp
)
add_example_executable
(
example_batched_multihead_attention_backward_fp16_dropout batched_multihead_attention_backward_fp16_dropout.cpp
)
=======
>>>>>>> attn-bwd-dropout
add_custom_target
(
example_gemm_scale_softmax_gemm
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16
)
...
...
example/32_batched_gemm_scale_softmax_gemm/batched_multihead_attention_backward_fp16.cpp
View file @
66052232
...
...
@@ -43,23 +43,27 @@ Kernel outputs:
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_dropout.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
U16
=
unsigned
short
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
QKVElementOp
=
PassThrough
;
using
YElementOp
=
PassThrough
;
using
VElementOp
=
Scale
;
using
DataType
=
F16
;
using
AccDataType
=
F32
;
using
ShuffleDataType
=
F32
;
using
LSEDataType
=
F32
;
using
ZDataType
=
U16
;
using
Acc0BiasDataType
=
ck
::
Tuple
<>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
...
...
@@ -91,6 +95,7 @@ using DeviceGemmInstance =
NumDimK
,
NumDimO
,
DataType
,
ZDataType
,
LSEDataType
,
Acc0BiasDataType
,
Acc1BiasDataType
,
...
...
@@ -182,12 +187,16 @@ using ReferenceGemmGradInstance = ck::tensor_operation::host::ReferenceBatchedGe
PassThrough
,
PassThrough
,
Scale
>
;
// Ref dropout
using
ReferenceDropoutInstance
=
ck
::
tensor_operation
::
host
::
ReferenceDropout
<
ushort
,
DataType
,
DataType
>
;
template
<
typename
TensorQ
,
typename
TensorK
,
typename
TensorV
,
typename
TensorS
,
typename
TensorP
,
typename
TensorZ
,
typename
TensorY
,
typename
TensorLSE
=
TensorP
>
void
run_attention_fwd_host
(
const
TensorQ
&
q_g_m_k
,
...
...
@@ -197,7 +206,11 @@ void run_attention_fwd_host(const TensorQ& q_g_m_k,
TensorS
&
s_g_m_n
,
TensorP
&
p_g_m_n
,
TensorY
&
y_g_m_o
,
TensorLSE
&
lse_g_m
)
TensorLSE
&
lse_g_m
,
TensorP
&
p_drop_g_m_n
,
TensorZ
&
z_g_m_n
,
ushort
p_dropout_in_16bits
,
float
rp_dropout
)
{
// S = alpha * Q * K^T
auto
k_g_k_n
=
k_g_n_k
.
Transpose
({
0
,
2
,
1
});
...
...
@@ -225,11 +238,18 @@ void run_attention_fwd_host(const TensorQ& q_g_m_k,
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
// Y = P * V
// P_dropped
auto
ref_dropout
=
ReferenceDropoutInstance
{};
auto
ref_dropout_invoker
=
ref_dropout
.
MakeInvoker
();
auto
ref_dropout_argment
=
ref_dropout
.
MakeArgument
(
z_g_m_n
,
p_g_m_n
,
p_drop_g_m_n
,
p_dropout_in_16bits
,
rp_dropout
);
ref_dropout_invoker
.
Run
(
ref_dropout_argment
);
// Y = P_dropout * V
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
p_g_m_n
,
v_g_n_o
,
y_g_m_o
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
p_
drop_
g_m_n
,
v_g_n_o
,
y_g_m_o
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
}
...
...
@@ -256,6 +276,13 @@ int run(int argc, char* argv[])
bool
input_permute
=
false
;
bool
output_permute
=
false
;
float
p_drop
=
0.2
;
float
p_dropout
=
1
-
p_drop
;
uint16_t
p_dropout_in_16bits
=
uint16_t
(
std
::
floor
(
p_dropout
*
65535.0
));
float
rp_dropout
=
1.0
/
p_dropout
;
const
unsigned
long
long
seed
=
1
;
const
unsigned
long
long
offset
=
0
;
if
(
argc
==
1
)
{
// use default case
...
...
@@ -321,6 +348,11 @@ int run(int argc, char* argv[])
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
}
// Y layout [G0, M, G1, O]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
O
,
M
*
O
,
O
,
1
};
// Y layout [G0, G1, M, O]
std
::
vector
<
ck
::
index_t
>
z_gs_ms_ns_lengths
{
G0
,
G1
,
M
,
N
};
std
::
vector
<
ck
::
index_t
>
z_gs_ms_ns_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
N
,
N
,
G1
*
N
,
1
}
// Z layout [G0, M, G1, N]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
N
,
M
*
N
,
N
,
1
};
// Z layout [G0, G1, M, N]
// The softmax stat log-sum-exp (LSE) is used to speed up softmax calculation in backward pass
// Pi = exp(Si) / sum(exp(S0) + exp(S1) + ...)
// = exp(Si) / exp(log(sum(exp() + ...)))
...
...
@@ -332,6 +364,7 @@ int run(int argc, char* argv[])
Tensor
<
DataType
>
q_gs_ms_ks
(
q_gs_ms_ks_lengths
,
q_gs_ms_ks_strides
);
Tensor
<
DataType
>
k_gs_ns_ks
(
k_gs_ns_ks_lengths
,
k_gs_ns_ks_strides
);
Tensor
<
ZDataType
>
z_gs_ms_ns
(
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
);
Tensor
<
DataType
>
v_gs_os_ns
(
v_gs_os_ns_lengths
,
v_gs_os_ns_strides
);
Tensor
<
DataType
>
y_gs_ms_os
(
y_gs_ms_os_lengths
,
y_gs_ms_os_strides
);
Tensor
<
DataType
>
ygrad_gs_ms_os
(
y_gs_ms_os_lengths
,
y_gs_ms_os_strides
);
...
...
@@ -339,10 +372,12 @@ int run(int argc, char* argv[])
std
::
cout
<<
"q_gs_ms_ks: "
<<
q_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"k_gs_ns_ks: "
<<
k_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"z_gs_ms_ks: "
<<
z_gs_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"v_gs_os_ns: "
<<
v_gs_os_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"y_gs_ms_os: "
<<
y_gs_ms_os
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"lse_gs_ms_os: "
<<
lse_gs_ms
.
mDesc
<<
std
::
endl
;
z_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
DataType
>
{
0
});
switch
(
init_method
)
{
case
0
:
break
;
...
...
@@ -408,9 +443,11 @@ int run(int argc, char* argv[])
// calculate y & log-sum-exp beforehand
Tensor
<
DataType
>
q_g_m_k
({
BatchCount
,
M
,
K
});
Tensor
<
DataType
>
k_g_n_k
({
BatchCount
,
N
,
K
});
Tensor
<
ZDataType
>
z_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
DataType
>
v_g_n_o
({
BatchCount
,
N
,
O
});
Tensor
<
AccDataType
>
s_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
DataType
>
p_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
DataType
>
p_drop_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
DataType
>
y_g_m_o
({
BatchCount
,
M
,
O
});
Tensor
<
LSEDataType
>
lse_g_m
({
BatchCount
,
M
});
...
...
@@ -418,12 +455,25 @@ int run(int argc, char* argv[])
[
&
](
auto
&
self
,
auto
idx
)
{
q_g_m_k
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
k_gs_ns_ks
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
k_g_n_k
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
z_gs_ms_ns
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
z_g_m_n
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
v_gs_os_ns
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
v_g_n_o
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
lse_gs_ms
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
lse_g_m
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
])
=
self
(
idx
);
});
run_attention_fwd_host
(
q_g_m_k
,
k_g_n_k
,
v_g_n_o
,
alpha
,
s_g_m_n
,
p_g_m_n
,
y_g_m_o
,
lse_g_m
);
run_attention_fwd_host
(
q_g_m_k
,
k_g_n_k
,
v_g_n_o
,
alpha
,
s_g_m_n
,
p_g_m_n
,
y_g_m_o
,
lse_g_m
,
p_drop_g_m_n
,
z_g_m_n
,
p_dropout_in_16bits
,
rp_dropout
);
y_gs_ms_os
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
y_g_m_o
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
]);
});
...
...
@@ -433,6 +483,7 @@ int run(int argc, char* argv[])
// qkv gradients have the same descriptor as with qkv
DeviceMem
q_device_buf
(
sizeof
(
DataType
)
*
q_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
k_device_buf
(
sizeof
(
DataType
)
*
k_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
z_device_buf
(
sizeof
(
ZDataType
)
*
z_gs_ms_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
v_device_buf
(
sizeof
(
DataType
)
*
v_gs_os_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_device_buf
(
sizeof
(
DataType
)
*
y_gs_ms_os
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
lse_device_buf
(
sizeof
(
LSEDataType
)
*
lse_gs_ms
.
mDesc
.
GetElementSpaceSize
());
...
...
@@ -443,6 +494,7 @@ int run(int argc, char* argv[])
q_device_buf
.
ToDevice
(
q_gs_ms_ks
.
mData
.
data
());
k_device_buf
.
ToDevice
(
k_gs_ns_ks
.
mData
.
data
());
z_device_buf
.
ToDevice
(
z_gs_ms_ns
.
mData
.
data
());
v_device_buf
.
ToDevice
(
v_gs_os_ns
.
mData
.
data
());
y_device_buf
.
ToDevice
(
y_gs_ms_os
.
mData
.
data
());
lse_device_buf
.
ToDevice
(
lse_gs_ms
.
mData
.
data
());
...
...
@@ -450,11 +502,59 @@ int run(int argc, char* argv[])
kgrad_device_buf
.
SetZero
();
vgrad_device_buf
.
SetZero
();
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
// get z matrix
{
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
DataType
*>
(
q_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
ZDataType
*>
(
z_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
v_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
y_device_buf
.
GetDeviceBuffer
()),
static_cast
<
LSEDataType
*>
(
lse_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
ygrad_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
qgrad_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
kgrad_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
vgrad_device_buf
.
GetDeviceBuffer
()),
{},
// std::array<void*, 1> p_acc0_biases;
{},
// std::array<void*, 1> p_acc1_biases;
q_gs_ms_ks_lengths
,
q_gs_ms_ks_strides
,
k_gs_ns_ks_lengths
,
k_gs_ns_ks_strides
,
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
,
v_gs_os_ns_lengths
,
v_gs_os_ns_strides
,
y_gs_ms_os_lengths
,
y_gs_ms_os_strides
,
lse_gs_ms_lengths
,
{},
// std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_lengths},
{},
// std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_strides},
{},
// std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{},
// std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
QKVElementOp
{},
QKVElementOp
{},
Scale
{
alpha
},
QKVElementOp
{},
YElementOp
{},
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
(
seed
,
offset
));
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
}
// not need output z matrix
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
DataType
*>
(
q_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
ZDataType
*>
(
nullptr
),
// set to nullptr
static_cast
<
DataType
*>
(
v_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
y_device_buf
.
GetDeviceBuffer
()),
static_cast
<
LSEDataType
*>
(
lse_device_buf
.
GetDeviceBuffer
()),
...
...
@@ -468,6 +568,8 @@ int run(int argc, char* argv[])
q_gs_ms_ks_strides
,
k_gs_ns_ks_lengths
,
k_gs_ns_ks_strides
,
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
,
v_gs_os_ns_lengths
,
v_gs_os_ns_strides
,
y_gs_ms_os_lengths
,
...
...
@@ -481,15 +583,11 @@ int run(int argc, char* argv[])
QKVElementOp
{},
Scale
{
alpha
},
QKVElementOp
{},
YElementOp
{});
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
YElementOp
{},
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
(
seed
,
offset
));
kgrad_device_buf
.
SetZero
();
// reset global accum buffer and rerun
vgrad_device_buf
.
SetZero
();
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
// 5 GEMM ops in total:
...
...
@@ -511,9 +609,32 @@ int run(int argc, char* argv[])
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
// copy z matirx data form device
z_device_buf
.
FromDevice
(
z_g_m_n
.
mData
.
data
());
// std::cout << "z_g_m_n ref:\n" << z_g_m_n;
bool
pass
=
true
;
if
(
do_verification
)
{
// run fowad again for y, cause z_g_m_n update
run_attention_fwd_host
(
q_g_m_k
,
k_g_n_k
,
v_g_n_o
,
alpha
,
s_g_m_n
,
p_g_m_n
,
y_g_m_o
,
lse_g_m
,
p_drop_g_m_n
,
z_g_m_n
,
p_dropout_in_16bits
,
rp_dropout
);
y_gs_ms_os
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
y_g_m_o
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
]);
});
y_device_buf
.
ToDevice
(
y_gs_ms_os
.
mData
.
data
());
// call kernel again
kgrad_device_buf
.
SetZero
();
// reset global accum buffer and rerun
vgrad_device_buf
.
SetZero
();
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
...
...
@@ -523,6 +644,7 @@ int run(int argc, char* argv[])
Tensor
<
DataType
>
vgrad_g_n_o
({
BatchCount
,
N
,
O
});
Tensor
<
DataType
>
sgrad_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
DataType
>
pgrad_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
DataType
>
pgrad_drop_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
DataType
>
ygrad_g_m_o
({
BatchCount
,
M
,
O
});
Tensor
<
DataType
>
ygrad_dot_y_g_m
({
BatchCount
,
M
});
...
...
@@ -544,20 +666,26 @@ int run(int argc, char* argv[])
auto
ref_gemm_grad_invoker
=
ref_gemm_grad
.
MakeInvoker
();
using
RefGemmGradArg
=
ReferenceGemmGradInstance
::
Argument
;
// dP = dY * V^T
// dP
_dropout
= dY * V^T
auto
v_g_o_n
=
v_g_n_o
.
Transpose
({
0
,
2
,
1
});
ref_gemm_grad_invoker
.
Run
(
RefGemmGradArg
{
ygrad_g_m_o
,
v_g_o_n
,
pgrad_g_m_n
,
PassThrough
{},
PassThrough
{},
Scale
{
1.
f
}});
ygrad_g_m_o
,
v_g_o_n
,
pgrad_
drop_
g_m_n
,
PassThrough
{},
PassThrough
{},
Scale
{
1.
f
}});
#if PRINT_HOST
{
std
::
cout
<<
"===== dP = dY * V^T
\n
"
;
std
::
cout
<<
"ygrad_g_m_o ref:
\n
"
<<
ygrad_g_m_
o
;
std
::
cout
<<
"ygrad_
drop_
g_m_o ref:
\n
"
<<
ygrad_
drop_
g_m_
n
;
std
::
cout
<<
"v_g_o_n ref:
\n
"
<<
v_g_o_n
;
std
::
cout
<<
"pgrad_g_m_n ref:
\n
"
<<
pgrad_g_m_n
;
std
::
cout
<<
"pgrad_
drop_
g_m_n ref:
\n
"
<<
pgrad_
drop_
g_m_n
;
}
#endif
// dS_i_j = P_i_j .* (dP_i_j - dY_i dot Y_i)
// dP = dP_dropout x Z
auto
ref_dropout
=
ReferenceDropoutInstance
{};
auto
ref_dropout_invoker
=
ref_dropout
.
MakeInvoker
();
auto
ref_dropout_argment
=
ref_dropout
.
MakeArgument
(
z_g_m_n
,
pgrad_drop_g_m_n
,
pgrad_g_m_n
,
p_dropout_in_16bits
,
rp_dropout
);
ref_dropout_invoker
.
Run
(
ref_dropout_argment
);
// dS_i_j = P_i_j .* (dP_i_j - dY_i dot Y_i)
sgrad_g_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx_gmn
)
{
float
ygrad_dot_y
=
0
;
for
(
int
o
=
0
;
o
<
O
;
o
++
)
...
...
@@ -578,15 +706,14 @@ int run(int argc, char* argv[])
std
::
cout
<<
"sgrad_g_m_n ref:
\n
"
<<
sgrad_g_m_n
;
}
#endif
// dV = P^T * dY
auto
p_g_n_m
=
p_g_m_n
.
Transpose
({
0
,
2
,
1
});
// dV = P_drop^T * dY
auto
p_drop_g_n_m
=
p_drop_g_m_n
.
Transpose
({
0
,
2
,
1
});
ref_gemm_grad_invoker
.
Run
(
RefGemmGradArg
{
p_g_n_m
,
ygrad_g_m_o
,
vgrad_g_n_o
,
PassThrough
{},
PassThrough
{},
Scale
{
1.
f
}});
p_
drop_
g_n_m
,
ygrad_g_m_o
,
vgrad_g_n_o
,
PassThrough
{},
PassThrough
{},
Scale
{
1.
0
f
}});
#if PRINT_HOST
{
std
::
cout
<<
"===== dV = P^T * dY
\n
"
;
std
::
cout
<<
"p_g_n_m ref:
\n
"
<<
p_g_n_m
;
std
::
cout
<<
"p_
drop_
g_n_m ref:
\n
"
<<
p_
drop_
g_n_m
;
std
::
cout
<<
"ygrad_g_m_o ref:
\n
"
<<
ygrad_g_m_o
;
std
::
cout
<<
"vgrad_g_n_o ref:
\n
"
<<
vgrad_g_n_o
;
}
...
...
example/32_batched_gemm_scale_softmax_gemm/batched_multihead_attention_backward_fp16_dropout.cpp
deleted
100644 → 0
View file @
5eb5e316
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Backprop for Gemm + Softmax + Gemm fused operation, where forward prop is defined as:
Y_g_m_o = Softmax(alpha * Q_g_m_k * K_g_k_n) * V_g_n_o
Computation graph:
K^T V
| |
| |
Q --- * ----- Softmax ----- * --> Y
S P
Kernel inputs:
Q, K, V, Y, dY, per-row softmax stats (LSE)
Kernel outputs:
dQ, dK, dV
*/
#define PRINT_HOST 0
#define USING_MASK 1
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <fstream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_multihead_attention_backward_train_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_dropout.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
U16
=
unsigned
short
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
QKVElementOp
=
PassThrough
;
using
YElementOp
=
PassThrough
;
using
VElementOp
=
Scale
;
using
DataType
=
F16
;
using
AccDataType
=
F32
;
using
ShuffleDataType
=
F32
;
using
LSEDataType
=
F32
;
using
ZDataType
=
U16
;
using
Acc0BiasDataType
=
ck
::
Tuple
<>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
1
;
static
constexpr
ck
::
index_t
NumDimN
=
1
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
static
constexpr
ck
::
index_t
NumDimO
=
1
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
#if USING_MASK
static
constexpr
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskOutUpperTriangle
;
#else
static
constexpr
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
#endif
static
constexpr
auto
TensorSpecQ
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecK
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecV
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecY
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedMultiheadAttentionBackward_Train_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
DataType
,
ZDataType
,
LSEDataType
,
Acc0BiasDataType
,
Acc1BiasDataType
,
AccDataType
,
ShuffleDataType
,
QKVElementOp
,
QKVElementOp
,
Scale
,
QKVElementOp
,
YElementOp
,
GemmSpec
,
TensorSpecQ
,
TensorSpecK
,
TensorSpecV
,
TensorSpecY
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
128
,
// Gemm1NPerBlock
64
,
// Gemm1KPerBlock
8
,
// AK1
8
,
// BK1
2
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
4
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
4
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec
>
;
// MaskingSpecialization
// Ref Gemm0: S = alpha * Q * K^T
// fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
DataType
,
DataType
,
AccDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
Scale
>
;
// Ref Softmax: P = Softmax(S)
// fp32 in, fp16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
AccDataType
,
DataType
,
AccDataType
>
;
// Ref Gemm1: Y = P * V
// fp16 in, fp16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
DataType
,
DataType
,
DataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// Ref Gemm for backward pass
// fp16 in, fp16 out
using
ReferenceGemmGradInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
DataType
,
DataType
,
DataType
,
AccDataType
,
PassThrough
,
PassThrough
,
Scale
>
;
// Ref dropout
using
ReferenceDropoutInstance
=
ck
::
tensor_operation
::
host
::
ReferenceDropout
<
ushort
,
DataType
,
DataType
>
;
template
<
typename
TensorQ
,
typename
TensorK
,
typename
TensorV
,
typename
TensorS
,
typename
TensorP
,
typename
TensorZ
,
typename
TensorY
,
typename
TensorLSE
=
TensorP
>
void
run_attention_fwd_host
(
const
TensorQ
&
q_g_m_k
,
const
TensorK
&
k_g_n_k
,
const
TensorV
&
v_g_n_o
,
const
float
alpha
,
TensorS
&
s_g_m_n
,
TensorP
&
p_g_m_n
,
TensorY
&
y_g_m_o
,
TensorLSE
&
lse_g_m
,
TensorP
&
p_drop_g_m_n
,
TensorZ
&
z_g_m_n
,
ushort
p_dropout_in_16bits
,
float
rp_dropout
)
{
// S = alpha * Q * K^T
auto
k_g_k_n
=
k_g_n_k
.
Transpose
({
0
,
2
,
1
});
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
q_g_m_k
,
k_g_k_n
,
s_g_m_n
,
PassThrough
{},
PassThrough
{},
Scale
{
alpha
});
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
// masking
#if USING_MASK
auto
N
=
s_g_m_n
.
GetLengths
()[
2
];
const
auto
mask
=
DeviceGemmInstance
::
C0MatrixMask
(
N
);
s_g_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
if
(
mask
.
IsMaskedElement
(
idx
[
1
],
idx
[
2
]))
self
(
idx
)
=
-
ck
::
NumericLimits
<
float
>::
Infinity
();
});
#endif
// P = Softmax(S)
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
s_g_m_n
,
p_g_m_n
,
1
,
0
,
{
2
},
&
lse_g_m
);
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
// P_dropped
auto
ref_dropout
=
ReferenceDropoutInstance
{};
auto
ref_dropout_invoker
=
ref_dropout
.
MakeInvoker
();
auto
ref_dropout_argment
=
ref_dropout
.
MakeArgument
(
z_g_m_n
,
p_g_m_n
,
p_drop_g_m_n
,
p_dropout_in_16bits
,
rp_dropout
);
ref_dropout_invoker
.
Run
(
ref_dropout_argment
);
// Y = P_dropout * V
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
p_drop_g_m_n
,
v_g_n_o
,
y_g_m_o
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
}
int
run
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
2
;
// method 1 will have slightly higher error; TODO: to investigate
bool
time_kernel
=
true
;
// Overall QKV matrices shape
// y_g_m_o = Softmax(alpha * Q_g_m_k * K_g_k_n) * V_g_n_o
// y_g0_g1_m_o = reshape(y_g_m_o, [G0, G1, M, O])
// y_g0_m_g1_o = permute(y_g0_g1_m_o, [0, 2, 1, 3])
ck
::
index_t
M
=
512
;
ck
::
index_t
N
=
512
;
ck
::
index_t
K
=
128
;
ck
::
index_t
O
=
128
;
ck
::
index_t
G0
=
3
;
ck
::
index_t
G1
=
2
;
float
alpha
=
1.
f
/
std
::
sqrt
(
K
);
bool
input_permute
=
false
;
bool
output_permute
=
false
;
float
p_drop
=
0.2
;
float
p_dropout
=
1
-
p_drop
;
uint16_t
p_dropout_in_16bits
=
uint16_t
(
std
::
floor
(
p_dropout
*
65535.0
));
float
rp_dropout
=
1.0
/
p_dropout
;
const
unsigned
long
long
seed
=
1
;
const
unsigned
long
long
offset
=
0
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
13
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
G0
=
std
::
stoi
(
argv
[
8
]);
G1
=
std
::
stoi
(
argv
[
9
]);
alpha
=
std
::
stof
(
argv
[
10
]);
input_permute
=
std
::
stoi
(
argv
[
11
]);
output_permute
=
std
::
stoi
(
argv
[
12
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 11: M, N, K, O, G0, G1
\n
"
);
printf
(
"arg10: scale (alpha)
\n
"
);
printf
(
"arg11 to 12: input / output permute
\n
"
);
exit
(
0
);
}
const
ck
::
index_t
BatchCount
=
G0
*
G1
;
std
::
vector
<
ck
::
index_t
>
q_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
q_gs_ms_ks_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
}
// Q layout [G0, M, G1, K]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
K
,
M
*
K
,
K
,
1
};
// Q layout [G0, G1, M, K]
std
::
vector
<
ck
::
index_t
>
k_gs_ns_ks_lengths
{
G0
,
G1
,
N
,
K
};
std
::
vector
<
ck
::
index_t
>
k_gs_ns_ks_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
N
*
G1
*
K
,
K
,
G1
*
K
,
1
}
// K layout [G0, N, G1, K]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
N
*
K
,
N
*
K
,
K
,
1
};
// K layout [G0, G1, N, K]
std
::
vector
<
ck
::
index_t
>
v_gs_os_ns_lengths
{
G0
,
G1
,
O
,
N
};
std
::
vector
<
ck
::
index_t
>
v_gs_os_ns_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
N
*
G1
*
O
,
O
,
1
,
G1
*
O
}
// V layout [G0, N, G1, O]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
N
*
O
,
N
*
O
,
1
,
O
};
// V layout [G0, G1, N, O]
std
::
vector
<
ck
::
index_t
>
y_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
y_gs_ms_os_strides
=
output_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
}
// Y layout [G0, M, G1, O]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
O
,
M
*
O
,
O
,
1
};
// Y layout [G0, G1, M, O]
std
::
vector
<
ck
::
index_t
>
z_gs_ms_ns_lengths
{
G0
,
G1
,
M
,
N
};
std
::
vector
<
ck
::
index_t
>
z_gs_ms_ns_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
N
,
N
,
G1
*
N
,
1
}
// Z layout [G0, M, G1, N]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
N
,
M
*
N
,
N
,
1
};
// Z layout [G0, G1, M, N]
// The softmax stat log-sum-exp (LSE) is used to speed up softmax calculation in backward pass
// Pi = exp(Si) / sum(exp(S0) + exp(S1) + ...)
// = exp(Si) / exp(log(sum(exp() + ...)))
// = exp(Si - log(sum(exp() + ...)))
// ^^^^^^^^^^^^^^^^^^^^^
// LSE
std
::
vector
<
ck
::
index_t
>
lse_gs_ms_lengths
{
G0
,
G1
,
M
};
std
::
vector
<
ck
::
index_t
>
lse_gs_ms_strides
{
G1
*
M
,
M
,
1
};
// LSE layout [G0, G1, M]
Tensor
<
DataType
>
q_gs_ms_ks
(
q_gs_ms_ks_lengths
,
q_gs_ms_ks_strides
);
Tensor
<
DataType
>
k_gs_ns_ks
(
k_gs_ns_ks_lengths
,
k_gs_ns_ks_strides
);
Tensor
<
ZDataType
>
z_gs_ms_ns
(
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
);
Tensor
<
DataType
>
v_gs_os_ns
(
v_gs_os_ns_lengths
,
v_gs_os_ns_strides
);
Tensor
<
DataType
>
y_gs_ms_os
(
y_gs_ms_os_lengths
,
y_gs_ms_os_strides
);
Tensor
<
DataType
>
ygrad_gs_ms_os
(
y_gs_ms_os_lengths
,
y_gs_ms_os_strides
);
Tensor
<
LSEDataType
>
lse_gs_ms
(
lse_gs_ms_lengths
,
lse_gs_ms_strides
);
std
::
cout
<<
"q_gs_ms_ks: "
<<
q_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"k_gs_ns_ks: "
<<
k_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"z_gs_ms_ks: "
<<
z_gs_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"v_gs_os_ns: "
<<
v_gs_os_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"y_gs_ms_os: "
<<
y_gs_ms_os
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"lse_gs_ms_os: "
<<
lse_gs_ms
.
mDesc
<<
std
::
endl
;
z_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
DataType
>
{
0
});
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
DataType
>
{
-
2
,
2
});
k_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
DataType
>
{
-
2
,
2
});
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
DataType
>
{
-
2
,
2
});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_2
<
DataType
>
{
-
2
,
2
});
break
;
case
2
:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
DataType
>
{
0.0
,
1.0
});
k_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
DataType
>
{
0.0
,
1.0
});
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
DataType
>
{
-
0.5
,
0.5
});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_3
<
DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
DataType
>
{
-
5
,
5
});
k_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
DataType
>
{});
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
DataType
>
{});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
DataType
>
{});
break
;
case
4
:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
DataType
>
{
1
});
k_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
DataType
>
{});
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
DataType
>
{});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_1
<
DataType
>
{
2
});
break
;
case
5
:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
DataType
>
{
1
});
k_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
DataType
>
{});
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
DataType
>
{});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
2
>
{});
// dy[g0, g1, m, o]
// dO dot O = [0; 1; 2; ...]
break
;
case
6
:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
DataType
>
{
1
});
k_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
DataType
>
{});
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
DataType
>
{});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
3
>
{});
// dy[g0, g1, m, o]
// assume mnko = 256
// P = softmax(QK) = 0.0039 * ones
// O = P V = 0.0039 * ones
// dP = dO V = [0, 1, 2, ...; 0, 1, 2, ...; ...]
// dO dot O = [127.5; ...]
// dS = P * (dP - dO dot O)
//
break
;
default:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
DataType
>
{
1
});
k_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
DataType
>
{});
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
DataType
>
{});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_1
<
DataType
>
{
1
});
// dy[g0, g1, m, o]
// assume mnko = 256
// P = softmax(QK) = 0.0039 * ones
// O = P V = 0.0039 * ones
// dP = dO V = ones
// dS = P * (dP - (dO dot O))
// = 0.0039 * ones * (ones - 0.0039*256)
// = 0.0039 * ones * (ones - 1)
// = 0
}
// calculate y & log-sum-exp beforehand
Tensor
<
DataType
>
q_g_m_k
({
BatchCount
,
M
,
K
});
Tensor
<
DataType
>
k_g_n_k
({
BatchCount
,
N
,
K
});
Tensor
<
ZDataType
>
z_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
DataType
>
v_g_n_o
({
BatchCount
,
N
,
O
});
Tensor
<
AccDataType
>
s_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
DataType
>
p_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
DataType
>
p_drop_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
DataType
>
y_g_m_o
({
BatchCount
,
M
,
O
});
Tensor
<
LSEDataType
>
lse_g_m
({
BatchCount
,
M
});
q_gs_ms_ks
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
q_g_m_k
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
k_gs_ns_ks
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
k_g_n_k
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
z_gs_ms_ns
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
z_g_m_n
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
v_gs_os_ns
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
v_g_n_o
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
lse_gs_ms
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
lse_g_m
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
])
=
self
(
idx
);
});
run_attention_fwd_host
(
q_g_m_k
,
k_g_n_k
,
v_g_n_o
,
alpha
,
s_g_m_n
,
p_g_m_n
,
y_g_m_o
,
lse_g_m
,
p_drop_g_m_n
,
z_g_m_n
,
p_dropout_in_16bits
,
rp_dropout
);
y_gs_ms_os
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
y_g_m_o
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
]);
});
lse_gs_ms
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
lse_g_m
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
]);
});
// qkv gradients have the same descriptor as with qkv
DeviceMem
q_device_buf
(
sizeof
(
DataType
)
*
q_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
k_device_buf
(
sizeof
(
DataType
)
*
k_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
z_device_buf
(
sizeof
(
ZDataType
)
*
z_gs_ms_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
v_device_buf
(
sizeof
(
DataType
)
*
v_gs_os_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_device_buf
(
sizeof
(
DataType
)
*
y_gs_ms_os
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
lse_device_buf
(
sizeof
(
LSEDataType
)
*
lse_gs_ms
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
qgrad_device_buf
(
sizeof
(
DataType
)
*
q_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
kgrad_device_buf
(
sizeof
(
DataType
)
*
k_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
vgrad_device_buf
(
sizeof
(
DataType
)
*
v_gs_os_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
ygrad_device_buf
(
sizeof
(
DataType
)
*
y_gs_ms_os
.
mDesc
.
GetElementSpaceSize
());
q_device_buf
.
ToDevice
(
q_gs_ms_ks
.
mData
.
data
());
k_device_buf
.
ToDevice
(
k_gs_ns_ks
.
mData
.
data
());
z_device_buf
.
ToDevice
(
z_gs_ms_ns
.
mData
.
data
());
v_device_buf
.
ToDevice
(
v_gs_os_ns
.
mData
.
data
());
y_device_buf
.
ToDevice
(
y_gs_ms_os
.
mData
.
data
());
lse_device_buf
.
ToDevice
(
lse_gs_ms
.
mData
.
data
());
ygrad_device_buf
.
ToDevice
(
ygrad_gs_ms_os
.
mData
.
data
());
kgrad_device_buf
.
SetZero
();
vgrad_device_buf
.
SetZero
();
// z_device_buf.SetZero();
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
DataType
*>
(
q_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
ZDataType
*>
(
z_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
v_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
y_device_buf
.
GetDeviceBuffer
()),
static_cast
<
LSEDataType
*>
(
lse_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
ygrad_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
qgrad_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
kgrad_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
vgrad_device_buf
.
GetDeviceBuffer
()),
{},
// std::array<void*, 1> p_acc0_biases;
{},
// std::array<void*, 1> p_acc1_biases;
q_gs_ms_ks_lengths
,
q_gs_ms_ks_strides
,
k_gs_ns_ks_lengths
,
k_gs_ns_ks_strides
,
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
,
v_gs_os_ns_lengths
,
v_gs_os_ns_strides
,
y_gs_ms_os_lengths
,
y_gs_ms_os_strides
,
lse_gs_ms_lengths
,
{},
// std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_lengths},
{},
// std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_strides},
{},
// std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{},
// std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
QKVElementOp
{},
QKVElementOp
{},
Scale
{
alpha
},
QKVElementOp
{},
YElementOp
{},
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
(
seed
,
offset
));
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
// 5 GEMM ops in total:
// S_MNK / dP_MNO Gemm (Gemm0 rcr)
// dQ_MKN Gemm (Gemm1 rrr)
// dV_NOM / dK_NKM Gemm (Gemm2 crr)
// 3x MNK + 2x MNO
std
::
size_t
flop
=
(
size_t
(
3
)
*
M
*
N
*
K
+
size_t
(
2
)
*
M
*
N
*
O
)
*
2
*
BatchCount
;
// Q/K/V/Y, dQ/dK/dV/dY, LSE
std
::
size_t
num_btype
=
(
sizeof
(
DataType
)
*
M
*
K
+
sizeof
(
DataType
)
*
K
*
N
+
sizeof
(
DataType
)
*
N
*
O
+
sizeof
(
DataType
)
*
M
*
O
)
*
size_t
(
2
)
*
BatchCount
+
sizeof
(
LSEDataType
)
*
M
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
// copy z matirx data form device
std
::
ofstream
file
(
"./z_matrix_txt"
);
z_device_buf
.
FromDevice
(
z_g_m_n
.
mData
.
data
());
file
<<
z_g_m_n
<<
std
::
endl
;
// std::cout << "z_g_m_n ref:\n" << z_g_m_n;
bool
pass
=
true
;
if
(
do_verification
)
{
// run fowad again for y, cause z_g_m_n update
run_attention_fwd_host
(
q_g_m_k
,
k_g_n_k
,
v_g_n_o
,
alpha
,
s_g_m_n
,
p_g_m_n
,
y_g_m_o
,
lse_g_m
,
p_drop_g_m_n
,
z_g_m_n
,
p_dropout_in_16bits
,
rp_dropout
);
y_gs_ms_os
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
y_g_m_o
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
]);
});
y_device_buf
.
ToDevice
(
y_gs_ms_os
.
mData
.
data
());
//
// call kernel again
//
// example set Z matrix to null, will not ouput z matrix data
argument
=
gemm
.
MakeArgument
(
static_cast
<
DataType
*>
(
q_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
ZDataType
*>
(
nullptr
),
// set to nullptr
static_cast
<
DataType
*>
(
v_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
y_device_buf
.
GetDeviceBuffer
()),
static_cast
<
LSEDataType
*>
(
lse_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
ygrad_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
qgrad_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
kgrad_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DataType
*>
(
vgrad_device_buf
.
GetDeviceBuffer
()),
{},
// std::array<void*, 1> p_acc0_biases;
{},
// std::array<void*, 1> p_acc1_biases;
q_gs_ms_ks_lengths
,
q_gs_ms_ks_strides
,
k_gs_ns_ks_lengths
,
k_gs_ns_ks_strides
,
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
,
v_gs_os_ns_lengths
,
v_gs_os_ns_strides
,
y_gs_ms_os_lengths
,
y_gs_ms_os_strides
,
lse_gs_ms_lengths
,
{},
// std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_lengths},
{},
// std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_strides},
{},
// std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{},
// std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
QKVElementOp
{},
QKVElementOp
{},
Scale
{
alpha
},
QKVElementOp
{},
YElementOp
{},
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
(
seed
,
offset
));
kgrad_device_buf
.
SetZero
();
// reset global accum buffer and rerun
vgrad_device_buf
.
SetZero
();
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
Tensor
<
DataType
>
qgrad_g_m_k
({
BatchCount
,
M
,
K
});
Tensor
<
DataType
>
kgrad_g_n_k
({
BatchCount
,
N
,
K
});
Tensor
<
DataType
>
vgrad_g_n_o
({
BatchCount
,
N
,
O
});
Tensor
<
DataType
>
sgrad_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
DataType
>
pgrad_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
DataType
>
pgrad_drop_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
DataType
>
ygrad_g_m_o
({
BatchCount
,
M
,
O
});
Tensor
<
DataType
>
ygrad_dot_y_g_m
({
BatchCount
,
M
});
ygrad_gs_ms_os
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
ygrad_g_m_o
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
#if PRINT_HOST
{
std
::
cout
<<
"q_g_m_k ref:
\n
"
<<
q_g_m_k
;
std
::
cout
<<
"k_g_n_k ref:
\n
"
<<
k_g_n_k
;
std
::
cout
<<
"v_g_n_o ref:
\n
"
<<
v_g_n_o
;
std
::
cout
<<
"ygrad_g_m_o ref:
\n
"
<<
ygrad_g_m_o
;
}
#endif
// Gradients
auto
ref_gemm_grad
=
ReferenceGemmGradInstance
{};
auto
ref_gemm_grad_invoker
=
ref_gemm_grad
.
MakeInvoker
();
using
RefGemmGradArg
=
ReferenceGemmGradInstance
::
Argument
;
// dP_dropout = dY * V^T
auto
v_g_o_n
=
v_g_n_o
.
Transpose
({
0
,
2
,
1
});
ref_gemm_grad_invoker
.
Run
(
RefGemmGradArg
{
ygrad_g_m_o
,
v_g_o_n
,
pgrad_drop_g_m_n
,
PassThrough
{},
PassThrough
{},
Scale
{
1.
f
}});
#if PRINT_HOST
{
std
::
cout
<<
"===== dP = dY * V^T
\n
"
;
std
::
cout
<<
"ygrad_drop_g_m_o ref:
\n
"
<<
ygrad_drop_g_m_n
;
std
::
cout
<<
"v_g_o_n ref:
\n
"
<<
v_g_o_n
;
std
::
cout
<<
"pgrad_drop_g_m_n ref:
\n
"
<<
pgrad_drop_g_m_n
;
}
#endif
// dP = dP_dropout x Z
auto
ref_dropout
=
ReferenceDropoutInstance
{};
auto
ref_dropout_invoker
=
ref_dropout
.
MakeInvoker
();
auto
ref_dropout_argment
=
ref_dropout
.
MakeArgument
(
z_g_m_n
,
pgrad_drop_g_m_n
,
pgrad_g_m_n
,
p_dropout_in_16bits
,
rp_dropout
);
ref_dropout_invoker
.
Run
(
ref_dropout_argment
);
// dS_i_j = P_i_j .* (dP_i_j - dY_i dot Y_i)
sgrad_g_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx_gmn
)
{
float
ygrad_dot_y
=
0
;
for
(
int
o
=
0
;
o
<
O
;
o
++
)
{
auto
idx_gmo
=
idx_gmn
;
idx_gmo
[
2
]
=
o
;
ygrad_dot_y
+=
ygrad_g_m_o
(
idx_gmo
)
*
y_g_m_o
(
idx_gmo
);
}
self
(
idx_gmn
)
=
p_g_m_n
(
idx_gmn
)
*
(
pgrad_g_m_n
(
idx_gmn
)
-
ygrad_dot_y
);
});
#if PRINT_HOST
{
std
::
cout
<<
"===== dS_i_j = P_i_j .* (dP_i_j - dY_i dot Y_i)
\n
"
;
std
::
cout
<<
"p_g_m_n ref:
\n
"
<<
p_g_m_n
;
std
::
cout
<<
"pgrad_g_m_n ref:
\n
"
<<
pgrad_g_m_n
;
std
::
cout
<<
"y_g_m_o ref:
\n
"
<<
y_g_m_o
;
std
::
cout
<<
"ygrad_g_m_o ref:
\n
"
<<
ygrad_g_m_o
;
std
::
cout
<<
"sgrad_g_m_n ref:
\n
"
<<
sgrad_g_m_n
;
}
#endif
// dV = P_drop^T * dY
auto
p_drop_g_n_m
=
p_drop_g_m_n
.
Transpose
({
0
,
2
,
1
});
ref_gemm_grad_invoker
.
Run
(
RefGemmGradArg
{
p_drop_g_n_m
,
ygrad_g_m_o
,
vgrad_g_n_o
,
PassThrough
{},
PassThrough
{},
Scale
{
1.0
f
}});
#if PRINT_HOST
{
std
::
cout
<<
"===== dV = P^T * dY
\n
"
;
std
::
cout
<<
"p_drop_g_n_m ref:
\n
"
<<
p_drop_g_n_m
;
std
::
cout
<<
"ygrad_g_m_o ref:
\n
"
<<
ygrad_g_m_o
;
std
::
cout
<<
"vgrad_g_n_o ref:
\n
"
<<
vgrad_g_n_o
;
}
#endif
// dQ = alpha * dS * K
ref_gemm_grad_invoker
.
Run
(
RefGemmGradArg
{
sgrad_g_m_n
,
k_g_n_k
,
qgrad_g_m_k
,
PassThrough
{},
PassThrough
{},
Scale
{
alpha
}});
#if PRINT_HOST
{
std
::
cout
<<
"===== dQ = alpha * dS * K
\n
"
;
std
::
cout
<<
"sgrad_g_m_n ref:
\n
"
<<
sgrad_g_m_n
;
std
::
cout
<<
"k_g_n_k ref:
\n
"
<<
k_g_n_k
;
std
::
cout
<<
"qgrad_g_m_k ref:
\n
"
<<
qgrad_g_m_k
;
}
#endif
// dK = alpha * dS^T * Q
auto
sgrad_g_n_m
=
sgrad_g_m_n
.
Transpose
({
0
,
2
,
1
});
ref_gemm_grad_invoker
.
Run
(
RefGemmGradArg
{
sgrad_g_n_m
,
q_g_m_k
,
kgrad_g_n_k
,
PassThrough
{},
PassThrough
{},
Scale
{
alpha
}});
#if PRINT_HOST
{
std
::
cout
<<
"===== dK = alpha * dS^T * Q
\n
"
;
std
::
cout
<<
"sgrad_g_n_m ref:
\n
"
<<
sgrad_g_n_m
;
std
::
cout
<<
"q_g_m_k ref:
\n
"
<<
q_g_m_k
;
std
::
cout
<<
"kgrad_g_n_k ref:
\n
"
<<
kgrad_g_n_k
;
}
#endif
Tensor
<
DataType
>
qgrad_gs_ms_ks_host_result
(
q_gs_ms_ks_lengths
,
q_gs_ms_ks_strides
);
Tensor
<
DataType
>
kgrad_gs_ns_ks_host_result
(
k_gs_ns_ks_lengths
,
k_gs_ns_ks_strides
);
Tensor
<
DataType
>
vgrad_gs_os_ns_host_result
(
v_gs_os_ns_lengths
,
v_gs_os_ns_strides
);
Tensor
<
DataType
>
qgrad_gs_ms_ks_device_result
(
q_gs_ms_ks_lengths
,
q_gs_ms_ks_strides
);
Tensor
<
DataType
>
kgrad_gs_ns_ks_device_result
(
k_gs_ns_ks_lengths
,
k_gs_ns_ks_strides
);
Tensor
<
DataType
>
vgrad_gs_os_ns_device_result
(
v_gs_os_ns_lengths
,
v_gs_os_ns_strides
);
qgrad_device_buf
.
FromDevice
(
qgrad_gs_ms_ks_device_result
.
mData
.
data
());
kgrad_device_buf
.
FromDevice
(
kgrad_gs_ns_ks_device_result
.
mData
.
data
());
vgrad_device_buf
.
FromDevice
(
vgrad_gs_os_ns_device_result
.
mData
.
data
());
// permute
qgrad_gs_ms_ks_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
const
size_t
&
g0
=
idx
[
0
];
const
size_t
&
g1
=
idx
[
1
];
const
size_t
g
=
g0
*
G1
+
g1
;
self
(
idx
)
=
qgrad_g_m_k
(
g
,
idx
[
2
],
idx
[
3
]);
});
kgrad_gs_ns_ks_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
const
size_t
&
g0
=
idx
[
0
];
const
size_t
&
g1
=
idx
[
1
];
const
size_t
g
=
g0
*
G1
+
g1
;
self
(
idx
)
=
kgrad_g_n_k
(
g
,
idx
[
2
],
idx
[
3
]);
});
vgrad_gs_os_ns_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
const
size_t
&
g0
=
idx
[
0
];
const
size_t
&
g1
=
idx
[
1
];
const
size_t
g
=
g0
*
G1
+
g1
;
self
(
idx
)
=
vgrad_g_n_o
(
g
,
idx
[
3
],
idx
[
2
]);
});
std
::
cout
<<
"Checking qgrad:
\n
"
;
pass
&=
ck
::
utils
::
check_err
(
qgrad_gs_ms_ks_device_result
.
mData
,
qgrad_gs_ms_ks_host_result
.
mData
,
"error"
,
1e-2
,
1e-2
);
std
::
cout
<<
"Checking kgrad:
\n
"
;
pass
&=
ck
::
utils
::
check_err
(
kgrad_gs_ns_ks_device_result
.
mData
,
kgrad_gs_ns_ks_host_result
.
mData
,
"error"
,
1e-2
,
1e-2
);
std
::
cout
<<
"Checking vgrad:
\n
"
;
pass
&=
ck
::
utils
::
check_err
(
vgrad_gs_os_ns_device_result
.
mData
,
vgrad_gs_os_ns_host_result
.
mData
,
"error"
,
1e-2
,
1e-2
);
}
return
pass
?
((
void
)(
std
::
cout
<<
"pass
\n
"
),
0
)
:
((
void
)(
std
::
cout
<<
"fail
\n
"
),
1
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/grouped_multihead_attention_forward_fp16.cpp
100755 → 100644
View file @
66052232
...
...
@@ -33,6 +33,7 @@ using S = ck::Sequence<Is...>;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
U16
=
unsigned
short
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
...
@@ -42,6 +43,7 @@ using B1DataType = F16;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F16
;
using
ZDataType
=
U16
;
using
LSEDataType
=
F32
;
using
Acc0BiasDataType
=
ck
::
Tuple
<>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
...
...
@@ -69,6 +71,7 @@ static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecial
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
...
...
@@ -78,6 +81,7 @@ using DeviceGemmInstance =
B0DataType
,
B1DataType
,
CDataType
,
ZDataType
,
LSEDataType
,
Acc0BiasDataType
,
Acc1BiasDataType
,
...
...
@@ -159,4 +163,5 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
#include "run_grouped_multihead_attention_forward.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/run_grouped_multihead_attention_forward.inc
View file @
66052232
...
...
@@ -48,6 +48,7 @@ int run(int argc, char* argv[])
std
::
vector
<
const
void
*>
p_b0
;
std
::
vector
<
const
void
*>
p_b1
;
std
::
vector
<
void
*>
p_c
;
std
::
vector
<
void
*>
p_z
;
std
::
vector
<
void
*>
p_lse
;
std
::
vector
<
std
::
vector
<
int
>>
g0_g1_m_n_k_o
;
...
...
@@ -55,6 +56,7 @@ int run(int argc, char* argv[])
std
::
vector
<
Tensor
<
B0DataType
>>
b0_tensors
;
std
::
vector
<
Tensor
<
B1DataType
>>
b1_tensors
;
std
::
vector
<
Tensor
<
CDataType
>>
c_tensors
;
std
::
vector
<
Tensor
<
ZDataType
>>
z_tensors
;
std
::
vector
<
Tensor
<
LSEDataType
>>
lse_tensors
;
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
...
...
@@ -62,6 +64,7 @@ int run(int argc, char* argv[])
std
::
vector
<
DeviceMemPtr
>
b0_tensors_device
;
std
::
vector
<
DeviceMemPtr
>
b1_tensors_device
;
std
::
vector
<
DeviceMemPtr
>
c_tensors_device
;
std
::
vector
<
DeviceMemPtr
>
z_tensors_device
;
std
::
vector
<
DeviceMemPtr
>
lse_tensors_device
;
std
::
size_t
flop
=
0
,
num_byte
=
0
;
...
...
@@ -101,6 +104,12 @@ int run(int argc, char* argv[])
output_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
}
// C layout [G0, M, G1, O]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
O
,
M
*
O
,
O
,
1
};
// C layout [G0, G1, M, O]
std
::
vector
<
ck
::
index_t
>
z_gs_ms_ns_lengths
{
G0
,
G1
,
M
,
N
};
std
::
vector
<
ck
::
index_t
>
z_gs_ms_ns_strides
=
output_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
N
,
N
,
G1
*
N
,
1
}
// Z layout [G0, M, G1, N]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
N
,
M
*
N
,
N
,
1
};
// Z layout [G0, G1, M, N]
std
::
vector
<
ck
::
index_t
>
lse_gs_ms_lengths
{
G0
,
G1
,
M
};
std
::
vector
<
ck
::
index_t
>
lse_gs_ms_strides
=
...
...
@@ -114,6 +123,8 @@ int run(int argc, char* argv[])
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
,
lse_gs_ms_lengths
,
lse_gs_ms_strides
,
{},
// acc0_biases_gs_ms_ns_lengths
...
...
@@ -126,6 +137,7 @@ int run(int argc, char* argv[])
Tensor
<
B0DataType
>
b0_gs_ns_ks
(
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
);
Tensor
<
B1DataType
>
b1_gs_os_ns
(
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_device_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
Tensor
<
ZDataType
>
z_gs_ms_ns
(
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
);
Tensor
<
LSEDataType
>
lse_gs_ms_device_result
(
lse_gs_ms_lengths
,
lse_gs_ms_strides
);
int
Batch
=
G0
*
G1
;
...
...
@@ -140,10 +152,13 @@ int run(int argc, char* argv[])
<<
"b0_gs_ns_ks["
<<
i
<<
"]: "
<<
b0_gs_ns_ks
.
mDesc
<<
", "
<<
"b1_gs_os_ns["
<<
i
<<
"]: "
<<
b1_gs_os_ns
.
mDesc
<<
", "
<<
"c_gs_ms_os["
<<
i
<<
"]: "
<<
c_gs_ms_os_device_result
.
mDesc
<<
", "
<<
"c_gs_ms_os["
<<
i
<<
"]: "
<<
c_gs_ms_os_device_result
.
mDesc
<<
", "
<<
"lse_gs_ms_os["
<<
i
<<
"]: "
<<
lse_gs_ms_device_result
.
mDesc
<<
std
::
endl
;
}
z_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
DataType
>
{
0
});
switch
(
init_method
)
{
case
0
:
break
;
...
...
@@ -172,6 +187,7 @@ int run(int argc, char* argv[])
b0_tensors
.
push_back
(
b0_gs_ns_ks
);
b1_tensors
.
push_back
(
b1_gs_os_ns
);
c_tensors
.
push_back
(
c_gs_ms_os_device_result
);
z_tensors
.
push_back
(
z_gs_ms_ns
);
lse_tensors
.
push_back
(
lse_gs_ms_device_result
);
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
...
...
@@ -182,6 +198,8 @@ int run(int argc, char* argv[])
sizeof
(
B1DataType
)
*
b1_gs_os_ns
.
mDesc
.
GetElementSpaceSize
()));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
CDataType
)
*
c_gs_ms_os_device_result
.
mDesc
.
GetElementSpaceSize
()));
z_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ZDataType
)
*
z_gs_ms_ns
.
mDesc
.
GetElementSpaceSize
()));
lse_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
LSEDataType
)
*
lse_gs_ms_device_result
.
mDesc
.
GetElementSpaceSize
()));
...
...
@@ -193,6 +211,7 @@ int run(int argc, char* argv[])
p_b0
.
push_back
(
b0_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b1
.
push_back
(
b1_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_c
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_z
.
push_back
(
z_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_lse
.
push_back
(
lse_tensors_device
[
i
]
->
GetDeviceBuffer
());
}
...
...
@@ -209,6 +228,7 @@ int run(int argc, char* argv[])
p_b0
,
p_b1
,
p_c
,
p_z
,
p_lse
,
{},
// p_acc0_biases
{},
// p_acc1_biases
...
...
include/ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute.hpp
View file @
66052232
...
...
@@ -79,6 +79,7 @@ template <index_t NumDimG,
typename
B0DataType
,
typename
B1DataType
,
typename
CDataType
,
typename
ZDataType
,
typename
LSEDataType
,
typename
Acc0BiasDataType
,
typename
Acc1BiasDataType
,
...
...
@@ -104,6 +105,9 @@ struct DeviceGroupedMultiheadAttentionForward : public BaseOperator
std
::
vector
<
index_t
>
c_gs_ms_os_lengths
;
std
::
vector
<
index_t
>
c_gs_ms_os_strides
;
std
::
vector
<
index_t
>
z_gs_ms_ns_lengths
;
std
::
vector
<
index_t
>
z_gs_ms_ns_strides
;
std
::
vector
<
index_t
>
lse_gs_ms_lengths
;
std
::
vector
<
index_t
>
lse_gs_ms_strides
;
...
...
@@ -119,6 +123,7 @@ struct DeviceGroupedMultiheadAttentionForward : public BaseOperator
std
::
vector
<
const
void
*>
p_b0_vec
,
std
::
vector
<
const
void
*>
p_b1_vec
,
std
::
vector
<
void
*>
p_c_vec
,
std
::
vector
<
void
*>
p_z_vec
,
std
::
vector
<
void
*>
p_lse_vec
,
std
::
vector
<
std
::
vector
<
const
void
*>>
p_acc0_biases_vec
,
std
::
vector
<
std
::
vector
<
const
void
*>>
p_acc1_biases_vec
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_batched_multihead_attention_backward_xdl_cshuffle.hpp
View file @
66052232
...
...
@@ -29,6 +29,7 @@ namespace device {
template
<
typename
GridwiseGemm
,
typename
DataType
,
typename
ZDataType
,
typename
LSEDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
...
...
@@ -37,6 +38,7 @@ template <typename GridwiseGemm,
typename
CElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
,
typename
B1GridDesc_BK0_N_BK1
,
typename
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
,
typename
LSEGridDescriptor_M
,
...
...
@@ -50,9 +52,10 @@ __global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_batched_gemm_softmax_gemm_xdl_cshuffle_v
1
(
kernel_batched_gemm_softmax_gemm_xdl_cshuffle_v
2
(
const
DataType
*
__restrict__
p_a_grid
,
const
DataType
*
__restrict__
p_b_grid
,
ZDataType
*
__restrict__
p_z_grid
,
const
DataType
*
__restrict__
p_b1_grid
,
const
DataType
*
__restrict__
p_c_grid
,
const
LSEDataType
*
__restrict__
p_lse_grid
,
...
...
@@ -67,6 +70,8 @@ __global__ void
const
CElementwiseOperation
c_element_op
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1
,
const
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
const
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1
,
const
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
,
...
...
@@ -76,7 +81,10 @@ __global__ void
const
Block2CTileMap
block_2_ctile_map
,
const
index_t
batch_count
,
const
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch
,
const
C0MatrixMask
c0_matrix_mask
)
const
C0MatrixMask
c0_matrix_mask
,
const
float
p_dropout
,
const
unsigned
long
long
seed
,
const
unsigned
long
long
offset
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
...
...
@@ -90,6 +98,8 @@ __global__ void
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetABasePtr
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetBBasePtr
(
g_idx
)));
const
long_index_t
z_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetZBasePtr
(
g_idx
)));
const
long_index_t
b1_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetB1BasePtr
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
...
...
@@ -97,8 +107,13 @@ __global__ void
const
long_index_t
lse_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetLSEBasePtr
(
g_idx
)));
const
index_t
global_thread_id
=
get_thread_global_1d_id
();
ck
::
philox
ph
(
seed
,
global_thread_id
,
offset
);
ZDataType
*
z_matrix_ptr
=
(
p_z_grid
==
nullptr
?
nullptr
:
p_z_grid
+
z_batch_offset
);
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
z_matrix_ptr
,
p_b1_grid
+
b1_batch_offset
,
p_c_grid
+
c_batch_offset
,
p_lse_grid
+
lse_batch_offset
,
...
...
@@ -114,13 +129,16 @@ __global__ void
c_element_op
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
b1_grid_desc_bk0_n_bk1
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
lse_grid_desc_m
,
vgrad_grid_desc_n_o
,
ygrad_grid_desc_m0_o_m1
,
block_2_ctile_map
,
c0_matrix_mask
);
c0_matrix_mask
,
p_dropout
,
ph
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
...
...
@@ -151,6 +169,7 @@ template <index_t NumDimG,
index_t
NumDimK
,
index_t
NumDimO
,
// NumDimGemm1N
typename
DataType
,
typename
ZDataType
,
typename
LSEDataType
,
typename
Acc0BiasDataType
,
typename
Acc1BiasDataType
,
...
...
@@ -429,6 +448,12 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
return
Transform
::
MakeB0GridDescriptor_BK0_N_BK1
(
v_grid_desc_n_o
,
Number
<
V_O1
>
{});
}
// Z in Gemm0 C position
static
auto
MakeZGridDescriptor_M_N
(
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_strides_vec
)
{
return
Transform
::
MakeCGridDescriptor_M_N
(
z_gs_ms_ns_lengths_vec
,
z_gs_ms_ns_strides_vec
);
}
//
// dS_i_j = P_i_j .* (dP_i_j - dY_i dot Y_i)
//
...
...
@@ -489,9 +514,11 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
using
BGridDesc_G_N_K
=
decltype
(
Transform
::
MakeB0GridDescriptor_G_N_K
({},
{}));
using
B1GridDesc_G_N_K
=
decltype
(
Transform
::
MakeB1GridDescriptor_G_N_K
({},
{}));
using
CGridDesc_G_M_N
=
decltype
(
Transform
::
MakeCGridDescriptor_G_M_N
({},
{}));
using
ZGridDesc_G_M_N
=
decltype
(
Transform
::
MakeCGridDescriptor_G_M_N
({},
{}));
using
VGradGridDesc_N_O
=
decltype
(
MakeVGradGridDescriptor_N_O
({},
{}));
using
YGradGridDesc_M0_O_M1
=
decltype
(
MakeYGradGridDescriptor_M0_O_M1
(
YGridDesc_M_O
{}));
using
ZGridDesc_M_N
=
decltype
(
MakeZGridDescriptor_M_N
({},
{}));
constexpr
static
auto
make_MaskOutPredicate
()
{
...
...
@@ -510,11 +537,13 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
{
ComputeBasePtrOfStridedBatch
(
const
AGridDesc_G_M_K
&
a_grid_desc_g_m_k
,
const
BGridDesc_G_N_K
&
b_grid_desc_g_n_k
,
const
ZGridDesc_G_M_N
&
z_grid_desc_g_m_n
,
const
B1GridDesc_G_N_K
&
b1_grid_desc_g_n_k
,
const
CGridDesc_G_M_N
&
c_grid_desc_g_m_n
,
index_t
BatchStrideLSE
)
:
a_grid_desc_g_m_k_
(
a_grid_desc_g_m_k
),
b_grid_desc_g_n_k_
(
b_grid_desc_g_n_k
),
z_grid_desc_g_m_n_
(
z_grid_desc_g_m_n
),
b1_grid_desc_g_n_k_
(
b1_grid_desc_g_n_k
),
c_grid_desc_g_m_n_
(
c_grid_desc_g_m_n
),
BatchStrideLSE_
(
BatchStrideLSE
)
...
...
@@ -531,6 +560,11 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
return
b_grid_desc_g_n_k_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetZBasePtr
(
index_t
g_idx
)
const
{
return
z_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetB1BasePtr
(
index_t
g_idx
)
const
{
return
b1_grid_desc_g_n_k_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
...
...
@@ -549,13 +583,15 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
private:
AGridDesc_G_M_K
a_grid_desc_g_m_k_
;
BGridDesc_G_N_K
b_grid_desc_g_n_k_
;
ZGridDesc_G_M_N
z_grid_desc_g_m_n_
;
B1GridDesc_G_N_K
b1_grid_desc_g_n_k_
;
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
index_t
BatchStrideLSE_
;
};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
<
using
GridwiseGemm
=
GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
_V2
<
DataType
,
// TODO: distinguish A/B datatype
LSEDataType
,
GemmAccDataType
,
...
...
@@ -568,6 +604,7 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
ZGridDesc_M_N
,
B1GridDesc_BK0_N_BK1
,
YGridDesc_M_O
,
LSEGridDesc_M
,
...
...
@@ -624,6 +661,7 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
Argument
(
const
DataType
*
p_a_grid
,
const
DataType
*
p_b_grid
,
ZDataType
*
p_z_grid
,
const
DataType
*
p_b1_grid
,
const
DataType
*
p_c_grid
,
// for dS
const
LSEDataType
*
p_lse_grid
,
...
...
@@ -637,6 +675,8 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_lengths
,
// b1_gs_os_ns_lengths
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_strides
,
// b1_gs_os_ns_strides
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
...
...
@@ -652,9 +692,12 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
CElementwiseOperation
c_element_op
,
float
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
seeds
)
:
p_a_grid_
{
p_a_grid
},
p_b_grid_
{
p_b_grid
},
p_z_grid_
{
p_z_grid
},
p_b1_grid_
{
p_b1_grid
},
p_c_grid_
{
p_c_grid
},
p_lse_grid_
{
p_lse_grid
},
...
...
@@ -666,6 +709,7 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
)},
b_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
)},
z_grid_desc_m_n_
{
MakeZGridDescriptor_M_N
(
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
)},
b1_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeB1GridDescriptor_BK0_N_BK1
(
b1_gs_gemm1ns_gemm1ks_lengths
,
b1_gs_gemm1ns_gemm1ks_strides
)},
y_grid_desc_m_o_
{
Transform
::
MakeCGridDescriptor_M_N
(
c_gs_ms_gemm1ns_lengths
,
...
...
@@ -683,6 +727,8 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
b1_gs_gemm1ns_gemm1ks_lengths
,
b1_gs_gemm1ns_gemm1ks_strides
)},
c_grid_desc_g_m_n_
{
Transform
::
MakeCGridDescriptor_G_M_N
(
c_gs_ms_gemm1ns_lengths
,
c_gs_ms_gemm1ns_strides
)},
z_grid_desc_g_m_n_
{
Transform
::
MakeCGridDescriptor_G_M_N
(
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
)},
y_grid_desc_mblock_mperblock_oblock_operblock_
{},
block_2_ctile_map_
{
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
y_grid_desc_m_o_
)},
a_element_op_
{
a_element_op
},
...
...
@@ -707,6 +753,7 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
compute_base_ptr_of_batch_
{
a_grid_desc_g_m_k_
,
b_grid_desc_g_n_k_
,
z_grid_desc_g_m_n_
,
b1_grid_desc_g_n_k_
,
c_grid_desc_g_m_n_
,
type_convert
<
index_t
>
(
lse_grid_desc_m_
.
GetElementSpaceSize
())}
...
...
@@ -729,6 +776,16 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
GridwiseGemm
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
y_grid_desc_m_o_
);
}
p_dropout_
=
1.
f
-
p_drop
;
float
rp_dropout_
=
1.
f
/
p_dropout_
;
acc_element_op_
.
Append
(
rp_dropout_
);
seed_
=
std
::
get
<
0
>
(
seeds
);
offset_
=
std
::
get
<
1
>
(
seeds
);
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
=
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
(
z_grid_desc_m_n_
);
// Print();
}
...
...
@@ -760,6 +817,7 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
// pointers
const
DataType
*
p_a_grid_
;
const
DataType
*
p_b_grid_
;
ZDataType
*
p_z_grid_
;
const
DataType
*
p_b1_grid_
;
const
DataType
*
p_c_grid_
;
const
LSEDataType
*
p_lse_grid_
;
...
...
@@ -771,6 +829,7 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
// tensor descriptor
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
ZGridDesc_M_N
z_grid_desc_m_n_
;
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1_
;
YGridDesc_M_O
y_grid_desc_m_o_
;
LSEGridDesc_M
lse_grid_desc_m_
;
...
...
@@ -782,9 +841,13 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
BGridDesc_G_N_K
b_grid_desc_g_n_k_
;
B1GridDesc_G_N_K
b1_grid_desc_g_n_k_
;
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
ZGridDesc_G_M_N
z_grid_desc_g_m_n_
;
typename
GridwiseGemm
::
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
y_grid_desc_mblock_mperblock_oblock_operblock_
;
typename
GridwiseGemm
::
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
;
// block-to-c-tile map
typename
GridwiseGemm
::
DefaultBlock2CTileMap
block_2_ctile_map_
;
...
...
@@ -807,6 +870,10 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
index_t
batch_count_
;
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch_
;
float
p_dropout_
;
unsigned
long
long
seed_
;
unsigned
long
long
offset_
;
};
// Invoker
...
...
@@ -831,9 +898,10 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_batched_gemm_softmax_gemm_xdl_cshuffle_v
1
<
const
auto
kernel
=
kernel_batched_gemm_softmax_gemm_xdl_cshuffle_v
2
<
GridwiseGemm
,
DataType
,
ZDataType
,
LSEDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
...
...
@@ -842,6 +910,7 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
CElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
,
DeviceOp
::
B1GridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
,
DeviceOp
::
LSEGridDesc_M
,
...
...
@@ -859,6 +928,7 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_z_grid_
,
arg
.
p_b1_grid_
,
arg
.
p_c_grid_
,
arg
.
p_lse_grid_
,
...
...
@@ -873,6 +943,7 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
arg
.
c_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
arg
.
y_grid_desc_mblock_mperblock_oblock_operblock_
,
arg
.
lse_grid_desc_m_
,
...
...
@@ -881,7 +952,10 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
arg
.
block_2_ctile_map_
,
arg
.
batch_count_
,
arg
.
compute_base_ptr_of_batch_
,
arg
.
c0_matrix_mask_
);
arg
.
c0_matrix_mask_
,
arg
.
p_dropout_
,
arg
.
seed_
,
arg
.
offset_
);
};
// Gemm1_K is split into Gemm1_K0/K1 where K1 is known at compile time, so we only need
...
...
@@ -992,6 +1066,7 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
static
auto
MakeArgument
(
const
DataType
*
p_a
,
const
DataType
*
p_b
,
ZDataType
*
p_z
,
const
DataType
*
p_b1
,
const
DataType
*
p_c
,
const
LSEDataType
*
p_lse
,
...
...
@@ -1005,6 +1080,8 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_lengths
,
// b1_gs_os_ns_lengths
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_strides
,
// b1_gs_os_ns_strides
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
...
...
@@ -1020,10 +1097,13 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
CElementwiseOperation
c_element_op
,
float
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
seeds
)
{
return
Argument
{
p_a
,
p_b
,
p_z
,
p_b1
,
p_c
,
p_lse
,
...
...
@@ -1037,6 +1117,8 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
,
b1_gs_gemm1ns_gemm1ks_lengths
,
// b1_gs_os_ns_lengths
b1_gs_gemm1ns_gemm1ks_strides
,
// b1_gs_os_ns_strides
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
...
...
@@ -1050,7 +1132,9 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
};
c_element_op
,
p_drop
,
seeds
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
...
...
@@ -1060,6 +1144,7 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_z
,
const
void
*
p_b1
,
const
void
*
p_c
,
const
void
*
p_lse
,
...
...
@@ -1073,6 +1158,8 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_lengths
,
// b1_gs_os_ns_lengths
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_strides
,
// b1_gs_os_ns_strides
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
...
...
@@ -1088,10 +1175,13 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
// override
CElementwiseOperation
c_element_op
,
float
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
seeds
)
// override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
DataType
*>
(
p_a
),
static_cast
<
const
DataType
*>
(
p_b
),
static_cast
<
ZDataType
*>
(
p_z
),
static_cast
<
const
DataType
*>
(
p_b1
),
static_cast
<
const
DataType
*>
(
p_c
),
static_cast
<
const
LSEDataType
*>
(
p_lse
),
...
...
@@ -1105,6 +1195,8 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
,
b1_gs_gemm1ns_gemm1ks_lengths
,
// b1_gs_os_ns_lengths
b1_gs_gemm1ns_gemm1ks_strides
,
// b1_gs_os_ns_strides
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
...
...
@@ -1118,7 +1210,9 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
);
c_element_op
,
p_drop
,
seeds
);
}
// polymorphic
...
...
include/ck/tensor_operation/gpu/device/impl/device_
batch
ed_multihead_attention_
back
ward_
train_
xdl_cshuffle
.hpp
→
include/ck/tensor_operation/gpu/device/impl/device_
group
ed_multihead_attention_
for
ward_xdl_cshuffle
View file @
66052232
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/utility/philox_rand.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
// #include "ck/tensor_operation/gpu/device/device_batched_multihead_attention_backward.hpp" // TODO
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/masking_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_backward_xdl_cshuffle_v2.hpp"
#include "ck/tensor_operation/operator_transform/transform_contraction_to_gemm.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
DataType
,
typename
ZDataType
,
typename
LSEDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
,
typename
B1GridDesc_BK0_N_BK1
,
typename
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
,
typename
LSEGridDescriptor_M
,
typename
VGradGridDescriptor_N_O
,
typename
YGradGridDesc_M0_O_M1
,
typename
Block2CTileMap
,
typename
ComputeBasePtrOfStridedBatch
,
typename
C0MatrixMask
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_batched_gemm_softmax_gemm_xdl_cshuffle_v2
(
const
DataType
*
__restrict__
p_a_grid
,
const
DataType
*
__restrict__
p_b_grid
,
ZDataType
*
__restrict__
p_z_grid
,
const
DataType
*
__restrict__
p_b1_grid
,
const
DataType
*
__restrict__
p_c_grid
,
const
LSEDataType
*
__restrict__
p_lse_grid
,
const
DataType
*
__restrict__
p_ygrad_grid
,
DataType
*
__restrict__
p_qgrad_grid
,
DataType
*
__restrict__
p_kgrad_grid
,
DataType
*
__restrict__
p_vgrad_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
AccElementwiseOperation
acc_element_op
,
const
B1ElementwiseOperation
b1_element_op
,
const
CElementwiseOperation
c_element_op
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1
,
const
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
const
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1
,
const
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
,
const
LSEGridDescriptor_M
lse_grid_desc_m
,
const
VGradGridDescriptor_N_O
vgrad_grid_desc_n_o
,
const
YGradGridDesc_M0_O_M1
ygrad_grid_desc_m0_o_m1
,
const
Block2CTileMap
block_2_ctile_map
,
const
index_t
batch_count
,
const
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch
,
const
C0MatrixMask
c0_matrix_mask
,
const
float
p_dropout
,
const
unsigned
long
long
seed
,
const
unsigned
long
long
offset
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
// NOTE: assumes QKVY has the same layout as dQ/dK/dV/dY therefore being able to reuse batch
// offsets
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetABasePtr
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetBBasePtr
(
g_idx
)));
const
long_index_t
z_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetZBasePtr
(
g_idx
)));
const
long_index_t
b1_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetB1BasePtr
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetCBasePtr
(
g_idx
)));
const
long_index_t
lse_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetLSEBasePtr
(
g_idx
)));
const
index_t
global_thread_id
=
get_thread_global_1d_id
();
ck
::
philox
ph
(
seed
,
global_thread_id
,
offset
);
ZDataType
*
z_matrix_ptr
=
(
p_z_grid
==
nullptr
?
nullptr
:
p_z_grid
+
z_batch_offset
);
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
z_matrix_ptr
,
p_b1_grid
+
b1_batch_offset
,
p_c_grid
+
c_batch_offset
,
p_lse_grid
+
lse_batch_offset
,
p_ygrad_grid
+
c_batch_offset
,
p_qgrad_grid
+
a_batch_offset
,
p_kgrad_grid
+
b_batch_offset
,
p_vgrad_grid
+
b1_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
b1_grid_desc_bk0_n_bk1
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
lse_grid_desc_m
,
vgrad_grid_desc_n_o
,
ygrad_grid_desc_m0_o_m1
,
block_2_ctile_map
,
c0_matrix_mask
,
p_dropout
,
ph
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_b1_grid
;
ignore
=
p_c_grid
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
acc_element_op
;
ignore
=
b1_element_op
;
ignore
=
c_element_op
;
ignore
=
a_grid_desc_ak0_m_ak1
;
ignore
=
b_grid_desc_bk0_n_bk1
;
ignore
=
b1_grid_desc_bk0_n_bk1
;
ignore
=
c_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
block_2_ctile_map
;
ignore
=
batch_count
;
ignore
=
compute_base_ptr_of_batch
;
ignore
=
c0_matrix_mask
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
// Computes C = A * B0 * B1
// ^^^^^^ (Acc0)
// ^^^^^^^^^^^ (Acc1)
template
<
index_t
NumDimG
,
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
index_t
NumDimO
,
// NumDimGemm1N
typename
DataType
,
typename
ZDataType
,
typename
LSEDataType
,
typename
Acc0BiasDataType
,
typename
Acc1BiasDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
TensorSpecialization
ASpec
,
TensorSpecialization
BSpec
,
TensorSpecialization
B1Spec
,
TensorSpecialization
CSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
// Gemm0NPerBlock
index_t
KPerBlock
,
// Gemm0KPerBlock
index_t
Gemm1NPerBlock
,
index_t
Gemm1KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
B1K1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
index_t
Gemm1NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
typename
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
B1BlockTransferThreadClusterArrangeOrder
,
typename
B1BlockTransferSrcAccessOrder
,
index_t
B1BlockTransferSrcVectorDim
,
index_t
B1BlockTransferSrcScalarPerVector
,
index_t
B1BlockTransferDstScalarPerVector_BK1
,
bool
B1BlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
MaskingSpecialization
MaskingSpec
,
LoopScheduler
LoopSched
=
LoopScheduler
::
Default
>
struct
DeviceBatchedMultiheadAttentionBackward_Train_Xdl_CShuffle
:
public
BaseOperator
// TODO inherit atten bwd op once API stablizes
{
static_assert
(
NumDimG
>
0
&&
NumDimM
>
0
&&
NumDimN
>
0
&&
NumDimK
>
0
&&
NumDimO
>
0
,
"Number of dimension must be greater than 0"
);
static
constexpr
index_t
NumAcc0Bias
=
Acc0BiasDataType
::
Size
();
static
constexpr
index_t
NumAcc1Bias
=
Acc1BiasDataType
::
Size
();
// TODO: implement bias combination
static_assert
(
NumAcc0Bias
==
0
&&
NumAcc0Bias
==
0
,
"Bias addition is unimplemented"
);
#if 0
// TODO: use alias
static constexpr index_t NumDimGemm0M = NumDimM;
static constexpr index_t NumDimGemm0N = NumDimN;
static constexpr index_t NumDimGemm0K = NumDimK;
static constexpr index_t NumDimGemm1M = NumDimM;
static constexpr index_t NumDimGemm1N = NumDimO;
static constexpr index_t NumDimGemm1K = NumDimN;
#endif
using
DeviceOp
=
DeviceBatchedMultiheadAttentionBackward_Train_Xdl_CShuffle
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
index_t
Q_K1
=
8
;
static
constexpr
index_t
K_K1
=
8
;
static
constexpr
index_t
V_N1
=
2
;
static
constexpr
index_t
Q_M1
=
2
;
static
constexpr
index_t
K_N1
=
2
;
static
constexpr
index_t
V_O1
=
8
;
static
constexpr
index_t
Y_O1
=
8
;
static
constexpr
index_t
Y_M1
=
2
;
static
constexpr
auto
padder
=
GemmGemmPadder
<
GemmSpec
,
Number
<
MPerBlock
>
,
Number
<
NPerBlock
>
,
Number
<
KPerBlock
>
,
Number
<
Gemm1NPerBlock
>>
{};
using
Transform
=
TransformBatchedContractionContractionToBatchedGemmGemm
<
Sequence
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
>
,
Sequence
<
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
>
,
GemmSpec
,
ASpec
,
BSpec
,
B1Spec
,
CSpec
>
;
/*
Descriptors for inputs:
Q, K, V, Y, dY, per-row softmax stats
Descriptors for outputs:
dQ, dK, dV
*/
// Q in Gemm A position
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides_vec
)
{
return
Transform
::
MakeAGridDescriptor_AK0_M_AK1
(
Transform
::
MakeAGridDescriptor_M_K
(
a_gs_ms_ks_lengths_vec
,
a_gs_ms_ks_strides_vec
),
Number
<
AK1
>
{});
}
// K in Gemm B0 position
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides_vec
)
{
return
Transform
::
MakeB0GridDescriptor_BK0_N_BK1
(
Transform
::
MakeB0GridDescriptor_N_K
(
b_gs_ns_ks_lengths_vec
,
b_gs_ns_ks_strides_vec
),
Number
<
BK1
>
{});
}
// V in Gemm B1 position
static
auto
MakeB1GridDescriptor_BK0_N_BK1
(
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_strides_vec
)
{
return
Transform
::
MakeB1GridDescriptor_BK0_N_BK1
(
Transform
::
MakeB1GridDescriptor_N_K
(
b1_gs_gemm1ns_gemm1ks_lengths_vec
,
b1_gs_gemm1ns_gemm1ks_strides_vec
),
Number
<
B1K1
>
{});
}
//
// dV = P^T * dY
//
// VGrad in Gemm C position
static
auto
MakeVGradGridDescriptor_N_O
(
const
std
::
vector
<
index_t
>&
v_gs_os_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
v_gs_os_ns_strides_vec
)
{
// v_gs_os_ns -> vgrad_gs_ns_os. O dims last because output is row-major.
// Here directly rearrange lengths/strides before constructing tensor descriptor to reduce
// transformation overhead
// TODO: This will be much easier when inputs are Gs, Ms, Ns, Os. So there's no need to
// extract subsequence and shuffle them.
const
index_t
num_dims
=
NumDimG
+
NumDimN
+
NumDimO
;
// 0, 1, .. NumDimG - 1
std
::
vector
<
index_t
>
gs_ids
(
NumDimG
);
std
::
iota
(
gs_ids
.
begin
(),
gs_ids
.
end
(),
0
);
// NumDimG, NumDimG + 1, ... NumDimG + NumDimO - 1
std
::
vector
<
index_t
>
os_ids
(
NumDimO
);
std
::
iota
(
os_ids
.
begin
(),
os_ids
.
end
(),
NumDimG
);
// NumDimG + NumDimO, NumDimG + NumDimO + 1, ... NumDimG + NumDimO + NumDimN - 1
std
::
vector
<
index_t
>
ns_ids
(
NumDimN
);
std
::
iota
(
ns_ids
.
begin
(),
ns_ids
.
end
(),
NumDimG
+
NumDimO
);
std
::
vector
<
index_t
>
ids_old2new
;
ids_old2new
.
insert
(
ids_old2new
.
end
(),
gs_ids
.
begin
(),
gs_ids
.
end
());
ids_old2new
.
insert
(
ids_old2new
.
end
(),
ns_ids
.
begin
(),
ns_ids
.
end
());
ids_old2new
.
insert
(
ids_old2new
.
end
(),
os_ids
.
begin
(),
os_ids
.
end
());
std
::
vector
<
index_t
>
v_gs_ns_os_lengths_vec
(
num_dims
),
v_gs_ns_os_strides_vec
(
num_dims
);
for
(
int
i
=
0
;
i
<
num_dims
;
i
++
)
{
index_t
id_new
=
ids_old2new
[
i
];
v_gs_ns_os_lengths_vec
[
i
]
=
v_gs_os_ns_lengths_vec
[
id_new
];
v_gs_ns_os_strides_vec
[
i
]
=
v_gs_os_ns_strides_vec
[
id_new
];
}
const
auto
vgrad_desc_nraw_oraw
=
MakeGridDescriptorPair
<
NumDimG
,
NumDimN
,
NumDimO
,
TensorSpecialization
::
Default
>
(
v_gs_ns_os_lengths_vec
,
v_gs_ns_os_strides_vec
)
.
second
;
return
PadTensorDescriptor
(
vgrad_desc_nraw_oraw
,
make_tuple
(
NPerBlock
,
Gemm1NPerBlock
),
Sequence
<
padder
.
PadN
,
padder
.
PadO
>
{});
}
template
<
typename
YGridDesc_M_O
>
static
auto
MakeYGradGridDescriptor_M0_O_M1
(
const
YGridDesc_M_O
&
ygrad_grid_desc_m_o
)
{
const
auto
M
=
ygrad_grid_desc_m_o
.
GetLength
(
I0
);
const
auto
O
=
ygrad_grid_desc_m_o
.
GetLength
(
I1
);
const
auto
Y_M0
=
M
/
Y_M1
;
return
transform_tensor_descriptor
(
ygrad_grid_desc_m_o
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Y_M0
,
Y_M1
)),
make_pass_through_transform
(
O
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
//
// dP = dY * V^T
//
// YGrad in Gemm A position
static
auto
MakeYGradGridDescriptor_O0_M_O1
(
const
std
::
vector
<
index_t
>&
y_gs_ms_os_lengths_vec
,
const
std
::
vector
<
index_t
>&
y_gs_ms_os_strides_vec
)
{
return
Transform
::
MakeAGridDescriptor_AK0_M_AK1
(
Transform
::
MakeAGridDescriptor_M_K
(
y_gs_ms_os_lengths_vec
,
y_gs_ms_os_strides_vec
),
Number
<
Y_O1
>
{});
}
// V in Gemm B position
static
auto
MakeVGridDescriptor_O0_N_O1
(
const
std
::
vector
<
index_t
>&
v_gs_os_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
v_gs_os_ns_strides_vec
)
{
// v_gs_os_ns -> vgrad_gs_ns_os. O dims last because output is row-major.
// Here directly rearrange lengths/strides before constructing tensor descriptor to reduce
// transformation overhead
// TODO: This will be much easier when inputs are Gs, Ms, Ns, Os. So there's no need to
// extract subsequence and shuffle them.
const
index_t
num_dims
=
NumDimG
+
NumDimN
+
NumDimO
;
// 0, 1, .. NumDimG - 1
std
::
vector
<
index_t
>
gs_ids
(
NumDimG
);
std
::
iota
(
gs_ids
.
begin
(),
gs_ids
.
end
(),
0
);
// NumDimG, NumDimG + 1, ... NumDimG + NumDimO - 1
std
::
vector
<
index_t
>
os_ids
(
NumDimO
);
std
::
iota
(
os_ids
.
begin
(),
os_ids
.
end
(),
NumDimG
);
// NumDimG + NumDimO, NumDimG + NumDimO + 1, ... NumDimG + NumDimO + NumDimN - 1
std
::
vector
<
index_t
>
ns_ids
(
NumDimN
);
std
::
iota
(
ns_ids
.
begin
(),
ns_ids
.
end
(),
NumDimG
+
NumDimO
);
std
::
vector
<
index_t
>
ids_old2new
;
ids_old2new
.
insert
(
ids_old2new
.
end
(),
gs_ids
.
begin
(),
gs_ids
.
end
());
ids_old2new
.
insert
(
ids_old2new
.
end
(),
ns_ids
.
begin
(),
ns_ids
.
end
());
ids_old2new
.
insert
(
ids_old2new
.
end
(),
os_ids
.
begin
(),
os_ids
.
end
());
std
::
vector
<
index_t
>
v_gs_ns_os_lengths_vec
(
num_dims
),
v_gs_ns_os_strides_vec
(
num_dims
);
for
(
int
i
=
0
;
i
<
num_dims
;
i
++
)
{
index_t
id_new
=
ids_old2new
[
i
];
v_gs_ns_os_lengths_vec
[
i
]
=
v_gs_os_ns_lengths_vec
[
id_new
];
v_gs_ns_os_strides_vec
[
i
]
=
v_gs_os_ns_strides_vec
[
id_new
];
}
const
auto
v_grid_desc_nraw_oraw
=
MakeGridDescriptorPair
<
NumDimG
,
NumDimN
,
NumDimO
,
TensorSpecialization
::
Default
>
(
v_gs_ns_os_lengths_vec
,
v_gs_ns_os_strides_vec
)
.
second
;
const
auto
v_grid_desc_n_o
=
PadTensorDescriptor
(
v_grid_desc_nraw_oraw
,
make_tuple
(
NPerBlock
,
Gemm1NPerBlock
),
Sequence
<
padder
.
PadN
,
padder
.
PadO
>
{});
// N_O to O0_N_O1; to refactor
return
Transform
::
MakeB0GridDescriptor_BK0_N_BK1
(
v_grid_desc_n_o
,
Number
<
V_O1
>
{});
}
// Z in Gemm0 C position
static
auto
MakeZGridDescriptor_M_N
(
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_strides_vec
)
{
return
Transform
::
MakeCGridDescriptor_M_N
(
z_gs_ms_ns_lengths_vec
,
z_gs_ms_ns_strides_vec
);
}
//
// dS_i_j = P_i_j .* (dP_i_j - dY_i dot Y_i)
//
//
// dQ = alpha * dS * K
//
// QGrad in Gemm C position
static
auto
MakeQGradGridDescriptor_M_K
(
const
std
::
vector
<
index_t
>&
q_gs_ms_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
q_gs_ms_ks_strides_vec
)
{
return
Transform
::
MakeCGridDescriptor_M_N
(
q_gs_ms_ks_lengths_vec
,
q_gs_ms_ks_strides_vec
);
}
//
// dK = alpha * dS^T * Q
//
// KGrad in Gemm C position
static
auto
MakeKGradGridDescriptor_N_K
(
const
std
::
vector
<
index_t
>&
k_gs_ns_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
k_gs_ns_ks_strides_vec
)
{
return
Transform
::
MakeCGridDescriptor_M_N
(
k_gs_ns_ks_lengths_vec
,
k_gs_ns_ks_strides_vec
);
}
static
auto
MakeLSEGridDescriptor_M
(
index_t
MRaw
)
{
const
auto
lse_grid_desc_mraw
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
MRaw
));
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M
return
transform_tensor_descriptor
(
lse_grid_desc_mraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
}
else
{
// not pad M
return
lse_grid_desc_mraw
;
}
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
({},
{}));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
({},
{}));
using
B1GridDesc_BK0_N_BK1
=
decltype
(
MakeB1GridDescriptor_BK0_N_BK1
({},
{}));
using
YGridDesc_M_O
=
decltype
(
Transform
::
MakeCGridDescriptor_M_N
({},
{}));
using
LSEGridDesc_M
=
decltype
(
MakeLSEGridDescriptor_M
(
1
));
using
AGridDesc_G_M_K
=
decltype
(
Transform
::
MakeAGridDescriptor_G_M_K
({},
{}));
using
BGridDesc_G_N_K
=
decltype
(
Transform
::
MakeB0GridDescriptor_G_N_K
({},
{}));
using
B1GridDesc_G_N_K
=
decltype
(
Transform
::
MakeB1GridDescriptor_G_N_K
({},
{}));
using
CGridDesc_G_M_N
=
decltype
(
Transform
::
MakeCGridDescriptor_G_M_N
({},
{}));
using
ZGridDesc_G_M_N
=
decltype
(
Transform
::
MakeCGridDescriptor_G_M_N
({},
{}));
using
VGradGridDesc_N_O
=
decltype
(
MakeVGradGridDescriptor_N_O
({},
{}));
using
YGradGridDesc_M0_O_M1
=
decltype
(
MakeYGradGridDescriptor_M0_O_M1
(
YGridDesc_M_O
{}));
using
ZGridDesc_M_N
=
decltype
(
MakeZGridDescriptor_M_N
({},
{}));
constexpr
static
auto
make_MaskOutPredicate
()
{
if
constexpr
(
MaskingSpec
==
MaskingSpecialization
::
MaskDisabled
)
{
return
MaskDisabledPredicate
{};
}
else
if
constexpr
(
MaskingSpec
==
MaskingSpecialization
::
MaskOutUpperTriangle
)
{
return
MaskOutUpperTrianglePredicate
{};
}
}
using
C0MatrixMask
=
C0MatrixMask_impl
<
decltype
(
make_MaskOutPredicate
())
>
;
struct
ComputeBasePtrOfStridedBatch
{
ComputeBasePtrOfStridedBatch
(
const
AGridDesc_G_M_K
&
a_grid_desc_g_m_k
,
const
BGridDesc_G_N_K
&
b_grid_desc_g_n_k
,
const
ZGridDesc_G_M_N
&
z_grid_desc_g_m_n
,
const
B1GridDesc_G_N_K
&
b1_grid_desc_g_n_k
,
const
CGridDesc_G_M_N
&
c_grid_desc_g_m_n
,
index_t
BatchStrideLSE
)
:
a_grid_desc_g_m_k_
(
a_grid_desc_g_m_k
),
b_grid_desc_g_n_k_
(
b_grid_desc_g_n_k
),
z_grid_desc_g_m_n_
(
z_grid_desc_g_m_n
),
b1_grid_desc_g_n_k_
(
b1_grid_desc_g_n_k
),
c_grid_desc_g_m_n_
(
c_grid_desc_g_m_n
),
BatchStrideLSE_
(
BatchStrideLSE
)
{
}
__host__
__device__
constexpr
long_index_t
GetABasePtr
(
index_t
g_idx
)
const
{
return
a_grid_desc_g_m_k_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetBBasePtr
(
index_t
g_idx
)
const
{
return
b_grid_desc_g_n_k_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetZBasePtr
(
index_t
g_idx
)
const
{
return
z_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetB1BasePtr
(
index_t
g_idx
)
const
{
return
b1_grid_desc_g_n_k_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetCBasePtr
(
index_t
g_idx
)
const
{
return
c_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetLSEBasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideLSE_
);
}
private:
AGridDesc_G_M_K
a_grid_desc_g_m_k_
;
BGridDesc_G_N_K
b_grid_desc_g_n_k_
;
ZGridDesc_G_M_N
z_grid_desc_g_m_n_
;
B1GridDesc_G_N_K
b1_grid_desc_g_n_k_
;
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
index_t
BatchStrideLSE_
;
};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle_V2
<
DataType
,
// TODO: distinguish A/B datatype
LSEDataType
,
GemmAccDataType
,
CShuffleDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
ZGridDesc_M_N
,
B1GridDesc_BK0_N_BK1
,
YGridDesc_M_O
,
LSEGridDesc_M
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
,
Gemm1KPerBlock
,
AK1
,
BK1
,
B1K1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
Gemm1NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
true
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
true
,
BBlockLdsExtraN
,
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
B1BlockTransferThreadClusterArrangeOrder
,
B1BlockTransferSrcAccessOrder
,
B1BlockTransferSrcVectorDim
,
B1BlockTransferSrcScalarPerVector
,
B1BlockTransferDstScalarPerVector_BK1
,
false
,
B1BlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopSched
,
Transform
::
matrix_padder
.
PadN
,
MaskingSpec
==
MaskingSpecialization
::
MaskOutUpperTriangle
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
DataType
*
p_a_grid
,
const
DataType
*
p_b_grid
,
ZDataType
*
p_z_grid
,
const
DataType
*
p_b1_grid
,
const
DataType
*
p_c_grid
,
// for dS
const
LSEDataType
*
p_lse_grid
,
const
DataType
*
p_ygrad_grid
,
DataType
*
p_qgrad_grid
,
DataType
*
p_kgrad_grid
,
DataType
*
p_vgrad_grid
,
const
std
::
array
<
void
*
,
NumAcc0Bias
>
p_acc0_biases
,
const
std
::
array
<
void
*
,
NumAcc1Bias
>
p_acc1_biases
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_lengths
,
// b1_gs_os_ns_lengths
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_strides
,
// b1_gs_os_ns_strides
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_strides
,
// c_gs_ms_os_strides
const
std
::
vector
<
index_t
>&
lse_gs_ms_lengths
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumAcc0Bias
>
acc0_biases_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumAcc0Bias
>
acc0_biases_gs_ms_ns_strides
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumAcc1Bias
>
acc1_biases_gs_ms_gemm1ns_lengths
,
// acc1_biases_gs_ms_os_lengths
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumAcc1Bias
>
acc1_biases_gs_ms_gemm1ns_strides
,
// acc1_biases_gs_ms_os_strides
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
,
float
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
seeds
)
:
p_a_grid_
{
p_a_grid
},
p_b_grid_
{
p_b_grid
},
p_z_grid_
{
p_z_grid
},
p_b1_grid_
{
p_b1_grid
},
p_c_grid_
{
p_c_grid
},
p_lse_grid_
{
p_lse_grid
},
p_ygrad_grid_
{
p_ygrad_grid
},
p_qgrad_grid_
{
p_qgrad_grid
},
p_kgrad_grid_
{
p_kgrad_grid
},
p_vgrad_grid_
{
p_vgrad_grid
},
a_grid_desc_ak0_m_ak1_
{
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
)},
b_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
)},
z_grid_desc_m_n_
{
MakeZGridDescriptor_M_N
(
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
)},
b1_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeB1GridDescriptor_BK0_N_BK1
(
b1_gs_gemm1ns_gemm1ks_lengths
,
b1_gs_gemm1ns_gemm1ks_strides
)},
y_grid_desc_m_o_
{
Transform
::
MakeCGridDescriptor_M_N
(
c_gs_ms_gemm1ns_lengths
,
c_gs_ms_gemm1ns_strides
)},
lse_grid_desc_m_
{
DeviceOp
::
MakeLSEGridDescriptor_M
(
lse_gs_ms_lengths
[
NumDimG
])},
vgrad_grid_desc_n_o_
{
DeviceOp
::
MakeVGradGridDescriptor_N_O
(
b1_gs_gemm1ns_gemm1ks_lengths
,
b1_gs_gemm1ns_gemm1ks_strides
)},
ygrad_grid_desc_m0_o_m1_
{
DeviceOp
::
MakeYGradGridDescriptor_M0_O_M1
(
y_grid_desc_m_o_
)},
// batch offsets
a_grid_desc_g_m_k_
{
Transform
::
MakeAGridDescriptor_G_M_K
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
)},
b_grid_desc_g_n_k_
{
Transform
::
MakeB0GridDescriptor_G_N_K
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
)},
b1_grid_desc_g_n_k_
{
Transform
::
MakeB1GridDescriptor_G_N_K
(
b1_gs_gemm1ns_gemm1ks_lengths
,
b1_gs_gemm1ns_gemm1ks_strides
)},
c_grid_desc_g_m_n_
{
Transform
::
MakeCGridDescriptor_G_M_N
(
c_gs_ms_gemm1ns_lengths
,
c_gs_ms_gemm1ns_strides
)},
z_grid_desc_g_m_n_
{
Transform
::
MakeCGridDescriptor_G_M_N
(
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
)},
y_grid_desc_mblock_mperblock_oblock_operblock_
{},
block_2_ctile_map_
{
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
y_grid_desc_m_o_
)},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
acc_element_op_
{
acc_element_op
},
b1_element_op_
{
b1_element_op
},
c_element_op_
{
c_element_op
},
c0_matrix_mask_
{
b_grid_desc_g_n_k_
.
GetLength
(
I1
)},
raw_lengths_mz_nz_kz_gemm1nz_
{
a_gs_ms_ks_lengths
[
NumDimG
+
NumDimM
-
1
],
b_gs_ns_ks_lengths
[
NumDimG
+
NumDimN
-
1
],
b_gs_ns_ks_lengths
[
NumDimG
+
NumDimN
+
NumDimK
-
1
],
b1_gs_gemm1ns_gemm1ks_lengths
[
NumDimG
+
NumDimO
-
1
]},
a_mz_kz_strides_
{
a_gs_ms_ks_strides
[
NumDimG
+
NumDimM
-
1
],
a_gs_ms_ks_strides
[
NumDimG
+
NumDimM
+
NumDimK
-
1
]},
b_nz_kz_strides_
{
b_gs_ns_ks_strides
[
NumDimG
+
NumDimN
-
1
],
b_gs_ns_ks_strides
[
NumDimG
+
NumDimN
+
NumDimK
-
1
]},
b1_nz_kz_strides_
{
b1_gs_gemm1ns_gemm1ks_strides
[
NumDimG
+
NumDimO
-
1
],
b1_gs_gemm1ns_gemm1ks_strides
[
NumDimG
+
NumDimO
+
NumDimN
-
1
]},
c_mz_gemm1nz_strides_
{
c_gs_ms_gemm1ns_strides
[
NumDimG
+
NumDimM
-
1
],
c_gs_ms_gemm1ns_strides
[
NumDimG
+
NumDimM
+
NumDimO
-
1
]},
batch_count_
{
c_grid_desc_g_m_n_
.
GetLength
(
I0
)},
compute_base_ptr_of_batch_
{
a_grid_desc_g_m_k_
,
b_grid_desc_g_n_k_
,
z_grid_desc_g_m_n_
,
b1_grid_desc_g_n_k_
,
c_grid_desc_g_m_n_
,
type_convert
<
index_t
>
(
lse_grid_desc_m_
.
GetElementSpaceSize
())}
{
// TODO: implement bias addition
ignore
=
p_acc0_biases
;
ignore
=
p_acc1_biases
;
ignore
=
acc0_biases_gs_ms_ns_lengths
;
ignore
=
acc0_biases_gs_ms_ns_strides
;
ignore
=
acc1_biases_gs_ms_gemm1ns_lengths
;
ignore
=
acc1_biases_gs_ms_gemm1ns_strides
;
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
b_grid_desc_bk0_n_bk1_
,
b1_grid_desc_bk0_n_bk1_
,
y_grid_desc_m_o_
,
block_2_ctile_map_
))
{
y_grid_desc_mblock_mperblock_oblock_operblock_
=
GridwiseGemm
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
y_grid_desc_m_o_
);
}
p_dropout_
=
1.
f
-
p_drop
;
float
rp_dropout_
=
1.
f
/
p_dropout_
;
acc_element_op_
.
Append
(
rp_dropout_
);
seed_
=
std
::
get
<
0
>
(
seeds
);
offset_
=
std
::
get
<
1
>
(
seeds
);
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
=
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
(
z_grid_desc_m_n_
);
// Print();
}
void
Print
()
const
{
std
::
cout
<<
"a_grid_desc_g_m_k_: "
<<
a_grid_desc_g_m_k_
.
GetLength
(
I0
)
<<
", "
<<
a_grid_desc_g_m_k_
.
GetLength
(
I1
)
<<
", "
<<
a_grid_desc_g_m_k_
.
GetLength
(
I2
)
<<
'\n'
;
// a_grid_desc_g_m_k_.Print();
std
::
cout
<<
"b_grid_desc_g_n_k_: "
<<
b_grid_desc_g_n_k_
.
GetLength
(
I0
)
<<
", "
<<
b_grid_desc_g_n_k_
.
GetLength
(
I1
)
<<
", "
<<
b_grid_desc_g_n_k_
.
GetLength
(
I2
)
<<
'\n'
;
// b_grid_desc_g_n_k_.Print();
std
::
cout
<<
"b1_grid_desc_g_o_n_: "
<<
b1_grid_desc_g_n_k_
.
GetLength
(
I0
)
<<
", "
<<
b1_grid_desc_g_n_k_
.
GetLength
(
I1
)
<<
", "
<<
b1_grid_desc_g_n_k_
.
GetLength
(
I2
)
<<
'\n'
;
// b1_grid_desc_g_n_k_.Print();
std
::
cout
<<
"c_grid_desc_g_m_o_: "
<<
c_grid_desc_g_m_n_
.
GetLength
(
I0
)
<<
", "
<<
c_grid_desc_g_m_n_
.
GetLength
(
I1
)
<<
", "
<<
c_grid_desc_g_m_n_
.
GetLength
(
I2
)
<<
'\n'
;
// c_grid_desc_g_m_n_.Print();
std
::
cout
<<
"vgrad_grid_desc_n_o_: "
<<
vgrad_grid_desc_n_o_
.
GetLength
(
I0
)
<<
", "
<<
vgrad_grid_desc_n_o_
.
GetLength
(
I1
)
<<
'\n'
;
std
::
cout
<<
"ygrad_grid_desc_m0_o_m1_: "
<<
ygrad_grid_desc_m0_o_m1_
.
GetLength
(
I0
)
<<
", "
<<
ygrad_grid_desc_m0_o_m1_
.
GetLength
(
I1
)
<<
", "
<<
ygrad_grid_desc_m0_o_m1_
.
GetLength
(
I2
)
<<
'\n'
;
}
// pointers
const
DataType
*
p_a_grid_
;
const
DataType
*
p_b_grid_
;
ZDataType
*
p_z_grid_
;
const
DataType
*
p_b1_grid_
;
const
DataType
*
p_c_grid_
;
const
LSEDataType
*
p_lse_grid_
;
const
DataType
*
p_ygrad_grid_
;
DataType
*
p_qgrad_grid_
;
DataType
*
p_kgrad_grid_
;
DataType
*
p_vgrad_grid_
;
// tensor descriptor
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
ZGridDesc_M_N
z_grid_desc_m_n_
;
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1_
;
YGridDesc_M_O
y_grid_desc_m_o_
;
LSEGridDesc_M
lse_grid_desc_m_
;
VGradGridDesc_N_O
vgrad_grid_desc_n_o_
;
YGradGridDesc_M0_O_M1
ygrad_grid_desc_m0_o_m1_
;
// batch offsets
AGridDesc_G_M_K
a_grid_desc_g_m_k_
;
BGridDesc_G_N_K
b_grid_desc_g_n_k_
;
B1GridDesc_G_N_K
b1_grid_desc_g_n_k_
;
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
ZGridDesc_G_M_N
z_grid_desc_g_m_n_
;
typename
GridwiseGemm
::
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
y_grid_desc_mblock_mperblock_oblock_operblock_
;
typename
GridwiseGemm
::
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
;
// block-to-c-tile map
typename
GridwiseGemm
::
DefaultBlock2CTileMap
block_2_ctile_map_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
AccElementwiseOperation
acc_element_op_
;
B1ElementwiseOperation
b1_element_op_
;
CElementwiseOperation
c_element_op_
;
// check C0 masking and padding
C0MatrixMask
c0_matrix_mask_
;
// For robust IsSupportedArgument() check
std
::
vector
<
index_t
>
raw_lengths_mz_nz_kz_gemm1nz_
;
std
::
vector
<
index_t
>
a_mz_kz_strides_
;
std
::
vector
<
index_t
>
b_nz_kz_strides_
;
std
::
vector
<
index_t
>
b1_nz_kz_strides_
;
std
::
vector
<
index_t
>
c_mz_gemm1nz_strides_
;
index_t
batch_count_
;
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch_
;
float
p_dropout_
;
unsigned
long
long
seed_
;
unsigned
long
long
offset_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
DeviceOp
::
IsSupportedArgument
(
arg
))
{
throw
std
::
runtime_error
(
"wrong! unsupported argument"
);
}
const
index_t
grid_size
=
arg
.
block_2_ctile_map_
.
CalculateGridSize
(
arg
.
y_grid_desc_m_o_
)
*
arg
.
batch_count_
;
// Gemm0_K
const
auto
K
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_batched_gemm_softmax_gemm_xdl_cshuffle_v2
<
GridwiseGemm
,
DataType
,
ZDataType
,
LSEDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
,
DeviceOp
::
B1GridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
,
DeviceOp
::
LSEGridDesc_M
,
DeviceOp
::
VGradGridDesc_N_O
,
DeviceOp
::
YGradGridDesc_M0_O_M1
,
typename
GridwiseGemm
::
DefaultBlock2CTileMap
,
ComputeBasePtrOfStridedBatch
,
C0MatrixMask
,
has_main_k_block_loop_
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_z_grid_
,
arg
.
p_b1_grid_
,
arg
.
p_c_grid_
,
arg
.
p_lse_grid_
,
arg
.
p_ygrad_grid_
,
arg
.
p_qgrad_grid_
,
arg
.
p_kgrad_grid_
,
arg
.
p_vgrad_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
acc_element_op_
,
arg
.
b1_element_op_
,
arg
.
c_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
arg
.
y_grid_desc_mblock_mperblock_oblock_operblock_
,
arg
.
lse_grid_desc_m_
,
arg
.
vgrad_grid_desc_n_o_
,
arg
.
ygrad_grid_desc_m0_o_m1_
,
arg
.
block_2_ctile_map_
,
arg
.
batch_count_
,
arg
.
compute_base_ptr_of_batch_
,
arg
.
c0_matrix_mask_
,
arg
.
p_dropout_
,
arg
.
seed_
,
arg
.
offset_
);
};
// Gemm1_K is split into Gemm1_K0/K1 where K1 is known at compile time, so we only need
// to concern Gemm0's loop
#if 1
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
#endif
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
#if 0
arg.Print();
#endif
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
{
return
false
;
}
// TODO: Check if tensor specialization & strides mismatch
// Check if C permute dimension matches GEMM + GEMM shape
const
index_t
c_g
=
arg
.
c_grid_desc_g_m_n_
.
GetLength
(
I0
);
// unpadded
const
index_t
c_m
=
arg
.
y_grid_desc_m_o_
.
GetLength
(
I0
);
const
index_t
c_gemm1n
=
arg
.
y_grid_desc_m_o_
.
GetLength
(
I1
);
const
index_t
a_m
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
);
const
index_t
b1_gemm1n
=
arg
.
b1_grid_desc_bk0_n_bk1_
.
GetLength
(
I1
);
if
(
!
(
c_g
==
arg
.
batch_count_
&&
c_m
==
a_m
&&
c_gemm1n
==
b1_gemm1n
))
{
return
false
;
}
// Note: we need raw lengths since threadwise copy can not handle vector load when part of
// vector is out of bounds
// Note: need lowest dim in Ms/Ns/Ks/Os, not merged M/N/K/O
const
auto
MzRaw
=
arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
0
];
const
auto
NzRaw
=
arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
1
];
const
auto
KzRaw
=
arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
2
];
const
auto
Gemm1NzRaw
=
arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
3
];
// Check scalar per vector requirement
const
auto
a_extent_lowest
=
ABlockTransferSrcVectorDim
==
2
?
KzRaw
:
MzRaw
;
const
auto
b_extent_lowest
=
BBlockTransferSrcVectorDim
==
2
?
KzRaw
:
NzRaw
;
const
auto
b1_extent_lowest
=
B1BlockTransferSrcVectorDim
==
2
?
NzRaw
:
Gemm1NzRaw
;
const
auto
c_extent_lowest
=
Gemm1NzRaw
;
if
(
!
(
a_extent_lowest
%
ABlockTransferSrcScalarPerVector
==
0
&&
b_extent_lowest
%
BBlockTransferSrcScalarPerVector
==
0
&&
b1_extent_lowest
%
B1BlockTransferSrcScalarPerVector
==
0
&&
c_extent_lowest
%
CShuffleBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
// Check vector load/store requirement
const
auto
a_stride_lowest
=
ABlockTransferSrcVectorDim
==
2
?
arg
.
a_mz_kz_strides_
[
1
]
:
arg
.
a_mz_kz_strides_
[
0
];
const
auto
b_stride_lowest
=
BBlockTransferSrcVectorDim
==
2
?
arg
.
b_nz_kz_strides_
[
1
]
:
arg
.
b_nz_kz_strides_
[
0
];
const
auto
b1_stride_lowest
=
B1BlockTransferSrcVectorDim
==
2
?
arg
.
b1_nz_kz_strides_
[
1
]
:
arg
.
b1_nz_kz_strides_
[
0
];
const
auto
c_stride_lowest
=
arg
.
c_mz_gemm1nz_strides_
[
1
];
// cshuffle assumes lowest dim in Gemm1Ns to be contiguous
if
(
!
(
a_stride_lowest
==
1
||
b_stride_lowest
==
1
||
b1_stride_lowest
==
1
||
c_stride_lowest
==
1
))
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
arg
.
y_grid_desc_m_o_
,
arg
.
block_2_ctile_map_
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
DataType
*
p_a
,
const
DataType
*
p_b
,
ZDataType
*
p_z
,
const
DataType
*
p_b1
,
const
DataType
*
p_c
,
const
LSEDataType
*
p_lse
,
const
DataType
*
p_ygrad_grid
,
DataType
*
p_qgrad_grid
,
DataType
*
p_kgrad_grid
,
DataType
*
p_vgrad_grid
,
const
std
::
array
<
void
*
,
NumAcc0Bias
>
p_acc0_biases
,
const
std
::
array
<
void
*
,
NumAcc1Bias
>
p_acc1_biases
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_lengths
,
// b1_gs_os_ns_lengths
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_strides
,
// b1_gs_os_ns_strides
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_strides
,
// c_gs_ms_os_strides
const
std
::
vector
<
index_t
>&
lse_gs_ms_lengths
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumAcc0Bias
>
acc0_biases_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumAcc0Bias
>
acc0_biases_gs_ms_ns_strides
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumAcc1Bias
>
acc1_biases_gs_ms_gemm1ns_lengths
,
// acc1_biases_gs_ms_os_lengths
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumAcc1Bias
>
acc1_biases_gs_ms_gemm1ns_strides
,
// acc1_biases_gs_ms_os_strides
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
,
float
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
seeds
)
{
return
Argument
{
p_a
,
p_b
,
p_z
,
p_b1
,
p_c
,
p_lse
,
p_ygrad_grid
,
p_qgrad_grid
,
p_kgrad_grid
,
p_vgrad_grid
,
p_acc0_biases
,
p_acc1_biases
,
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
,
b1_gs_gemm1ns_gemm1ks_lengths
,
// b1_gs_os_ns_lengths
b1_gs_gemm1ns_gemm1ks_strides
,
// b1_gs_os_ns_strides
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
c_gs_ms_gemm1ns_strides
,
// c_gs_ms_os_strides
lse_gs_ms_lengths
,
acc0_biases_gs_ms_ns_lengths
,
acc0_biases_gs_ms_ns_strides
,
acc1_biases_gs_ms_gemm1ns_lengths
,
// acc1_biases_gs_ms_os_lengths
acc1_biases_gs_ms_gemm1ns_strides
,
// acc1_biases_gs_ms_os_strides
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
p_drop
,
seeds
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
// FIXME: constness
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_z
,
const
void
*
p_b1
,
const
void
*
p_c
,
const
void
*
p_lse
,
const
void
*
p_ygrad_grid
,
void
*
p_qgrad_grid
,
void
*
p_kgrad_grid
,
void
*
p_vgrad_grid
,
const
std
::
array
<
void
*
,
NumAcc0Bias
>
p_acc0_biases
,
const
std
::
array
<
void
*
,
NumAcc1Bias
>
p_acc1_biases
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_lengths
,
// b1_gs_os_ns_lengths
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_strides
,
// b1_gs_os_ns_strides
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_strides
,
// c_gs_ms_os_strides
const
std
::
vector
<
index_t
>&
lse_gs_ms_lengths
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumAcc0Bias
>
acc0_biases_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumAcc0Bias
>
acc0_biases_gs_ms_ns_strides
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumAcc1Bias
>
acc1_biases_gs_ms_gemm1ns_lengths
,
// acc1_biases_gs_ms_os_lengths
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumAcc1Bias
>
acc1_biases_gs_ms_gemm1ns_strides
,
// acc1_biases_gs_ms_os_strides
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
,
float
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
seeds
)
// override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
DataType
*>
(
p_a
),
static_cast
<
const
DataType
*>
(
p_b
),
static_cast
<
ZDataType
*>
(
p_z
),
static_cast
<
const
DataType
*>
(
p_b1
),
static_cast
<
const
DataType
*>
(
p_c
),
static_cast
<
const
LSEDataType
*>
(
p_lse
),
static_cast
<
const
DataType
*>
(
p_ygrad_grid
),
static_cast
<
DataType
*>
(
p_qgrad_grid
),
static_cast
<
DataType
*>
(
p_kgrad_grid
),
static_cast
<
DataType
*>
(
p_vgrad_grid
),
p_acc0_biases
,
// cast in struct Argument
p_acc1_biases
,
// cast in struct Argument
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
,
b1_gs_gemm1ns_gemm1ks_lengths
,
// b1_gs_os_ns_lengths
b1_gs_gemm1ns_gemm1ks_strides
,
// b1_gs_os_ns_strides
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
c_gs_ms_gemm1ns_strides
,
// c_gs_ms_os_strides
lse_gs_ms_lengths
,
acc0_biases_gs_ms_ns_lengths
,
acc0_biases_gs_ms_ns_strides
,
acc1_biases_gs_ms_gemm1ns_lengths
,
acc1_biases_gs_ms_gemm1ns_strides
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
p_drop
,
seeds
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
// override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceBatchedMultiheadAttentionBackward_Train_Xdl_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerBlock
<<
", "
<<
Gemm1NPerBlock
<<
", "
<<
Gemm1KPerBlock
<<
", "
<<
B1K1
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
", "
<<
"ASpec"
<<
getTensorSpecializationString
(
ASpec
)
<<
", "
<<
"B0Spec"
<<
getTensorSpecializationString
(
BSpec
)
<<
", "
<<
"B1Spec"
<<
getTensorSpecializationString
(
B1Spec
)
<<
", "
<<
"CSpec"
<<
getTensorSpecializationString
(
CSpec
)
<<
", "
<<
getMaskingSpecializationString
(
MaskingSpec
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/utility/philox_rand.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v2.hpp"
#include "ck/tensor_operation/operator_transform/transform_contraction_to_gemm.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename GridwiseGemm,
typename GemmAccDataType,
typename GroupKernelArg,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename AccElementwiseOperation,
typename B1ElementwiseOperation,
typename CElementwiseOperation,
bool HasMainKBlockLoop,
bool IsDropout>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_grouped_gemm_softmax_gemm_xdl_cshuffle_v2(
const void CK_CONSTANT_ADDRESS_SPACE* group_kernel_args,
const index_t group_count,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const AccElementwiseOperation acc_element_op,
const B1ElementwiseOperation b1_element_op,
const CElementwiseOperation c_element_op,
const ushort p_dropout_in_16bits,
const GemmAccDataType p_dropout_rescale,
const unsigned long long seed,
const unsigned long long offset)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t block_id = get_block_1d_id();
const index_t global_thread_id = get_thread_global_1d_id();
ck::philox ph(seed, global_thread_id, offset);
const auto arg_ptr = reinterpret_cast<const GroupKernelArg*>(
cast_pointer_to_generic_address_space(group_kernel_args));
index_t left = 0;
index_t right = group_count;
index_t group_id = index_t((left + right) / 2);
while(
(!(block_id >= arg_ptr[group_id].block_start_ && block_id < arg_ptr[group_id].block_end_)))
{
if(block_id < arg_ptr[group_id].block_start_)
{
right = group_id;
}
else
{
left = group_id;
}
group_id = index_t((left + right) / 2);
}
// per-group batch offset
const index_t num_blocks_per_batch = arg_ptr[group_id].num_blocks_per_batch_;
const index_t g_idx = __builtin_amdgcn_readfirstlane(
(block_id - arg_ptr[group_id].block_start_) / num_blocks_per_batch);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(arg_ptr[group_id].compute_base_ptr_of_batch_.GetABasePtr(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(arg_ptr[group_id].compute_base_ptr_of_batch_.GetBBasePtr(g_idx)));
const long_index_t b1_batch_offset = __builtin_amdgcn_readfirstlane(static_cast<long_index_t>(
arg_ptr[group_id].compute_base_ptr_of_batch_.GetB1BasePtr(g_idx)));
const long_index_t c_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(arg_ptr[group_id].compute_base_ptr_of_batch_.GetCBasePtr(g_idx)));
const long_index_t z_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(arg_ptr[group_id].compute_base_ptr_of_batch_.GetZBasePtr(g_idx)));
const long_index_t lse_batch_offset = __builtin_amdgcn_readfirstlane(static_cast<long_index_t>(
arg_ptr[group_id].compute_base_ptr_of_batch_.GetLSEBasePtr(g_idx)));
//unsigned short* p_z_grid_in = //
// (arg_ptr[group_id].p_z_grid_ == nullptr ? nullptr
// : arg_ptr[group_id].p_z_grid_ + z_batch_offset);
GridwiseGemm::template Run<HasMainKBlockLoop, IsDropout>(
arg_ptr[group_id].p_a_grid_ + a_batch_offset,
arg_ptr[group_id].p_b_grid_ + b_batch_offset,
arg_ptr[group_id].p_b1_grid_ + b1_batch_offset,
arg_ptr[group_id].p_c_grid_ + c_batch_offset,
arg_ptr[group_id].p_z_grid_ == nullptr ? nullptr
: arg_ptr[group_id].p_z_grid_ + z_batch_offset,
arg_ptr[group_id].p_lse_grid_ + lse_batch_offset,
p_shared,
a_element_op,
b_element_op,
acc_element_op,
b1_element_op,
c_element_op,
arg_ptr[group_id].a_grid_desc_ak0_m_ak1_,
arg_ptr[group_id].b_grid_desc_bk0_n_bk1_,
arg_ptr[group_id].b1_grid_desc_bk0_n_bk1_,
arg_ptr[group_id].c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg_ptr[group_id].z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_, ////////
arg_ptr[group_id].lse_grid_desc_m_,
arg_ptr[group_id].block_2_ctile_map_,
arg_ptr[group_id].c0_matrix_mask_,
p_dropout_in_16bits,
p_dropout_rescale,
ph);
#else
ignore = group_kernel_args;
ignore = group_count;
ignore = a_element_op;
ignore = b_element_op;
ignore = acc_element_op;
ignore = b1_element_op;
ignore = c_element_op;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
// Computes C = A * B0 * B1
// ^^^^^^ (Acc0)
// ^^^^^^^^^^^ (Acc1)
template <index_t NumDimG,
index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
index_t NumDimO, // NumDimGemm1N
typename ADataType,
typename BDataType,
typename B1DataType,
typename CDataType,
typename ZDataType,
typename LSEDataType,
typename Acc0BiasDataType,
typename Acc1BiasDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename AccElementwiseOperation,
typename B1ElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
TensorSpecialization ASpec,
TensorSpecialization BSpec,
TensorSpecialization B1Spec,
TensorSpecialization CSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock, // Gemm0NPerBlock
index_t KPerBlock, // Gemm0KPerBlock
index_t Gemm1NPerBlock,
index_t Gemm1KPerBlock,
index_t AK1,
index_t BK1,
index_t B1K1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
index_t Gemm1NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
typename B1BlockTransferThreadClusterLengths_BK0_N_BK1,
typename B1BlockTransferThreadClusterArrangeOrder,
typename B1BlockTransferSrcAccessOrder,
index_t B1BlockTransferSrcVectorDim,
index_t B1BlockTransferSrcScalarPerVector,
index_t B1BlockTransferDstScalarPerVector_BK1,
bool B1BlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
MaskingSpecialization MaskingSpec,
LoopScheduler LoopSched = LoopScheduler::Default>
struct DeviceGroupedGemmSoftmaxGemmPermute_Train_Xdl_CShuffle
: public DeviceGroupedGemmSoftmaxGemmPermuteTrain<NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
BDataType,
B1DataType,
CDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AElementwiseOperation,
BElementwiseOperation,
AccElementwiseOperation,
B1ElementwiseOperation,
CElementwiseOperation,
MaskingSpec>
{
static_assert(NumDimG > 0 && NumDimM > 0 && NumDimN > 0 && NumDimK > 0 && NumDimO > 0,
"Number of dimension must be greater than 0");
static constexpr index_t NumAcc0Bias = Acc0BiasDataType::Size();
static constexpr index_t NumAcc1Bias = Acc1BiasDataType::Size();
// TODO ANT: implement bias combination
static_assert(NumAcc0Bias == 0 && NumAcc0Bias == 0, "Bias addition is unimplemented");
#if 0
// TODO ANT: use alias
static constexpr index_t NumDimGemm0M = NumDimM;
static constexpr index_t NumDimGemm0N = NumDimN;
static constexpr index_t NumDimGemm0K = NumDimK;
static constexpr index_t NumDimGemm1M = NumDimM;
static constexpr index_t NumDimGemm1N = NumDimO;
static constexpr index_t NumDimGemm1K = NumDimN;
#endif
using DeviceOp = DeviceGroupedGemmSoftmaxGemmPermute_Train_Xdl_CShuffle;
using ProblemDesc = typename DeviceGroupedGemmSoftmaxGemmPermuteTrain<NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
BDataType,
B1DataType,
CDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AElementwiseOperation,
BElementwiseOperation,
AccElementwiseOperation,
B1ElementwiseOperation,
CElementwiseOperation,
MaskingSpec>::ProblemDesc;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
using Transform = TransformBatchedContractionContractionToBatchedGemmGemm<
Sequence<NumDimG, NumDimM, NumDimN, NumDimK, NumDimO>,
Sequence<MPerBlock, NPerBlock, KPerBlock, Gemm1NPerBlock>,
GemmSpec,
ASpec,
BSpec,
B1Spec,
CSpec>;
static auto MakeAGridDescriptor_AK0_M_AK1(const std::vector<index_t>& a_gs_ms_ks_lengths_vec,
const std::vector<index_t>& a_gs_ms_ks_strides_vec)
{
return Transform::MakeAGridDescriptor_AK0_M_AK1(
Transform::MakeAGridDescriptor_M_K(a_gs_ms_ks_lengths_vec, a_gs_ms_ks_strides_vec),
Number<AK1>{});
}
static auto MakeBGridDescriptor_BK0_N_BK1(const std::vector<index_t>& b_gs_ns_ks_lengths_vec,
const std::vector<index_t>& b_gs_ns_ks_strides_vec)
{
return Transform::MakeB0GridDescriptor_BK0_N_BK1(
Transform::MakeB0GridDescriptor_N_K(b_gs_ns_ks_lengths_vec, b_gs_ns_ks_strides_vec),
Number<BK1>{});
}
static auto
MakeB1GridDescriptor_BK0_N_BK1(const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_lengths_vec,
const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides_vec)
{
return Transform::MakeB1GridDescriptor_BK0_N_BK1(
Transform::MakeB1GridDescriptor_N_K(b1_gs_gemm1ns_gemm1ks_lengths_vec,
b1_gs_gemm1ns_gemm1ks_strides_vec),
Number<B1K1>{});
}
static auto MakeZGridDescriptor_M_N(const std::vector<index_t>& z_gs_ms_ns_lengths_vec,
const std::vector<index_t>& z_gs_ms_ns_strides_vec)
{
return Transform::MakeCGridDescriptor_M_N(z_gs_ms_ns_lengths_vec, z_gs_ms_ns_strides_vec);
}
static auto MakeLSEGridDescriptor_M(index_t MRaw)
{
const auto lse_grid_desc_mraw = make_naive_tensor_descriptor_packed(make_tuple(MRaw));
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto MPad = M - MRaw;
if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M
return transform_tensor_descriptor(lse_grid_desc_mraw,
make_tuple(make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
}
else
{
// not pad M
return lse_grid_desc_mraw;
}
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1({}, {}));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1({}, {}));
using B1GridDesc_BK0_N_BK1 = decltype(MakeB1GridDescriptor_BK0_N_BK1({}, {}));
using CGridDesc_M_N = decltype(Transform::MakeCGridDescriptor_M_N({}, {}));
using LSEGridDesc_M = decltype(MakeLSEGridDescriptor_M(1));
using ZGridDesc_M_N = decltype(MakeZGridDescriptor_M_N({}, {}));
using AGridDesc_G_M_K = decltype(Transform::MakeAGridDescriptor_G_M_K({}, {}));
using BGridDesc_G_N_K = decltype(Transform::MakeB0GridDescriptor_G_N_K({}, {}));
using B1GridDesc_G_N_K = decltype(Transform::MakeB1GridDescriptor_G_N_K({}, {}));
using CGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
using ZGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
constexpr static auto make_MaskOutPredicate()
{
if constexpr(MaskingSpec == MaskingSpecialization::MaskDisabled)
{
return MaskDisabledPredicate{};
}
else if constexpr(MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle)
{
return MaskOutUpperTrianglePredicate{};
}
}
using C0MatrixMask = C0MatrixMask_impl<decltype(make_MaskOutPredicate())>;
struct ComputeBasePtrOfStridedBatch
{
ComputeBasePtrOfStridedBatch(const AGridDesc_G_M_K& a_grid_desc_g_m_k,
const BGridDesc_G_N_K& b_grid_desc_g_n_k,
const B1GridDesc_G_N_K& b1_grid_desc_g_n_k,
const CGridDesc_G_M_N& c_grid_desc_g_m_n,
const ZGridDesc_G_M_N& z_grid_desc_g_m_n,
index_t BatchStrideLSE)
: a_grid_desc_g_m_k_(a_grid_desc_g_m_k),
b_grid_desc_g_n_k_(b_grid_desc_g_n_k),
b1_grid_desc_g_n_k_(b1_grid_desc_g_n_k),
c_grid_desc_g_m_n_(c_grid_desc_g_m_n),
z_grid_desc_g_m_n_(z_grid_desc_g_m_n),
BatchStrideLSE_(BatchStrideLSE)
{
}
__host__ __device__ constexpr long_index_t GetABasePtr(index_t g_idx) const
{
return a_grid_desc_g_m_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
__host__ __device__ constexpr long_index_t GetBBasePtr(index_t g_idx) const
{
return b_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
__host__ __device__ constexpr long_index_t GetB1BasePtr(index_t g_idx) const
{
return b1_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
__host__ __device__ constexpr long_index_t GetCBasePtr(index_t g_idx) const
{
return c_grid_desc_g_m_n_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
__host__ __device__ constexpr long_index_t GetZBasePtr(index_t g_idx) const
{
return z_grid_desc_g_m_n_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
__host__ __device__ constexpr long_index_t GetLSEBasePtr(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideLSE_);
}
private:
AGridDesc_G_M_K a_grid_desc_g_m_k_;
BGridDesc_G_N_K b_grid_desc_g_n_k_;
B1GridDesc_G_N_K b1_grid_desc_g_n_k_;
CGridDesc_G_M_N c_grid_desc_g_m_n_;
ZGridDesc_G_M_N z_grid_desc_g_m_n_;
index_t BatchStrideLSE_;
};
// GridwiseGemm
using GridwiseGemm = GridwiseBatchedGemmSoftmaxGemmTrain_Xdl_CShuffle<
ADataType, // TODO: distinguish A/B datatype
GemmAccDataType,
CShuffleDataType,
CDataType,
LSEDataType,
AElementwiseOperation,
BElementwiseOperation,
AccElementwiseOperation,
B1ElementwiseOperation,
CElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
B1GridDesc_BK0_N_BK1,
CGridDesc_M_N,
ZGridDesc_M_N,
LSEGridDesc_M,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
Gemm1NPerBlock,
Gemm1KPerBlock,
AK1,
BK1,
B1K1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
Gemm1NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
true,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
true,
BBlockLdsExtraN,
B1BlockTransferThreadClusterLengths_BK0_N_BK1,
B1BlockTransferThreadClusterArrangeOrder,
B1BlockTransferSrcAccessOrder,
B1BlockTransferSrcVectorDim,
B1BlockTransferSrcScalarPerVector,
B1BlockTransferDstScalarPerVector_BK1,
false,
B1BlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopSched,
Transform::matrix_padder.PadN,
MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle>;
using Block2CTileMap = OffsettedBlockToCTileMap<typename GridwiseGemm::DefaultBlock2CTileMap>;
struct GroupKernelArg
{
// pointers
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
const B1DataType* p_b1_grid_;
CDataType* p_c_grid_;
ZDataType* p_z_grid_;
LSEDataType* p_lse_grid_;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_;
ZGridDesc_M_N z_grid_desc_m_n_;
LSEGridDesc_M lse_grid_desc_m_;
// batch & stride
index_t num_blocks_per_batch_;
ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch_;
// check C0 masking and padding
C0MatrixMask c0_matrix_mask_;
// block-to-c-tile map
Block2CTileMap block_2_ctile_map_;
index_t block_start_, block_end_;
};
struct GroupDeviceArg
{
// lengths for the last dimensions of overall problem for sanity check of vector load/store
std::vector<index_t> raw_lengths_mz_nz_kz_gemm1nz_;
// strides for the last dimensions of each tensor for sanity check of vector load/store
std::vector<index_t> a_mz_kz_strides_;
std::vector<index_t> b_nz_kz_strides_;
std::vector<index_t> b1_nz_kz_strides_;
std::vector<index_t> c_mz_gemm1nz_strides_;
// for gridwise gemm check
CGridDesc_M_N c_grid_desc_m_n_;
};
// Argument
// FIXME: constness
struct Argument : public BaseArgument
{
Argument(std::vector<const void*> p_a_vec,
std::vector<const void*> p_b_vec,
std::vector<const void*> p_b1_vec,
std::vector<void*> p_c_vec,
std::vector<void*> p_z_vec,
std::vector<void*> p_lse_vec,
std::vector<std::vector<const void*>> p_acc0_biases_vec,
std::vector<std::vector<const void*>> p_acc1_biases_vec,
std::vector<ProblemDesc> problem_desc_vec,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op,
float p_dropout,
std::tuple<unsigned long long, unsigned long long> seeds)
: a_element_op_{a_element_op},
b_element_op_{b_element_op},
acc_element_op_{acc_element_op},
b1_element_op_{b1_element_op},
c_element_op_{c_element_op}
{
// TODO ANT: implement bias addition
group_count_ = problem_desc_vec.size();
if(!(group_count_ == p_a_vec.size() && group_count_ == p_b_vec.size() &&
group_count_ == p_b1_vec.size() && group_count_ == p_c_vec.size()))
{
throw std::runtime_error("wrong! group_count_ != a/b/b1/c_vec.size");
}
if(!(p_acc0_biases_vec.size() == p_acc1_biases_vec.size()))
{
throw std::runtime_error("wrong! acc0_bias_vec.size != acc1_bias_vec.size");
}
grid_size_ = 0;
for(std::size_t i = 0; i < group_count_; i++)
{
const auto p_a_grid = static_cast<const ADataType*>(p_a_vec[i]);
const auto p_b_grid = static_cast<const BDataType*>(p_b_vec[i]);
const auto p_b1_grid = static_cast<const B1DataType*>(p_b1_vec[i]);
const auto p_c_grid = static_cast<CDataType*>(p_c_vec[i]);
const auto p_z_grid = static_cast<ZDataType*>(p_z_vec[i]);
const auto p_lse_grid = static_cast<LSEDataType*>(p_lse_vec[i]);
const auto& problem_desc = problem_desc_vec[i];
const auto a_grid_desc_ak0_m_ak1 = MakeAGridDescriptor_AK0_M_AK1(
problem_desc.a_gs_ms_ks_lengths, problem_desc.a_gs_ms_ks_strides);
const auto b_grid_desc_bk0_n_bk1 = MakeBGridDescriptor_BK0_N_BK1(
problem_desc.b0_gs_ns_ks_lengths, problem_desc.b0_gs_ns_ks_strides);
const auto b1_grid_desc_bk0_n_bk1 = MakeB1GridDescriptor_BK0_N_BK1(
problem_desc.b1_gs_os_ns_lengths, problem_desc.b1_gs_os_ns_strides);
const auto c_grid_desc_m_n = Transform::MakeCGridDescriptor_M_N(
problem_desc.c_gs_ms_os_lengths, problem_desc.c_gs_ms_os_strides);
const auto z_grid_desc_m_n = MakeZGridDescriptor_M_N(
problem_desc.z_gs_ms_ns_lengths, problem_desc.z_gs_ms_ns_strides);
const auto lse_grid_desc_m =
DeviceOp::MakeLSEGridDescriptor_M(problem_desc.lse_gs_ms_lengths[NumDimG]);
const auto a_grid_desc_g_m_k = Transform::MakeAGridDescriptor_G_M_K(
problem_desc.a_gs_ms_ks_lengths, problem_desc.a_gs_ms_ks_strides);
const auto b_grid_desc_g_n_k = Transform::MakeB0GridDescriptor_G_N_K(
problem_desc.b0_gs_ns_ks_lengths, problem_desc.b0_gs_ns_ks_strides);
const auto b1_grid_desc_g_n_k = Transform::MakeB1GridDescriptor_G_N_K(
problem_desc.b1_gs_os_ns_lengths, problem_desc.b1_gs_os_ns_strides);
const auto c_grid_desc_g_m_n = Transform::MakeCGridDescriptor_G_M_N(
problem_desc.c_gs_ms_os_lengths, problem_desc.c_gs_ms_os_strides);
const auto z_grid_desc_g_m_n = Transform::MakeCGridDescriptor_G_M_N(
problem_desc.z_gs_ms_ns_lengths, problem_desc.z_gs_ms_ns_strides);
const auto c_grid_desc_mblock_mperblock_nblock_nperblock =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n);
//typename GridwiseGemm::ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
// z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5;
auto z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(
z_grid_desc_m_n);
const index_t BlockStart = grid_size_;
const auto block_2_ctile_map = Block2CTileMap(c_grid_desc_m_n, BlockStart);
const index_t batch_count = c_grid_desc_g_m_n.GetLength(I0);
const index_t grid_size_grp =
block_2_ctile_map.CalculateGridSize(c_grid_desc_m_n) * batch_count;
const index_t BlockEnd = grid_size_ + grid_size_grp;
// batch stride
const auto compute_base_ptr_of_batch = ComputeBasePtrOfStridedBatch(
a_grid_desc_g_m_k,
b_grid_desc_g_n_k,
b1_grid_desc_g_n_k,
c_grid_desc_g_m_n,
z_grid_desc_g_m_n,
type_convert<index_t>(lse_grid_desc_m.GetElementSpaceSize()));
// C0 mask
const auto c0_matrix_mask = C0MatrixMask(b_grid_desc_g_n_k.GetLength(I1));
grid_size_ += grid_size_grp;
// for each group, make sure acc0_biases_gs_ms_ns_lengths.size() == NumAcc0Bias and
// so on
if(!(problem_desc.acc0_biases_gs_ms_ns_lengths.size() == NumAcc0Bias &&
problem_desc.acc0_biases_gs_ms_ns_strides.size() == NumAcc0Bias &&
problem_desc.acc1_biases_gs_ms_os_lengths.size() == NumAcc1Bias &&
problem_desc.acc1_biases_gs_ms_os_strides.size() == NumAcc1Bias))
{
throw std::runtime_error(
"wrong! number of biases in function argument does not "
"match that in template argument");
}
group_kernel_args_.push_back({p_a_grid,
p_b_grid,
p_b1_grid,
p_c_grid,
p_z_grid,
p_lse_grid,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
z_grid_desc_m_n,
lse_grid_desc_m,
block_2_ctile_map.CalculateGridSize(c_grid_desc_m_n),
compute_base_ptr_of_batch,
c0_matrix_mask,
block_2_ctile_map,
BlockStart,
BlockEnd});
group_device_args_.push_back(
{{problem_desc.a_gs_ms_ks_lengths[NumDimG + NumDimM - 1],
problem_desc.b0_gs_ns_ks_lengths[NumDimG + NumDimN - 1],
problem_desc.b0_gs_ns_ks_lengths[NumDimG + NumDimN + NumDimK - 1],
problem_desc.b1_gs_os_ns_lengths[NumDimG + NumDimO - 1]},
{problem_desc.a_gs_ms_ks_strides[NumDimG + NumDimM - 1],
problem_desc.a_gs_ms_ks_strides[NumDimG + NumDimM + NumDimK - 1]},
{problem_desc.b0_gs_ns_ks_strides[NumDimG + NumDimN - 1],
problem_desc.b0_gs_ns_ks_strides[NumDimG + NumDimN + NumDimK - 1]},
{problem_desc.b1_gs_os_ns_strides[NumDimG + NumDimO - 1],
problem_desc.b1_gs_os_ns_strides[NumDimG + NumDimO + NumDimN - 1]},
{problem_desc.c_gs_ms_os_strides[NumDimG + NumDimM - 1],
problem_desc.c_gs_ms_os_strides[NumDimG + NumDimM + NumDimO - 1]},
c_grid_desc_m_n});
}
is_dropout_ = p_dropout > 0.0; //
p_dropout_ = 1.f - p_dropout;
p_dropout_in_16bits_ = uint16_t(std::floor(p_dropout_ * 65535.0));
p_dropout_ = 1.f / p_dropout_;
p_dropout_rescale_ = type_convert<GemmAccDataType>(p_dropout_);
seed_ = std::get<0>(seeds);
offset_ = std::get<1>(seeds);
}
std::vector<GroupKernelArg> group_kernel_args_;
std::vector<GroupDeviceArg> group_device_args_;
std::size_t group_count_;
index_t grid_size_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
AccElementwiseOperation acc_element_op_;
B1ElementwiseOperation b1_element_op_;
CElementwiseOperation c_element_op_;
float p_dropout_;
ushort p_dropout_in_16bits_;
unsigned long long seed_;
unsigned long long offset_;
GemmAccDataType p_dropout_rescale_;
bool is_dropout_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(!DeviceOp::IsSupportedArgument(arg))
{
throw std::runtime_error("wrong! unsupported argument");
}
bool all_has_main_k_block_loop = true;
bool some_has_main_k_block_loop = false;
for(std::size_t i = 0; i < arg.group_count_; i++)
{
const auto K = arg.group_kernel_args_[i].a_grid_desc_ak0_m_ak1_.GetLength(I0) *
arg.group_kernel_args_[i].a_grid_desc_ak0_m_ak1_.GetLength(I2);
const bool y = GridwiseGemm::CalculateHasMainKBlockLoop(K);
all_has_main_k_block_loop &= y;
some_has_main_k_block_loop |= y;
}
hipGetErrorString(hipMemcpy(arg.p_workspace_,
arg.group_kernel_args_.data(),
arg.group_kernel_args_.size() * sizeof(GroupKernelArg),
hipMemcpyHostToDevice));
float ave_time = 0;
auto launch_kernel = [&](auto has_main_k_block_loop_, auto is_dropout_) {
const auto kernel =
kernel_grouped_gemm_softmax_gemm_xdl_cshuffle_v2<GridwiseGemm,
GemmAccDataType,
GroupKernelArg,
AElementwiseOperation,
BElementwiseOperation,
AccElementwiseOperation,
B1ElementwiseOperation,
CElementwiseOperation,
has_main_k_block_loop_,
is_dropout_>;
return launch_and_time_kernel(
stream_config,
kernel,
dim3(arg.grid_size_),
dim3(BlockSize),
0,
cast_pointer_to_constant_address_space(arg.p_workspace_),
arg.group_count_,
arg.a_element_op_,
arg.b_element_op_,
arg.acc_element_op_,
arg.b1_element_op_,
arg.c_element_op_,
arg.p_dropout_in_16bits_,
arg.p_dropout_rescale_,
arg.seed_,
arg.offset_);
};
// Gemm1_K is split into Gemm1_K0/K1 where K1 is known at compile time, so we only need
// to concern Gemm0's loop
if(all_has_main_k_block_loop)
{
if(arg.is_dropout_)
{
ave_time = launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, true>{});
}
else
{
ave_time = launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, false>{});
}
}
else if(!some_has_main_k_block_loop)
{
if(arg.is_dropout_)
{
ave_time = launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, true>{});
}
else
{
ave_time = launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, false>{});
}
}
else
{
throw std::runtime_error("wrong! all gemm problems have to simultaneously meet "
"has_main_k_block_loop or no_main_k_block_loop");
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a"))
{
return false;
}
// TODO ANT: Check if tensor specialization & strides mismatch
bool all_has_main_k_block_loop = true;
bool some_has_main_k_block_loop = false;
for(std::size_t i = 0; i < arg.group_count_; i++)
{
const auto& kernel_arg = arg.group_kernel_args_[i];
const auto& device_arg = arg.group_device_args_[i];
// Check if C permute dimension matches GEMM + GEMM shape
const index_t c_m = device_arg.c_grid_desc_m_n_.GetLength(I0);
const index_t c_gemm1n = device_arg.c_grid_desc_m_n_.GetLength(I1);
const index_t a_m = kernel_arg.a_grid_desc_ak0_m_ak1_.GetLength(I1);
const index_t b1_gemm1n = kernel_arg.b1_grid_desc_bk0_n_bk1_.GetLength(I1);
if(!(c_m == a_m && c_gemm1n == b1_gemm1n))
{
return false;
}
// Check if having main loop
const auto K = kernel_arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) *
kernel_arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
const bool y = GridwiseGemm::CalculateHasMainKBlockLoop(K);
all_has_main_k_block_loop &= y;
some_has_main_k_block_loop |= y;
// Note: we need raw lengths since threadwise copy can not handle vector load when
// part of vector is out of bounds
const auto MzRaw = device_arg.raw_lengths_mz_nz_kz_gemm1nz_[0];
const auto NzRaw = device_arg.raw_lengths_mz_nz_kz_gemm1nz_[1];
const auto KzRaw = device_arg.raw_lengths_mz_nz_kz_gemm1nz_[2];
const auto Gemm1NzRaw = device_arg.raw_lengths_mz_nz_kz_gemm1nz_[3];
// Check scalar per vector requirement
const auto a_extent_lowest = ABlockTransferSrcVectorDim == 2 ? KzRaw : MzRaw;
const auto b_extent_lowest = BBlockTransferSrcVectorDim == 2 ? KzRaw : NzRaw;
const auto b1_extent_lowest = B1BlockTransferSrcVectorDim == 2 ? NzRaw : Gemm1NzRaw;
const auto c_extent_lowest = Gemm1NzRaw;
if(!(a_extent_lowest % ABlockTransferSrcScalarPerVector == 0 &&
b_extent_lowest % BBlockTransferSrcScalarPerVector == 0 &&
b1_extent_lowest % B1BlockTransferSrcScalarPerVector == 0 &&
c_extent_lowest % CShuffleBlockTransferScalarPerVector_NPerBlock == 0))
{
return false;
}
// Check vector load/store requirement
const auto a_stride_lowest = ABlockTransferSrcVectorDim == 2
? device_arg.a_mz_kz_strides_[1]
: device_arg.a_mz_kz_strides_[0];
const auto b_stride_lowest = BBlockTransferSrcVectorDim == 2
? device_arg.b_nz_kz_strides_[1]
: device_arg.b_nz_kz_strides_[0];
const auto b1_stride_lowest = B1BlockTransferSrcVectorDim == 2
? device_arg.b1_nz_kz_strides_[1]
: device_arg.b1_nz_kz_strides_[0];
const auto c_stride_lowest =
device_arg.c_mz_gemm1nz_strides_[1]; // cshuffle assumes lowest dim in Gemm1Ns to be
// contiguous
if(!(a_stride_lowest == 1 || b_stride_lowest == 1 || b1_stride_lowest == 1 ||
c_stride_lowest == 1))
{
return false;
}
if(!GridwiseGemm::CheckValidity(kernel_arg.a_grid_desc_ak0_m_ak1_,
kernel_arg.b_grid_desc_bk0_n_bk1_,
kernel_arg.b1_grid_desc_bk0_n_bk1_,
device_arg.c_grid_desc_m_n_,
kernel_arg.block_2_ctile_map_))
{
return false;
}
}
// all gemm problems have to simultaneously meet has_main_k_block_loop or
// no_main_k_block_loop
if(!(all_has_main_k_block_loop || !some_has_main_k_block_loop))
{
return false;
}
return true;
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(std::vector<const void*> p_a_vec,
std::vector<const void*> p_b_vec,
std::vector<const void*> p_b1_vec,
std::vector<void*> p_c_vec,
std::vector<void*> p_z_vec,
std::vector<void*> p_lse_vec,
std::vector<std::vector<const void*>> p_acc0_biases_vec,
std::vector<std::vector<const void*>> p_acc1_biases_vec,
std::vector<ProblemDesc> problem_desc_vec,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op,
float p_dropout,
std::tuple<unsigned long long, unsigned long long> seeds)
{
return Argument{p_a_vec,
p_b_vec,
p_b1_vec,
p_c_vec,
p_z_vec,
p_lse_vec,
p_acc0_biases_vec,
p_acc1_biases_vec,
problem_desc_vec,
a_element_op,
b_element_op,
acc_element_op,
b1_element_op,
c_element_op,
p_dropout,
seeds};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::vector<const void*> p_a_vec,
std::vector<const void*> p_b_vec,
std::vector<const void*> p_b1_vec,
std::vector<void*> p_c_vec,
std::vector<void*> p_z_vec,
std::vector<void*> p_lse_vec,
std::vector<std::vector<const void*>> p_acc0_biases_vec,
std::vector<std::vector<const void*>> p_acc1_biases_vec,
std::vector<ProblemDesc> problem_desc_vec,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op,
float p_dropout,
std::tuple<unsigned long long, unsigned long long> seeds) override
{
return std::make_unique<Argument>(p_a_vec,
p_b_vec,
p_b1_vec,
p_c_vec,
p_z_vec,
p_lse_vec,
p_acc0_biases_vec,
p_acc1_biases_vec,
problem_desc_vec,
a_element_op,
b_element_op,
acc_element_op,
b1_element_op,
c_element_op,
p_dropout,
seeds);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGroupedGemmSoftmaxGemmPermute_Train_Xdl_CShuffle"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1 << ", "
<< MPerBlock << ", "
<< Gemm1NPerBlock << ", "
<< Gemm1KPerBlock << ", "
<< B1K1 << ", "
<< getGemmSpecializationString(GemmSpec) << ", "
<< "ASpec" << getTensorSpecializationString(ASpec) << ", "
<< "B0Spec" << getTensorSpecializationString(BSpec) << ", "
<< "B1Spec" << getTensorSpecializationString(B1Spec) << ", "
<< "CSpec" << getTensorSpecializationString(CSpec) << ", "
<< getMaskingSpecializationString(MaskingSpec) << ">";
// clang-format on
return str.str();
}
size_t GetWorkSpaceSize(const BaseArgument* p_arg) const override
{
return dynamic_cast<const Argument*>(p_arg)->group_count_ * sizeof(GroupKernelArg);
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_backward_xdl_cshuffle_v1.hpp
View file @
66052232
...
...
@@ -4,6 +4,7 @@
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/utility/philox_rand.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
...
...
@@ -15,6 +16,7 @@
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_softmax.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_dropout.hpp"
namespace
ck
{
...
...
@@ -30,6 +32,7 @@ template <typename DataType,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
typename
QGridDesc_K0_M_K1
,
typename
KGridDesc_K0_N_K1
,
typename
ZGridDesc_M_N
,
typename
VGridDesc_N0_O_N1
,
typename
CGridDesc_M_N
,
typename
LSEGridDesc_M
,
...
...
@@ -80,8 +83,23 @@ template <typename DataType,
bool
PadN
,
bool
MaskOutUpperTriangle
,
PipelineVersion
PipelineVer
=
PipelineVersion
::
v1
>
struct
GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
struct
GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
_V2
{
template
<
typename
T
>
struct
TypeMap
{
using
type
=
T
;
};
#if defined(__gfx90a__)
template
<
>
struct
TypeMap
<
ck
::
half_t
>
{
using
type
=
ck
::
bhalf_t
;
};
#endif
using
LDSDataType
=
typename
TypeMap
<
DataType
>::
type
;
static_assert
(
LoopSched
==
LoopScheduler
::
Default
,
"Non-default loop scheduler is currently not supported"
);
...
...
@@ -93,7 +111,10 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
static
constexpr
auto
I8
=
Number
<
8
>
{};
static
constexpr
auto
I9
=
Number
<
9
>
{};
static
constexpr
auto
WaveSize
=
64
;
// K1 should be Number<...>
// Gemm0
static
constexpr
auto
AK0
=
Number
<
KPerBlock
/
AK1Value
>
{};
...
...
@@ -113,6 +134,65 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
using
GridwiseGemmPipe
=
remove_cvref_t
<
decltype
(
GridwiseGemmPipeline_Selector
<
PipelineVer
,
NumGemmKPrefetchStage
>
())
>
;
// C desc for source in blockwise copy
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
(
const
ZGridDesc_M_N
&
z_grid_desc_m_n
)
{
const
auto
M
=
z_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
z_grid_desc_m_n
.
GetLength
(
I1
);
constexpr
auto
mfma
=
MfmaSelector
<
LDSDataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
;
constexpr
auto
N3
=
mfma
.
num_groups_per_blk
;
constexpr
auto
N4
=
mfma
.
num_input_blks
;
constexpr
auto
N5
=
mfma
.
group_size
;
return
transform_tensor_descriptor
(
z_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M
/
MPerBlock
,
MXdlPerWave
,
Gemm0MWaves
,
MPerXdl
)),
make_unmerge_transform
(
make_tuple
(
N
/
NPerBlock
,
NXdlPerWave
,
Gemm0NWaves
,
N3
,
N4
,
N5
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
,
4
,
6
>
{},
Sequence
<
1
,
3
,
5
,
7
,
8
,
9
>
{}));
}
__host__
__device__
static
constexpr
auto
MakeZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
(
const
index_t
M
,
const
index_t
N
)
{
constexpr
auto
mfma
=
MfmaSelector
<
LDSDataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
;
constexpr
auto
N3
=
mfma
.
num_groups_per_blk
;
constexpr
auto
N4
=
mfma
.
num_input_blks
;
constexpr
auto
N5
=
mfma
.
group_size
;
return
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
M
,
N
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M
/
MPerBlock
,
MXdlPerWave
,
Gemm0MWaves
,
MPerXdl
)),
make_unmerge_transform
(
make_tuple
(
N
/
NPerBlock
,
NXdlPerWave
,
Gemm0NWaves
,
N3
,
N4
,
N5
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
,
4
,
6
>
{},
Sequence
<
1
,
3
,
5
,
7
,
8
,
9
>
{}));
}
__device__
static
auto
GetGemm0WaveIdx
()
{
const
index_t
thread_id
=
get_thread_local_1d_id
();
constexpr
auto
threadid_to_wave_idx_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
Gemm0MWaves
,
Gemm0NWaves
,
WaveSize
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
threadid_to_wave_idx_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
thread_id
));
}
__device__
static
auto
GetGemm0WaveMNIdx
(
const
index_t
thread_id
)
{
constexpr
auto
wave_threadid_to_mn_idx_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
WaveSize
/
MPerXdl
,
MPerXdl
))),
make_tuple
(
Sequence
<
0
,
1
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
wave_threadid_to_mn_idx_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
thread_id
));
}
template
<
typename
ABlockDesc_AK0_M_AK1
>
__host__
__device__
static
constexpr
auto
MakeGemm1AMmaTileDescriptor_M0_M1_M2_K
(
const
ABlockDesc_AK0_M_AK1
&
)
...
...
@@ -347,6 +427,9 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
using
DefaultBlock2CTileMap
=
remove_cvref_t
<
decltype
(
MakeDefaultBlock2CTileMap
(
CGridDesc_M_N
{}))
>
;
using
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
(
ZGridDesc_M_N
{}))
>
;
// S / dP Gemm (type 1 rcr)
struct
Gemm0
{
...
...
@@ -388,7 +471,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
DataType
,
DataType
,
LDS
DataType
,
GridDesc_K0_M_K1
,
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
...
...
@@ -413,7 +496,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
DataType
,
DataType
,
LDS
DataType
,
GridDesc_K0_N_K1
,
decltype
(
b_block_desc_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
...
...
@@ -428,13 +511,14 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
true
,
// DstResetCoord
NumGemmKPrefetchStage
>
;
static
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1
,
BK1
),
MfmaSelector
<
DataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
static
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1
,
BK1
),
MfmaSelector
<
LDSDataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
// Blockwise gemm with transposed XDL output
using
BlockwiseGemm
=
BlockwiseGemmXdlops_v2
<
BlockSize
,
DataType
,
LDS
DataType
,
FloatGemmAcc
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
...
...
@@ -496,7 +580,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
using
ABlockwiseCopy
=
ThreadwiseTensorSliceTransfer_StaticToStatic
<
FloatGemmAcc
,
DataType
,
LDS
DataType
,
decltype
(
a_src_thread_desc_k0_m_k1
),
decltype
(
a_thread_desc_k0_m_k1
),
tensor_operation
::
element_wise
::
PassThrough
,
...
...
@@ -515,7 +599,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
B1BlockTransferThreadClusterArrangeOrder
,
DataType
,
DataType
,
LDS
DataType
,
GridDesc_K0_N_K1
,
decltype
(
b_block_desc_bk0_n_bk1
),
B1BlockTransferSrcAccessOrder
,
...
...
@@ -546,11 +630,11 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
// cause mismatch in summation index for example c[0:7] = a1[[0:3, 8:11]] * b1[0:7].
// therefore we may just as well assign Gemm1KPack = group_size
static
constexpr
index_t
GemmKPack
=
MfmaSelector
<
DataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
group_size
;
MfmaSelector
<
LDS
DataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
group_size
;
using
BlockwiseGemm
=
BlockwiseGemmXdlops_v2
<
BlockSize
,
DataType
,
LDS
DataType
,
FloatGemmAcc
,
decltype
(
a_thread_desc_k0_m_k1
),
decltype
(
b_block_desc_bk0_n_bk1
),
...
...
@@ -566,7 +650,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
GemmKPack
,
true
,
// TransposeC
GemmKPack
,
// AMmaKStride
GemmKPack
*
XdlopsGemm
<
DataType
,
MPerXdl
,
NPerXdl
,
GemmKPack
,
false
>
{}
GemmKPack
*
XdlopsGemm
<
LDS
DataType
,
MPerXdl
,
NPerXdl
,
GemmKPack
,
false
>
{}
.
K0PerXdlops
/* BMmaKStride */
>
;
};
...
...
@@ -598,7 +682,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
static
constexpr
index_t
GemmORepeat
=
Free1_O
/
GemmOWave
/
NPerXdl
;
static
constexpr
index_t
GemmMPack
=
math
::
max
(
math
::
lcm
(
A_M1
,
B_M1
),
MfmaSelector
<
DataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
MfmaSelector
<
LDS
DataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
using
BBlockSliceLengths
=
Sequence
<
B_M0
,
Free1_O
,
B_M1
>
;
using
BThreadClusterLengths
=
...
...
@@ -720,12 +804,13 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
typename
Gemm2Params_N_O_M
::
ABlockSliceLengths_M0_N0_M1_N1
,
false
>
;
template
<
typename
ElementwiseOp
=
tensor_operation
::
element_wise
::
PassThrough
>
using
ABlockwiseCopy
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatGemmAcc
,
DataType
,
LDS
DataType
,
decltype
(
a_src_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
),
decltype
(
a_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
),
tensor_operation
::
e
lement
_
wise
::
PassThrough
,
E
lementwise
Op
,
Sequence
<
Gemm2Params_N_O_M
::
ABlockSliceLengths_M0_N0_M1_N1
::
At
(
I0
),
// ThreadSliceLengths
Gemm2Params_N_O_M
::
ABlockSliceLengths_M0_N0_M1_N1
::
At
(
I1
),
...
...
@@ -752,7 +837,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
typename
Gemm2Params_N_O_M
::
BThreadClusterLengths
,
typename
Gemm2Params_N_O_M
::
BThreadClusterArrangeOrder
,
DataType
,
DataType
,
LDS
DataType
,
GridDesc_M0_O_M1
,
decltype
(
b_block_desc_m0_o_m1
),
typename
Gemm2Params_N_O_M
::
BThreadClusterArrangeOrder
,
// access order == thread order
...
...
@@ -769,7 +854,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
using
BlockwiseGemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
<
BlockSize
,
DataType
,
LDS
DataType
,
FloatGemmAcc
,
decltype
(
a_block_desc_m0_n_m1
),
decltype
(
b_block_desc_m0_o_m1
),
...
...
@@ -836,7 +921,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
template
<
index_t
BlockSize_
,
index_t
BlockSliceLength_M_
,
index_t
BlockSliceLength_O_
>
struct
YDotYGrad_M_O_
{
static
constexpr
index_t
SrcScalarPerVector
=
16
/
sizeof
(
DataType
);
static
constexpr
index_t
SrcScalarPerVector
=
16
/
sizeof
(
FloatGemmAcc
);
static
constexpr
auto
ThreadClusterLength_O
=
Number
<
BlockSliceLength_O_
/
SrcScalarPerVector
>
{};
static
constexpr
auto
ThreadClusterLength_M
=
Number
<
BlockSize_
/
ThreadClusterLength_O
>
{};
...
...
@@ -848,7 +933,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
static_assert
(
ThreadClusterLength_M
*
ThreadSliceLength_M
==
BlockSliceLength_M_
,
""
);
using
SrcBufType
=
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
DataType
,
FloatGemmAcc
,
ThreadSliceLength_M
*
ThreadSliceLength_O
,
true
>
;
...
...
@@ -1010,7 +1095,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
static
constexpr
auto
b2_block_desc_m0_o_m1
=
GetB2BlockDescriptor_M0_O_M1
<
Gemm2Params_N_O_M
>
();
static
constexpr
auto
max_lds_align
=
Number
<
16
/
sizeof
(
DataType
)
>
{};
static
constexpr
auto
max_lds_align
=
Number
<
16
/
sizeof
(
LDS
DataType
)
>
{};
static
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
...
...
@@ -1046,13 +1131,13 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
{
const
index_t
gemm0_bytes_end
=
(
SharedMemTrait
::
a_block_space_size_aligned
+
SharedMemTrait
::
b_block_space_size_aligned
)
*
sizeof
(
DataType
);
sizeof
(
LDS
DataType
);
const
index_t
gemm1_bytes_end
=
(
SharedMemTrait
::
b1_block_space_offset
+
SharedMemTrait
::
b1_block_space_size_aligned
)
*
sizeof
(
DataType
);
sizeof
(
LDS
DataType
);
const
index_t
vgrad_gemm_bytes_end
=
(
SharedMemTrait
::
p_block_space_size_aligned
+
SharedMemTrait
::
ygrad_block_space_size_aligned
)
*
sizeof
(
DataType
);
sizeof
(
LDS
DataType
);
const
index_t
softmax_bytes_end
=
(
SharedMemTrait
::
reduction_space_offset
+
SharedMemTrait
::
reduction_space_size_aligned
)
*
...
...
@@ -1074,6 +1159,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
typename
YGradGridDesc_M0_O_M1
>
__device__
static
void
Run
(
const
DataType
*
__restrict__
p_q_grid
,
const
DataType
*
__restrict__
p_k_grid
,
unsigned
short
*
__restrict__
p_z_grid
,
const
DataType
*
__restrict__
p_v_grid
,
const
DataType
*
__restrict__
p_y_grid
,
const
FloatLSE
*
__restrict__
p_lse_grid
,
...
...
@@ -1089,6 +1175,8 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
const
CElementwiseOperation
&
c_element_op
,
const
QGridDesc_K0_M_K1
&
q_grid_desc_k0_m_k1
,
const
KGridDesc_K0_N_K1
&
k_grid_desc_k0_n_k1
,
const
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
&
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
const
VGridDesc_N0_O_N1
&
v_grid_desc_n0_o_n1
,
const
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
&
y_grid_desc_mblock_mperblock_oblock_operblock
,
...
...
@@ -1096,8 +1184,13 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
const
VGradGridDescriptor_N_O
&
vgrad_grid_desc_n_o
,
const
YGradGridDesc_M0_O_M1
&
ygrad_grid_desc_m0_o_m1
,
const
Block2CTileMap
&
block_2_ctile_map
,
const
C0MatrixMask
&
c0_matrix_mask
)
const
C0MatrixMask
&
c0_matrix_mask
,
FloatGemmAcc
p_dropout
,
ck
::
philox
&
ph
)
{
const
ushort
p_dropout_in_16bits
=
uint16_t
(
std
::
floor
(
p_dropout
*
65535.0
));
const
FloatGemmAcc
rp_dropout
=
1.0
f
/
p_dropout
;
const
auto
q_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_q_grid
,
q_grid_desc_k0_m_k1
.
GetElementSpaceSize
());
const
auto
k_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
...
...
@@ -1147,11 +1240,11 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
// Gemm0: LDS allocation for A and B: be careful of alignment
auto
gemm0_a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
a_block_space_offset
,
static_cast
<
LDS
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
a_block_space_offset
,
Gemm0
::
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
gemm0_b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
b_block_space_offset
,
static_cast
<
LDS
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
b_block_space_offset
,
Gemm0
::
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
// Gemm0: gridwise GEMM pipeline
...
...
@@ -1243,11 +1336,11 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
decltype
(
s_blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
())
>
;
// Gemm1: VGPR allocation for A and LDS allocation for B
auto
gemm1_a_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
DataType
>
(
auto
gemm1_a_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
LDS
DataType
>
(
Gemm1
::
a_thread_desc_k0_m_k1
.
GetElementSpaceSize
());
auto
gemm1_b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
b1_block_space_offset
,
static_cast
<
LDS
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
b1_block_space_offset
,
Gemm1
::
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
// dQ: transform input and output tensor descriptors
...
...
@@ -1331,6 +1424,9 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
decltype
(
thread_cluster_desc_m_n
),
decltype
(
thread_slice_desc_m_n
)
>
{};
auto
blockwise_dropout
=
BlockwiseDropout
<
FloatGemmAcc
,
decltype
(
thread_slice_desc_m_n
)
>
{
p_dropout_in_16bits
,
rp_dropout
};
auto
lse_grid_desc_mblock_mrepeat_mwave_mperxdl
=
MakeLSEGridDescriptor_MBlock_MRepeat_NWave_MPerXdl
(
lse_grid_desc_m
);
...
...
@@ -1360,6 +1456,75 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
acc0_thread_origin
[
I2
],
// mwave
acc0_thread_origin
[
I4
])};
// mperxdl
//
// z vgpr copy to global
//
// z matrix threadwise desc
constexpr
auto
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
// MBlockId
I1
,
// NBlockID
m0
,
// MRepeat
n0
,
// NRepeat
m1
,
// MWaveId
n1
,
// NWaveId
m2
,
// MPerXdl
n2
,
// NGroupNum
n3
,
// NInputNum
n4
));
// registerNum
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
unsigned
short
,
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
.
GetElementSpaceSize
(),
true
>
z_tenor_buffer
;
z_tenor_buffer
.
Clear
();
// z matrix global desc
/*const auto M = q_grid_desc_k0_m_k1.GetLength(I1);
const auto N = k_grid_desc_k0_n_k1.GetLength(I1);
auto z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
MakeZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(M, N);*/
auto
z_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_z_grid
,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
.
GetElementSpaceSize
());
const
auto
wave_id
=
GetGemm0WaveIdx
();
const
auto
wave_m_n_id
=
GetGemm0WaveMNIdx
(
wave_id
[
I2
]);
// I2: 0~63
auto
z_thread_copy_vgpr_to_global
=
ThreadwiseTensorSliceTransfer_v1r3
<
ushort
,
ushort
,
decltype
(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
),
decltype
(
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
),
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
I1
,
// MBlockId
I1
,
// NBlockID
m0
,
// MRepeat
n0
,
// NRepeat
m1
,
// MWaveId
n1
,
// NWaveId
m2
,
// MPerXdl
n2
,
// NGroupNum
n3
,
// NInputNum
n4
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
>
,
9
,
// DstVectorDim
n4
,
// DstScalarPerVector
InMemoryDataOperationEnum
::
Set
,
1
,
// DstScalarStrideInVector
true
>
{
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
make_multi_index
(
block_work_idx
[
I0
],
// MBlockId
0
,
// NBlockId
0
,
// mrepeat
0
,
// nrepeat
wave_id
[
I0
],
// MWaveId
wave_id
[
I1
],
// NWaveId
wave_m_n_id
[
I1
],
// MPerXdl
0
,
// group
wave_m_n_id
[
I0
],
// NInputIndex
0
),
tensor_operation
::
element_wise
::
PassThrough
{}};
//
// set up dV / dK Gemm (type 3 crr)
//
...
...
@@ -1367,11 +1532,11 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
// Gemm2: LDS allocation for A and B: be careful of alignment
auto
gemm2_a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
a2_block_space_offset
,
static_cast
<
LDS
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
a2_block_space_offset
,
Gemm2
::
a_block_desc_m0_n_m1
.
GetElementSpaceSize
());
auto
gemm2_b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
b2_block_space_offset
,
static_cast
<
LDS
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
b2_block_space_offset
,
Gemm2
::
b_block_desc_m0_o_m1
.
GetElementSpaceSize
());
// dV: transform input and output tensor descriptors
...
...
@@ -1379,10 +1544,11 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
Gemm2
::
MakeCGridDesc_N0_O0_N1_O1_N2_O2_O3_O4
(
vgrad_grid_desc_n_o
);
// dV: A matrix VGPR-to-LDS blockwise copy
auto
vgrad_gemm_tile_p_thread_copy_vgpr_to_lds
=
typename
Gemm2
::
ABlockwiseCopy
{
Gemm2
::
a_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
Gemm2
::
MakeAThreadOriginOnBlock_M0_N0_M1_N1_M2_N2_N3_N4
(),
tensor_operation
::
element_wise
::
PassThrough
{}};
auto
vgrad_gemm_tile_p_thread_copy_vgpr_to_lds
=
typename
Gemm2
::
template
ABlockwiseCopy
<
tensor_operation
::
element_wise
::
Relu
>{
Gemm2
::
a_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
Gemm2
::
MakeAThreadOriginOnBlock_M0_N0_M1_N1_M2_N2_N3_N4
(),
tensor_operation
::
element_wise
::
Relu
{}};
// relu(P-dropped)
// dV: B matrix global-to-LDS blockwise copy
auto
vgrad_gemm_tile_ygrad_blockwise_copy
=
...
...
@@ -1407,11 +1573,13 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
make_multi_index
(
I0
,
block_work_idx
[
I1
]
*
Gemm2Params_N_O_M
::
GemmORepeat
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
);
auto
vgrad_thread_copy_vgpr_to_global
=
typename
Gemm2
::
template
CBlockwiseCopy
<
decltype
(
vgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
)>(
vgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
,
vgrad_thread_origin_on_grid_n0_o0_n1_o1_n2_o2_o3_o4
,
tensor_operation
::
element_wise
::
PassThrough
{});
auto
vgrad_thread_copy_vgpr_to_global
=
typename
Gemm2
::
template
CBlockwiseCopy
<
decltype
(
vgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
),
tensor_operation
::
element_wise
::
Scale
>(
vgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
,
vgrad_thread_origin_on_grid_n0_o0_n1_o1_n2_o2_o3_o4
,
tensor_operation
::
element_wise
::
Scale
{
rp_dropout
});
// dK: transform input and output tensor descriptors
const
auto
q_grid_desc_m0_k_m1
=
...
...
@@ -1422,10 +1590,11 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
Gemm2
::
MakeCGridDesc_N0_O0_N1_O1_N2_O2_O3_O4
(
kgrad_grid_desc_n_k
);
// dK: A matrix VGPR-to-LDS blockwise copy
auto
kgrad_gemm_tile_sgrad_thread_copy_vgpr_to_lds
=
typename
Gemm2
::
ABlockwiseCopy
{
Gemm2
::
a_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
Gemm2
::
MakeAThreadOriginOnBlock_M0_N0_M1_N1_M2_N2_N3_N4
(),
tensor_operation
::
element_wise
::
PassThrough
{}};
auto
kgrad_gemm_tile_sgrad_thread_copy_vgpr_to_lds
=
typename
Gemm2
::
template
ABlockwiseCopy
<
tensor_operation
::
element_wise
::
PassThrough
>{
Gemm2
::
a_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
Gemm2
::
MakeAThreadOriginOnBlock_M0_N0_M1_N1_M2_N2_N3_N4
(),
tensor_operation
::
element_wise
::
PassThrough
{}};
// dK: B matrix global-to-LDS blockwise copy
auto
kgrad_gemm_tile_q_blockwise_copy
=
...
...
@@ -1487,7 +1656,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
// performs double duty for both y and ygrad
auto
yygrad_threadwise_copy
=
ThreadwiseTensorSliceTransfer_v2
<
DataType
,
DataType
,
FloatGemmAcc
,
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
,
decltype
(
y_thread_desc_m0_m1_o0_o1
),
decltype
(
y_thread_desc_m0_m1_o0_o1
.
GetLengths
()),
...
...
@@ -1496,8 +1665,8 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
YDotYGrad_M_O
::
SrcScalarPerVector
,
// SrcScalarPerVector
1
,
// SrcScalarStrideInVector
true
/* ResetCoordAfterRun */
,
tru
e
/* InvalidElementAsNaN */
>
(
y_grid_desc_mblock_mperblock_oblock_operblock
,
y_thread_data_on_grid_idx
);
fals
e
/* InvalidElementAsNaN */
>
(
y_grid_desc_mblock_mperblock_oblock_operblock
,
y_thread_data_on_grid_idx
);
auto
y_thread_buf
=
typename
YDotYGrad_M_O
::
SrcBufType
{};
auto
ygrad_thread_buf
=
typename
YDotYGrad_M_O
::
SrcBufType
{};
...
...
@@ -1574,7 +1743,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
static_for
<
0
,
YDotYGrad_M_O
::
ThreadSliceLength_M
,
1
>
{}([
&
](
auto
iM
)
{
const
auto
idx_on_block
=
y_thread_data_on_block_idx
[
I1
]
+
iM
;
y_dot_ygrad_block_accum_buf
.
AtomicAdd
(
idx_on_block
,
true
,
y_dot_ygrad_thread_accum_buf
[
iM
]
);
idx_on_block
,
true
,
y_dot_ygrad_thread_accum_buf
[
iM
]
*
p_dropout
);
// p_dropoutD1
});
block_sync_lds
();
...
...
@@ -1595,6 +1764,8 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
const
index_t
num_gemm1_k_block_outer_loop
=
k_grid_desc_k0_n_k1
.
GetLength
(
I1
)
/
NPerBlock
;
constexpr
index_t
num_gemm1_k_block_inner_loop
=
NPerBlock
/
Gemm1KPerBlock
;
const
index_t
K
=
k_grid_desc_k0_n_k1
.
GetLength
(
I0
)
*
k_grid_desc_k0_n_k1
.
GetLength
(
I2
);
const
float
scalar
=
1.0
f
/
std
::
sqrt
(
K
);
// Initialize dQ
qgrad_thread_buf
.
Clear
();
...
...
@@ -1675,14 +1846,14 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
}
else
{
s_element_op
(
s_slash_p_thread_buf
(
i
)
,
s_slash_p_thread_buf
[
i
]
)
;
s_slash_p_thread_buf
(
i
)
=
scalar
*
s_slash_p_thread_buf
[
i
];
}
});
}
else
{
static_for
<
0
,
s_slash_p_thread_buf
.
Size
(),
1
>
{}(
[
&
](
auto
i
)
{
s_
element_op
(
acc
_thread_buf
(
i
)
,
s_slash_p_thread_buf
[
i
]
)
;
});
[
&
](
auto
i
)
{
s_
slash_p
_thread_buf
(
i
)
=
scalar
*
s_slash_p_thread_buf
[
i
];
});
}
block_sync_lds
();
// wait for lds read in gemm0 blockwise gemm
...
...
@@ -1691,6 +1862,28 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
// scaling is already performed in the preceding statements with s_element_op
blockwise_softmax
.
RunWithPreCalcStats
(
s_slash_p_thread_buf
,
lse_thread_buf
);
// save z to global
if
(
p_z_grid
)
{
// P_dropped
blockwise_dropout
.
template
ApplyDropout
<
decltype
(
s_slash_p_thread_buf
),
decltype
(
z_tenor_buffer
),
true
>(
s_slash_p_thread_buf
,
ph
,
z_tenor_buffer
);
z_thread_copy_vgpr_to_global
.
Run
(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
z_tenor_buffer
,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
z_grid_buf
);
}
else
{
// P_dropped
blockwise_dropout
.
template
ApplyDropout
<
decltype
(
s_slash_p_thread_buf
),
true
>(
s_slash_p_thread_buf
,
ph
);
}
block_sync_lds
();
// wait for gemm1 LDS read
SubThreadBlock
<
BlockSize
>
gemm2_a_copy_subgroup
(
s_blockwise_gemm
.
GetWaveIdx
()[
I0
],
...
...
@@ -1701,7 +1894,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
""
);
// TODO: tune gemm2 pipeline
// dV = P^T * dY
// dV = P
_drop
^T * dY
v_slash_k_grad_thread_buf
.
Clear
();
static_for
<
0
,
num_gemm2_loop
,
1
>
{}([
&
](
auto
gemm2_loop_idx
)
{
// gemm dV
// load VGrad Gemm B
...
...
@@ -1781,8 +1974,17 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
constexpr
auto
m
=
pgrad_thread_idx_to_m_n_adaptor
.
CalculateBottomIndex
(
pgrad_thread_idx
)[
I0
];
// dS and P has same thread buf layout
sgrad_thread_buf
(
i
)
=
s_slash_p_thread_buf
[
i
]
*
(
pgrad_thread_buf
[
i
]
-
y_dot_ygrad_thread_buf
[
Number
<
m
>
{}]);
if
(
s_slash_p_thread_buf
[
i
]
>=
0
)
{
sgrad_thread_buf
(
i
)
=
s_slash_p_thread_buf
[
i
]
*
(
pgrad_thread_buf
[
i
]
-
y_dot_ygrad_thread_buf
[
Number
<
m
>
{}]);
}
else
{
sgrad_thread_buf
(
i
)
=
s_slash_p_thread_buf
[
i
]
*
y_dot_ygrad_thread_buf
[
Number
<
m
>
{}];
}
});
// gemm dQ
...
...
@@ -1922,6 +2124,10 @@ struct GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
kgrad_thread_copy_vgpr_to_global
.
MoveDstSliceWindow
(
kgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
,
Gemm2
::
c_block_slice_copy_step
);
// step N
z_thread_copy_vgpr_to_global
.
MoveDstSliceWindow
(
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
make_multi_index
(
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
));
}
while
(
++
gemm1_k_block_outer_index
<
num_gemm1_k_block_outer_loop
);
// end j loop
// shuffle dQ and write
...
...
include/ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_backward_xdl_cshuffle_v2.hpp
deleted
100644 → 0
View file @
5eb5e316
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/utility/philox_rand.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_softmax.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_dropout.hpp"
namespace
ck
{
template
<
typename
DataType
,
typename
FloatGemmAcc
,
typename
FloatCShuffle
,
typename
FloatLSE
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
SElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
typename
QGridDesc_K0_M_K1
,
typename
KGridDesc_K0_N_K1
,
typename
ZGridDesc_M_N
,
typename
VGridDesc_N0_O_N1
,
typename
CGridDesc_M_N
,
typename
LSEGridDesc_M
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
Gemm1NPerBlock
,
index_t
Gemm1KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
B1K1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
index_t
Gemm1NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
// ignored
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
// ignored
index_t
BBlockLdsExtraN
,
typename
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
B1BlockTransferThreadClusterArrangeOrder
,
typename
B1BlockTransferSrcAccessOrder
,
index_t
B1BlockTransferSrcVectorDim
,
index_t
B1BlockTransferSrcScalarPerVector
,
index_t
B1BlockTransferDstScalarPerVector_BK1
,
bool
B1ThreadTransferSrcResetCoordinateAfterRun
,
index_t
B1BlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
,
bool
PadN
,
bool
MaskOutUpperTriangle
,
PipelineVersion
PipelineVer
=
PipelineVersion
::
v1
>
struct
GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle_V2
{
static_assert
(
LoopSched
==
LoopScheduler
::
Default
,
"Non-default loop scheduler is currently not supported"
);
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
static
constexpr
auto
I8
=
Number
<
8
>
{};
static
constexpr
auto
I9
=
Number
<
9
>
{};
static
constexpr
auto
WaveSize
=
64
;
// K1 should be Number<...>
// Gemm0
static
constexpr
auto
AK0
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0
=
Number
<
KPerBlock
/
BK1Value
>
{};
static
constexpr
auto
AK1
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1
=
Number
<
BK1Value
>
{};
static
constexpr
auto
Gemm0MWaves
=
MPerBlock
/
(
MPerXdl
*
MXdlPerWave
);
static
constexpr
auto
Gemm0NWaves
=
NPerBlock
/
(
NPerXdl
*
NXdlPerWave
);
// Gemm1
static
constexpr
auto
B1K0
=
Number
<
Gemm1KPerBlock
/
B1K1Value
>
{};
static
constexpr
auto
B1K1
=
Number
<
B1K1Value
>
{};
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
using
GridwiseGemmPipe
=
remove_cvref_t
<
decltype
(
GridwiseGemmPipeline_Selector
<
PipelineVer
,
NumGemmKPrefetchStage
>
())
>
;
// C desc for source in blockwise copy
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
(
const
ZGridDesc_M_N
&
z_grid_desc_m_n
)
{
const
auto
M
=
z_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
z_grid_desc_m_n
.
GetLength
(
I1
);
constexpr
auto
mfma
=
MfmaSelector
<
DataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
;
constexpr
auto
N3
=
mfma
.
num_groups_per_blk
;
constexpr
auto
N4
=
mfma
.
num_input_blks
;
constexpr
auto
N5
=
mfma
.
group_size
;
return
transform_tensor_descriptor
(
z_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M
/
MPerBlock
,
MXdlPerWave
,
Gemm0MWaves
,
MPerXdl
)),
make_unmerge_transform
(
make_tuple
(
N
/
NPerBlock
,
NXdlPerWave
,
Gemm0NWaves
,
N3
,
N4
,
N5
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
,
4
,
6
>
{},
Sequence
<
1
,
3
,
5
,
7
,
8
,
9
>
{}));
}
__host__
__device__
static
constexpr
auto
MakeZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
(
const
index_t
M
,
const
index_t
N
)
{
constexpr
auto
mfma
=
MfmaSelector
<
DataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
;
constexpr
auto
N3
=
mfma
.
num_groups_per_blk
;
constexpr
auto
N4
=
mfma
.
num_input_blks
;
constexpr
auto
N5
=
mfma
.
group_size
;
return
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
M
,
N
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M
/
MPerBlock
,
MXdlPerWave
,
Gemm0MWaves
,
MPerXdl
)),
make_unmerge_transform
(
make_tuple
(
N
/
NPerBlock
,
NXdlPerWave
,
Gemm0NWaves
,
N3
,
N4
,
N5
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
,
4
,
6
>
{},
Sequence
<
1
,
3
,
5
,
7
,
8
,
9
>
{}));
}
__device__
static
auto
GetGemm0WaveIdx
()
{
const
index_t
thread_id
=
get_thread_local_1d_id
();
constexpr
auto
threadid_to_wave_idx_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
Gemm0MWaves
,
Gemm0NWaves
,
WaveSize
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
threadid_to_wave_idx_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
thread_id
));
}
__device__
static
auto
GetGemm0WaveMNIdx
(
const
index_t
thread_id
)
{
constexpr
auto
wave_threadid_to_mn_idx_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
WaveSize
/
MPerXdl
,
MPerXdl
))),
make_tuple
(
Sequence
<
0
,
1
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
wave_threadid_to_mn_idx_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
thread_id
));
}
template
<
typename
ABlockDesc_AK0_M_AK1
>
__host__
__device__
static
constexpr
auto
MakeGemm1AMmaTileDescriptor_M0_M1_M2_K
(
const
ABlockDesc_AK0_M_AK1
&
)
{
return
MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K
<
MXdlPerWave
,
1
,
1
>
(
ABlockDesc_AK0_M_AK1
{});
}
template
<
typename
BBlockDesc_BK0_N_BK1
>
__host__
__device__
static
constexpr
auto
MakeGemm1BMmaTileDescriptor_N0_N1_N2_K
(
const
BBlockDesc_BK0_N_BK1
&
)
{
constexpr
index_t
Gemm1NWaves
=
Gemm1NPerBlock
/
(
Gemm1NXdlPerWave
*
NPerXdl
);
return
MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K
<
Gemm1NXdlPerWave
,
Gemm1NWaves
,
NPerXdl
>
(
BBlockDesc_BK0_N_BK1
{});
}
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0
,
Number
<
MPerBlock
>
{},
AK1
),
make_tuple
(
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
AK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// B matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
BK0
,
Number
<
NPerBlock
>
{},
BK1
),
make_tuple
(
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
BK1
,
I1
));
}
template
<
typename
AccThreadDesc_M0_N0_M1_N1_M2_N2_N3_N4
>
__host__
__device__
static
constexpr
auto
GetA1SrcThreadDescriptor_AK0PerBlock_MPerBlock_AK1
(
const
AccThreadDesc_M0_N0_M1_N1_M2_N2_N3_N4
&
acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
)
{
// acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4 to a_src_thread_desc_k0_m_k1
// n0_n1_n2_n3 -> k0
// m0_m1_m2 -> m
// n4 -> k1
// NOTE: had to use merge_v3 or will spit out compilation errors
const
auto
m0
=
acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I0
);
const
auto
n0
=
acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I1
);
const
auto
m1
=
acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I2
);
const
auto
n1
=
acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I3
);
const
auto
m2
=
acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I4
);
const
auto
n2
=
acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I5
);
const
auto
n3
=
acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I6
);
const
auto
n4
=
acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I7
);
return
transform_tensor_descriptor
(
acc_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
n0
,
n1
,
n2
,
n3
)),
make_merge_transform_v3_division_mod
(
make_tuple
(
m0
,
m1
,
m2
)),
make_pass_through_transform
(
n4
)),
make_tuple
(
Sequence
<
1
,
3
,
5
,
6
>
{},
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
}
__host__
__device__
static
constexpr
auto
GetB1BlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// B1 matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
B1K0
,
Number
<
Gemm1NPerBlock
>
{},
B1K1
),
make_tuple
(
Number
<
Gemm1NPerBlock
+
B1BlockLdsExtraN
>
{}
*
B1K1
,
B1K1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
Gemm1NPerBlock
/
(
Gemm1NXdlPerWave
*
NPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
template
<
typename
Gemm2Param
>
__host__
__device__
static
constexpr
auto
GetA2BlockDescriptor_M0_N_M1
()
{
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
Gemm2Param
::
A_M0
>
{},
Number
<
Gemm2Param
::
Free0_N
>
{},
Number
<
Gemm2Param
::
A_M1
>
{}),
make_tuple
(
Number
<
Gemm2Param
::
Free0_N
+
Gemm2Param
::
A_LdsPad
>
{}
*
Number
<
Gemm2Param
::
A_M1
>
{},
Number
<
Gemm2Param
::
A_M1
>
{},
I1
));
}
template
<
typename
Gemm2Param
>
__host__
__device__
static
constexpr
auto
GetB2BlockDescriptor_M0_O_M1
()
{
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
Gemm2Param
::
B_M0
>
{},
Number
<
Gemm2Param
::
Free1_O
>
{},
Number
<
Gemm2Param
::
B_M1
>
{}),
make_tuple
(
Number
<
Gemm2Param
::
Free1_O
+
Gemm2Param
::
B_LdsPad
>
{}
*
Number
<
Gemm2Param
::
B_M1
>
{},
Number
<
Gemm2Param
::
B_M1
>
{},
I1
));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template
<
typename
Block2CTileMap
>
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
QGridDesc_K0_M_K1
&
q_grid_desc_k0_m_k1
,
const
KGridDesc_K0_N_K1
&
k_grid_desc_k0_n_k1
,
const
VGridDesc_N0_O_N1
&
v_grid_desc_n0_o_n1
,
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
const
auto
M
=
q_grid_desc_k0_m_k1
.
GetLength
(
I1
);
const
auto
N
=
k_grid_desc_k0_n_k1
.
GetLength
(
I1
);
const
auto
K
=
q_grid_desc_k0_m_k1
.
GetLength
(
I0
)
*
q_grid_desc_k0_m_k1
.
GetLength
(
I2
);
const
auto
Gemm1N
=
v_grid_desc_n0_o_n1
.
GetLength
(
I1
);
// This assumption reduces implemention complexity by categorizing 6 separate GEMMs into 3
// types of GEMM operations, therefore some code body can be reused accordingly
// P_MNK / dP_MNO Gemm (Gemm0 rcr)
// Y_MON / dQ_MKN Gemm (Gemm1 rrr)
// dV_NOM / dK_NKM Gemm (Gemm2 crr)
if
(
Gemm1N
!=
K
)
{
std
::
cerr
<<
"SizeK must be equal to SizeO (equal attention head size)"
<<
'\n'
;
return
false
;
}
if
(
!
(
M
==
c_grid_desc_m_n
.
GetLength
(
I0
)
&&
Gemm1N
==
c_grid_desc_m_n
.
GetLength
(
I1
)))
{
return
false
;
}
if
(
!
(
M
%
MPerBlock
==
0
&&
N
%
NPerBlock
==
0
&&
K
%
KPerBlock
==
0
&&
Gemm1N
%
Gemm1NPerBlock
==
0
))
{
return
false
;
}
// check gemm0 gridwise gemm pipeline
const
auto
num_gemm0_k_loop
=
K
/
KPerBlock
;
if
(
!
GridwiseGemmPipe
::
IsSupported
(
num_gemm0_k_loop
))
{
return
false
;
}
// check gemm1 gridwise gemm pipeline
if
(
!
(
NPerBlock
%
Gemm1KPerBlock
==
0
))
{
return
false
;
}
const
auto
num_gemm1_k_inner_loop
=
NPerBlock
/
Gemm1KPerBlock
;
if
(
!
GridwiseGemmPipe
::
IsSupported
(
num_gemm1_k_inner_loop
))
{
return
false
;
}
if
(
!
block_2_ctile_map
.
CheckValidity
(
c_grid_desc_m_n
))
{
return
false
;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
}
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
NBlock
=
N
/
Gemm1NPerBlock
;
const
auto
y_grid_desc_mblock_mperblock_oblock_operblock
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
Gemm1NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
y_grid_desc_mblock_mperblock_oblock_operblock
;
}
__host__
__device__
static
constexpr
auto
MakeLSEGridDescriptor_MBlock_MRepeat_NWave_MPerXdl
(
const
LSEGridDesc_M
&
lse_grid_desc_m
)
{
const
index_t
M
=
lse_grid_desc_m
.
GetLength
(
I0
);
const
index_t
MBlock
=
M
/
MPerBlock
;
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
const
auto
lse_grid_desc_mblock_mrepeat_mwave_mperxdl
=
transform_tensor_descriptor
(
lse_grid_desc_m
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MXdlPerWave
>
{},
MWave
,
Number
<
MPerXdl
>
{}))),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{}));
return
lse_grid_desc_mblock_mrepeat_mwave_mperxdl
;
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2CTileMap
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
return
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
Gemm1NPerBlock
,
CGridDesc_M_N
>
(
c_grid_desc_m_n
);
}
using
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
CGridDesc_M_N
{}))
>
;
using
DefaultBlock2CTileMap
=
remove_cvref_t
<
decltype
(
MakeDefaultBlock2CTileMap
(
CGridDesc_M_N
{}))
>
;
using
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
(
ZGridDesc_M_N
{}))
>
;
// S / dP Gemm (type 1 rcr)
struct
Gemm0
{
// A matrix in LDS memory, dst of blockwise copy
static
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
static
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
template
<
typename
ABlockDesc_AK0_M_AK1
>
__host__
__device__
static
constexpr
auto
MakeGemm0AMmaTileDescriptor_M0_M1_M2_K
(
const
ABlockDesc_AK0_M_AK1
&
)
{
constexpr
index_t
MWaves
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
return
MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K
<
MXdlPerWave
,
MWaves
,
MPerXdl
>
(
ABlockDesc_AK0_M_AK1
{});
}
template
<
typename
BBlockDesc_BK0_N_BK1
>
__host__
__device__
static
constexpr
auto
MakeGemm0BMmaTileDescriptor_N0_N1_N2_K
(
const
BBlockDesc_BK0_N_BK1
&
)
{
constexpr
index_t
NWaves
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
return
MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K
<
NXdlPerWave
,
NWaves
,
NPerXdl
>
(
BBlockDesc_BK0_N_BK1
{});
}
template
<
typename
GridDesc_K0_M_K1
>
using
ABlockwiseCopy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0
,
MPerBlock
,
AK1
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
DataType
,
DataType
,
GridDesc_K0_M_K1
,
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
1
,
0
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
true
,
// SrcResetCoord
true
,
// DstResetCoord
NumGemmKPrefetchStage
>
;
template
<
typename
GridDesc_K0_N_K1
>
using
BBlockwiseCopy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
BK0
,
NPerBlock
,
BK1
>
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
DataType
,
DataType
,
GridDesc_K0_N_K1
,
decltype
(
b_block_desc_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
1
,
0
,
2
>
,
BBlockTransferSrcVectorDim
,
2
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
1
,
1
,
true
,
// SrcResetCoord
true
,
// DstResetCoord
NumGemmKPrefetchStage
>
;
static
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1
,
BK1
),
MfmaSelector
<
DataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
// Blockwise gemm with transposed XDL output
using
BlockwiseGemm
=
BlockwiseGemmXdlops_v2
<
BlockSize
,
DataType
,
FloatGemmAcc
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
decltype
(
MakeGemm0AMmaTileDescriptor_M0_M1_M2_K
(
a_block_desc_ak0_m_ak1
)),
decltype
(
MakeGemm0BMmaTileDescriptor_N0_N1_N2_K
(
b_block_desc_bk0_n_bk1
)),
MPerBlock
,
NPerBlock
,
KPerBlock
,
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
,
true
>
;
// TransposeC
static
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1
,
0
,
0
);
static
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
BK1
,
0
,
0
);
};
// Y / dQ Gemm (type 2 rrr)
template
<
typename
ASrcThreadDesc_M0_N0_M1_N1_M2_N2_N3_N4
,
typename
ASrcBlockDesc_M0_N0_M1_N1_M2_N2_N3_N4
>
struct
Gemm1
{
private:
static
constexpr
auto
m0
=
ASrcThreadDesc_M0_N0_M1_N1_M2_N2_N3_N4
{}.
GetLength
(
I0
);
static
constexpr
auto
n0
=
ASrcThreadDesc_M0_N0_M1_N1_M2_N2_N3_N4
{}.
GetLength
(
I1
);
static
constexpr
auto
m1
=
ASrcThreadDesc_M0_N0_M1_N1_M2_N2_N3_N4
{}.
GetLength
(
I2
);
static
constexpr
auto
n1
=
ASrcThreadDesc_M0_N0_M1_N1_M2_N2_N3_N4
{}.
GetLength
(
I3
);
static
constexpr
auto
m2
=
ASrcThreadDesc_M0_N0_M1_N1_M2_N2_N3_N4
{}.
GetLength
(
I4
);
static
constexpr
auto
n2
=
ASrcThreadDesc_M0_N0_M1_N1_M2_N2_N3_N4
{}.
GetLength
(
I5
);
static
constexpr
auto
n3
=
ASrcThreadDesc_M0_N0_M1_N1_M2_N2_N3_N4
{}.
GetLength
(
I6
);
static
constexpr
auto
n4
=
ASrcThreadDesc_M0_N0_M1_N1_M2_N2_N3_N4
{}.
GetLength
(
I7
);
// N2 num_groups_per_blk, N3 num_input_blks, N4 group_size
static
constexpr
auto
N3
=
ASrcBlockDesc_M0_N0_M1_N1_M2_N2_N3_N4
{}.
GetLength
(
I6
);
public:
static
constexpr
auto
AThreadSliceLength_K0
=
Number
<
Gemm1KPerBlock
/
n4
/
N3
>
{};
static
constexpr
auto
AThreadSliceLength_M
=
Number
<
m0
*
m1
*
m2
>
{};
static
constexpr
auto
AThreadSliceLength_K1
=
Number
<
n4
>
{};
// A source matrix layout in AccVGPR
static
constexpr
auto
a_src_thread_desc_k0_m_k1
=
GetA1SrcThreadDescriptor_AK0PerBlock_MPerBlock_AK1
(
ASrcThreadDesc_M0_N0_M1_N1_M2_N2_N3_N4
{});
// A matrix in VGPR memory, dst of AccVGPR-to-VGPR copy
static
constexpr
auto
a_thread_desc_k0_m_k1
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
AThreadSliceLength_K0
,
AThreadSliceLength_M
,
AThreadSliceLength_K1
));
// B matrix in LDS memory, dst of blockwise copy
static
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetB1BlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
static
constexpr
auto
ASrcScalarPerVector
=
n4
;
using
AThreadSliceLengths_K0_M_K1
=
decltype
(
a_thread_desc_k0_m_k1
.
GetLengths
());
using
ABlockwiseCopy
=
ThreadwiseTensorSliceTransfer_StaticToStatic
<
FloatGemmAcc
,
DataType
,
decltype
(
a_src_thread_desc_k0_m_k1
),
decltype
(
a_thread_desc_k0_m_k1
),
tensor_operation
::
element_wise
::
PassThrough
,
AThreadSliceLengths_K0_M_K1
,
Sequence
<
1
,
0
,
2
>
,
2
,
ASrcScalarPerVector
>
;
template
<
typename
GridDesc_K0_N_K1
>
using
BBlockwiseCopy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
B1K0
,
Gemm1NPerBlock
,
B1K1
>
,
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
B1BlockTransferThreadClusterArrangeOrder
,
DataType
,
DataType
,
GridDesc_K0_N_K1
,
decltype
(
b_block_desc_bk0_n_bk1
),
B1BlockTransferSrcAccessOrder
,
Sequence
<
1
,
0
,
2
>
,
B1BlockTransferSrcVectorDim
,
2
,
B1BlockTransferSrcScalarPerVector
,
B1BlockTransferDstScalarPerVector_BK1
,
1
,
1
,
B1ThreadTransferSrcResetCoordinateAfterRun
,
true
,
// DstResetCoord
NumGemmKPrefetchStage
>
;
// for a_block_slice_copy_step to be able to address static buffers, it MUST be a
// tuple-based container as well as containing ONLY integral constants
static
constexpr
auto
a_block_slice_copy_step
=
make_tuple
(
AThreadSliceLength_K0
,
I0
,
I0
);
static
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
Gemm1KPerBlock
/
B1K1
,
0
,
0
);
// selected_mfma.group_size or B1K1 <= Gemm1KPack <= selected_mfma.group_size
// selected_mfma.k_per_blk <= Gemm1KPack
//
// Following similar rationale behind Gemm0KPack, let Gemm1KPack be the lowest common
// multiples of A1K1 (predetermined by selected_mfma.group_size) and B1K1. But in this case
// Gemm1KPack can't be higher than A1K1 itself because A1 matrix is distributed in VGPRs
// with 'group_size' amount of contiguous elements. Having Gemm1KPack greater than A1K1 will
// cause mismatch in summation index for example c[0:7] = a1[[0:3, 8:11]] * b1[0:7].
// therefore we may just as well assign Gemm1KPack = group_size
static
constexpr
index_t
GemmKPack
=
MfmaSelector
<
DataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
group_size
;
using
BlockwiseGemm
=
BlockwiseGemmXdlops_v2
<
BlockSize
,
DataType
,
FloatGemmAcc
,
decltype
(
a_thread_desc_k0_m_k1
),
decltype
(
b_block_desc_bk0_n_bk1
),
decltype
(
MakeGemm1AMmaTileDescriptor_M0_M1_M2_K
(
a_thread_desc_k0_m_k1
)),
decltype
(
MakeGemm1BMmaTileDescriptor_N0_N1_N2_K
(
b_block_desc_bk0_n_bk1
)),
MPerBlock
,
Gemm1NPerBlock
,
Gemm1KPerBlock
,
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
Gemm1NXdlPerWave
,
GemmKPack
,
true
,
// TransposeC
GemmKPack
,
// AMmaKStride
GemmKPack
*
XdlopsGemm
<
DataType
,
MPerXdl
,
NPerXdl
,
GemmKPack
,
false
>
{}
.
K0PerXdlops
/* BMmaKStride */
>
;
};
// dV / dK Gemm (type 3 crr)
// Describes tuning parameter for C2_n_o = A2_n_m * B2_m_o
template
<
index_t
Sum_M_
=
MPerXdl
*
2
>
struct
Gemm2Params_N_O_M_
{
static
constexpr
index_t
Free0_N
=
NPerBlock
;
static
constexpr
index_t
Free1_O
=
Gemm1NPerBlock
;
static
constexpr
index_t
Sum_M
=
Sum_M_
;
static
constexpr
index_t
A_M1
=
8
;
// P will be row-major
static
constexpr
index_t
A_M0
=
Sum_M
/
A_M1
;
static
constexpr
index_t
A_LdsPad
=
0
;
// how many multiples of M1 per N * M1 elements
static
constexpr
index_t
B_M1
=
2
;
// dY assumed row-major, typically =2 for fp16
static
constexpr
index_t
B_M0
=
Sum_M
/
B_M1
;
static
constexpr
index_t
B_LdsPad
=
0
;
// how many multiples of M1 per N * M1 elements
static_assert
(
Sum_M
%
MPerXdl
==
0
,
""
);
static
constexpr
index_t
BSrcVectorDim
=
1
;
// Free1_O dimension
static
constexpr
index_t
BSrcScalarPerVector
=
4
;
static
constexpr
index_t
GemmNWave
=
2
;
static
constexpr
index_t
GemmOWave
=
BlockSize
/
get_warp_size
()
/
GemmNWave
;
static
constexpr
index_t
GemmNRepeat
=
Free0_N
/
GemmNWave
/
MPerXdl
;
static
constexpr
index_t
GemmORepeat
=
Free1_O
/
GemmOWave
/
NPerXdl
;
static
constexpr
index_t
GemmMPack
=
math
::
max
(
math
::
lcm
(
A_M1
,
B_M1
),
MfmaSelector
<
DataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
using
BBlockSliceLengths
=
Sequence
<
B_M0
,
Free1_O
,
B_M1
>
;
using
BThreadClusterLengths
=
Sequence
<
BlockSize
/
(
Free1_O
/
BSrcScalarPerVector
),
Free1_O
/
BSrcScalarPerVector
,
1
>
;
using
BThreadClusterArrangeOrder
=
Sequence
<
0
,
2
,
1
>
;
__host__
__device__
static
constexpr
auto
GetABlockSliceLengths_M0_N0_M1_N1_M2_N2
()
{
// perform manual unmerge: m -> m_repeat, m_waves, m_per_xdl
constexpr
index_t
m
=
Gemm2Params_N_O_M
::
Sum_M
-
1
;
constexpr
index_t
m2
=
m
%
MPerXdl
;
constexpr
index_t
m1
=
m
/
MPerXdl
%
Gemm0MWaves
;
constexpr
index_t
m0
=
m
/
MPerXdl
/
Gemm0MWaves
%
MXdlPerWave
;
// perform manual unmerge: n -> n_repeat, n_waves, n_per_xdl
constexpr
index_t
n
=
Gemm2Params_N_O_M
::
Free0_N
-
1
;
constexpr
index_t
n2
=
n
%
NPerXdl
;
constexpr
index_t
n1
=
n
/
NPerXdl
%
Gemm0NWaves
;
constexpr
index_t
n0
=
n
/
NPerXdl
/
Gemm0NWaves
%
NXdlPerWave
;
// assume 256 decomposed into 2 x 4 x 32
// 1d idx ( 32 - 1) -> 3d idx 0, 0, 31 -> 3d dim 1 x 1 x 32
// 1d idx (256 - 1) -> 3d idx 1, 3, 31 -> 3d dim 2 x 4 x 32
return
Sequence
<
m0
,
n0
,
m1
,
n1
,
m2
,
n2
>
{}
+
Sequence
<
1
,
1
,
1
,
1
,
1
,
1
>
{};
}
__host__
__device__
static
constexpr
auto
GetABlockSliceLengths_M0_N0_M1_N1
()
{
return
generate_sequence_v2
(
[](
auto
I
)
{
return
GetABlockSliceLengths_M0_N0_M1_N1_M2_N2
().
At
(
I
);
},
Number
<
4
>
{});
}
using
ABlockSliceLengths_M0_N0_M1_N1
=
decltype
(
GetABlockSliceLengths_M0_N0_M1_N1
());
};
using
Gemm2Params_N_O_M
=
Gemm2Params_N_O_M_
<>
;
// tune later
// dV / dK Gemm (type 3 crr)
template
<
typename
Gemm2Params_N_O_M
,
typename
ASrcBlockwiseGemm
>
struct
Gemm2
{
private:
static
constexpr
auto
a_src_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
=
ASrcBlockwiseGemm
::
GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
();
static
constexpr
auto
M0
=
a_src_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I0
);
// repeat
static
constexpr
auto
N0
=
a_src_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I1
);
static
constexpr
auto
M1
=
a_src_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I2
);
// wave
static
constexpr
auto
N1
=
a_src_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I3
);
static
constexpr
auto
M2
=
a_src_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I4
);
// xdl
static
constexpr
auto
N2
=
a_src_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I5
);
static
constexpr
auto
N3
=
a_src_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I6
);
static
constexpr
auto
N4
=
a_src_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I7
);
public:
// A source matrix layout in VGPR, src of VGPR-to-LDS copy
static
constexpr
auto
a_src_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
=
ASrcBlockwiseGemm
::
GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
();
// A matrix in LDS memory, dst of blockwise copy
static
constexpr
auto
a_block_desc_m0_n_m1
=
GetA2BlockDescriptor_M0_N_M1
<
Gemm2Params_N_O_M
>
();
// B matrix in LDS memory, dst of blockwise copy
static
constexpr
auto
b_block_desc_m0_o_m1
=
GetB2BlockDescriptor_M0_O_M1
<
Gemm2Params_N_O_M
>
();
__host__
__device__
static
constexpr
auto
MakeABlockDesc_M0_N0_M1_N1_M2_N2_N3_N4
()
{
const
auto
M0_
=
a_block_desc_m0_n_m1
.
GetLength
(
I0
);
const
auto
N_
=
a_block_desc_m0_n_m1
.
GetLength
(
I1
);
const
auto
M1_
=
a_block_desc_m0_n_m1
.
GetLength
(
I2
);
const
auto
a_block_desc_m_n
=
transform_tensor_descriptor
(
a_block_desc_m0_n_m1
,
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
M0_
,
M1_
)),
make_pass_through_transform
(
N_
)),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// HACK: for unmerge transform, the length of highest dim is irrelevant so we put dummy
// variable I1 there
return
transform_tensor_descriptor
(
a_block_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
I1
,
M1
,
M2
)),
make_unmerge_transform
(
make_tuple
(
I1
,
N1
,
N2
,
N3
,
N4
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
1
,
3
,
5
,
6
,
7
>
{}));
}
// Note: we will perform sub-workgroup VGPR-to-LDS copy to save LDS space, therefore the
// destination coordinate can overlap between wavefronts in a workgroup as seen in the mod
// operation before returning the values
__host__
__device__
static
auto
MakeAThreadOriginOnBlock_M0_N0_M1_N1_M2_N2_N3_N4
()
{
const
auto
a_thread_origin_on_block_idx
=
ASrcBlockwiseGemm
::
CalculateCThreadOriginDataIndex8D
(
I0
,
I0
,
I0
,
I0
);
constexpr
auto
c_block_slice_lengths_m0_n0_m1_n1
=
typename
Gemm2Params_N_O_M
::
ABlockSliceLengths_M0_N0_M1_N1
{};
// mrepeat, nrepeat,
// mwaves, nwaves,
return
make_tuple
(
a_thread_origin_on_block_idx
[
I0
],
// mrepeat
a_thread_origin_on_block_idx
[
I1
],
// nrepeat
a_thread_origin_on_block_idx
[
I2
]
%
c_block_slice_lengths_m0_n0_m1_n1
[
I2
],
// mwave
a_thread_origin_on_block_idx
[
I3
]
%
c_block_slice_lengths_m0_n0_m1_n1
[
I3
],
// nwave
a_thread_origin_on_block_idx
[
I4
],
// xdlops
a_thread_origin_on_block_idx
[
I5
],
a_thread_origin_on_block_idx
[
I6
],
a_thread_origin_on_block_idx
[
I7
]);
}
static
constexpr
auto
a_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
=
MakeABlockDesc_M0_N0_M1_N1_M2_N2_N3_N4
();
using
ASrcBlockSliceWindowIterator
=
SpaceFillingCurve
<
Sequence
<
M0
,
N0
,
M1
,
N1
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
typename
Gemm2Params_N_O_M
::
ABlockSliceLengths_M0_N0_M1_N1
,
false
>
;
template
<
typename
ElementwiseOp
=
tensor_operation
::
element_wise
::
PassThrough
>
using
ABlockwiseCopy
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatGemmAcc
,
DataType
,
decltype
(
a_src_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
),
decltype
(
a_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
),
ElementwiseOp
,
Sequence
<
Gemm2Params_N_O_M
::
ABlockSliceLengths_M0_N0_M1_N1
::
At
(
I0
),
// ThreadSliceLengths
Gemm2Params_N_O_M
::
ABlockSliceLengths_M0_N0_M1_N1
::
At
(
I1
),
I1
,
I1
,
I1
,
N2
,
I1
,
N4
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
// DstVectorDim
1
,
// DstScalarPerVector
InMemoryDataOperationEnum
::
Set
,
1
,
// DstScalarStrideInVector
true
>
;
template
<
typename
GridDesc_M0_O_M1
>
using
BBlockwiseCopy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
tensor_operation
::
element_wise
::
PassThrough
,
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
typename
Gemm2Params_N_O_M
::
BBlockSliceLengths
,
typename
Gemm2Params_N_O_M
::
BThreadClusterLengths
,
typename
Gemm2Params_N_O_M
::
BThreadClusterArrangeOrder
,
DataType
,
DataType
,
GridDesc_M0_O_M1
,
decltype
(
b_block_desc_m0_o_m1
),
typename
Gemm2Params_N_O_M
::
BThreadClusterArrangeOrder
,
// access order == thread order
Sequence
<
1
,
0
,
2
>
,
Gemm2Params_N_O_M
::
BSrcVectorDim
,
2
,
// DstVectorDim
Gemm2Params_N_O_M
::
BSrcScalarPerVector
,
Gemm2Params_N_O_M
::
B_M1
,
1
,
1
,
true
,
true
,
1
>
;
using
BlockwiseGemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
<
BlockSize
,
DataType
,
FloatGemmAcc
,
decltype
(
a_block_desc_m0_n_m1
),
decltype
(
b_block_desc_m0_o_m1
),
MPerXdl
,
NPerXdl
,
Gemm2Params_N_O_M
::
GemmNRepeat
,
Gemm2Params_N_O_M
::
GemmORepeat
,
Gemm2Params_N_O_M
::
GemmMPack
,
true
>
;
// TranspossC
static
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
Gemm2Params_N_O_M
::
B_M0
,
0
,
0
);
static
constexpr
auto
c_block_slice_copy_step
=
make_multi_index
(
Gemm2Params_N_O_M
::
GemmNRepeat
,
0
,
0
,
0
,
0
,
0
,
0
,
0
);
static
constexpr
auto
b_block_reset_copy_step
=
make_multi_index
(
-
MPerBlock
/
Gemm2Params_N_O_M
::
B_M1
,
0
,
0
);
template
<
typename
CGradDesc_N_O
>
__host__
__device__
static
auto
MakeCGridDesc_N0_O0_N1_O1_N2_O2_O3_O4
(
const
CGradDesc_N_O
&
c_grid_desc_n_o
)
{
// HACK: for unmerge transform, the length of highest dim is irrelevant so we put dummy
// variable I1 there
const
auto
c_grid_desc_n0_o0_n1_o1_n2_o2
=
transform_tensor_descriptor
(
c_grid_desc_n_o
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
I1
,
Gemm2Params_N_O_M
::
GemmNWave
,
MPerXdl
)),
make_unmerge_transform
(
make_tuple
(
I1
,
Gemm2Params_N_O_M
::
GemmOWave
,
NPerXdl
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
1
,
3
,
5
>
{}));
const
auto
c_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
=
BlockwiseGemm
{}.
xdlops_gemm
.
MakeCDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
(
c_grid_desc_n0_o0_n1_o1_n2_o2
);
return
c_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
;
}
static
constexpr
auto
c_thread_desc_n0_o0_n1_o1_n2_o2_o3_o4
=
BlockwiseGemm
::
GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
();
__host__
__device__
static
auto
GetCThreadOriginOnBlock_N0_O0_N1_O1_N2_O2_O3_O4
()
{
return
to_multi_index
(
BlockwiseGemm
::
CalculateCThreadOriginDataIndex8D
(
I0
,
I0
,
I0
,
I0
));
}
template
<
typename
CGridDesc_N0_O0_N1_O1_N2_O2_O3_O4
,
typename
ElementwiseOp
=
tensor_operation
::
element_wise
::
PassThrough
>
using
CBlockwiseCopy
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatGemmAcc
,
DataType
,
decltype
(
c_thread_desc_n0_o0_n1_o1_n2_o2_o3_o4
),
CGridDesc_N0_O0_N1_O1_N2_O2_O3_O4
,
ElementwiseOp
,
// CElementwiseOperation
decltype
(
c_thread_desc_n0_o0_n1_o1_n2_o2_o3_o4
.
GetLengths
()),
// SliceLengths
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
// AccessOrder
7
,
// VectorDim
2
,
// ScalarPerVector
InMemoryDataOperationEnum
::
AtomicAdd
,
// GlobalMemoryDataOperation
1
,
// DstScalarStrideInVector
true
>
;
};
template
<
index_t
BlockSize_
,
index_t
BlockSliceLength_M_
,
index_t
BlockSliceLength_O_
>
struct
YDotYGrad_M_O_
{
static
constexpr
index_t
SrcScalarPerVector
=
16
/
sizeof
(
DataType
);
static
constexpr
auto
ThreadClusterLength_O
=
Number
<
BlockSliceLength_O_
/
SrcScalarPerVector
>
{};
static
constexpr
auto
ThreadClusterLength_M
=
Number
<
BlockSize_
/
ThreadClusterLength_O
>
{};
static
constexpr
auto
ThreadSliceLength_O
=
Number
<
SrcScalarPerVector
>
{};
static
constexpr
auto
ThreadSliceLength_M
=
Number
<
BlockSliceLength_M_
*
ThreadClusterLength_O
/
BlockSize_
>
{};
static_assert
(
ThreadClusterLength_O
*
ThreadSliceLength_O
==
BlockSliceLength_O_
,
""
);
static_assert
(
ThreadClusterLength_M
*
ThreadSliceLength_M
==
BlockSliceLength_M_
,
""
);
using
SrcBufType
=
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
DataType
,
ThreadSliceLength_M
*
ThreadSliceLength_O
,
true
>
;
using
DstBufType
=
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
FloatGemmAcc
,
ThreadSliceLength_M
,
true
>
;
};
using
YDotYGrad_M_O
=
YDotYGrad_M_O_
<
BlockSize
,
MPerBlock
,
Gemm1NPerBlock
>
;
// PGrad Gemm has the same layout as P = Q * K^T Gemm (A row-major B col-major)
struct
PGradGemmTile_M_N_O
{
// TODO:
// Make all input tensors 2D and transform them into appropriate 3D form in kernel to make
// things more concise
template
<
typename
YGradGridDesc_M0_O_M1_
>
__device__
static
auto
MakeYGradGridDesc_O0_M_O1
(
const
YGradGridDesc_M0_O_M1_
&
ygrad_grid_desc_m0_o_m1
)
{
const
auto
M0
=
ygrad_grid_desc_m0_o_m1
.
GetLength
(
I0
);
const
auto
O
=
ygrad_grid_desc_m0_o_m1
.
GetLength
(
I1
);
const
auto
M1
=
ygrad_grid_desc_m0_o_m1
.
GetLength
(
I2
);
constexpr
auto
Y_O1
=
AK1
;
const
auto
Y_O0
=
O
/
Y_O1
;
const
auto
ygrad_grid_desc_o0_m_o1
=
transform_tensor_descriptor
(
ygrad_grid_desc_m0_o_m1
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Y_O0
,
Y_O1
)),
make_merge_transform_v3_division_mod
(
make_tuple
(
M0
,
M1
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
ygrad_grid_desc_o0_m_o1
;
}
template
<
typename
VGridDesc_N0_O_N1_
>
__device__
static
auto
MakeVGridDesc_O0_N_O1
(
const
VGridDesc_N0_O_N1_
&
v_grid_desc_n0_o_n1
)
{
const
auto
N0
=
v_grid_desc_n0_o_n1
.
GetLength
(
I0
);
const
auto
O
=
v_grid_desc_n0_o_n1
.
GetLength
(
I1
);
const
auto
N1
=
v_grid_desc_n0_o_n1
.
GetLength
(
I2
);
constexpr
auto
V_O1
=
BK1
;
const
auto
V_O0
=
O
/
V_O1
;
const
auto
v_grid_desc_o0_n_o1
=
transform_tensor_descriptor
(
v_grid_desc_n0_o_n1
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
V_O0
,
V_O1
)),
make_merge_transform_v3_division_mod
(
make_tuple
(
N0
,
N1
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
v_grid_desc_o0_n_o1
;
}
};
// QGrad Gemm has the same layout as Y = P * V Gemm (A in acc B row-major)
struct
QGradGemmTile_M_K_N
{
template
<
typename
QGridDesc_K0_M_K1_
>
__device__
static
auto
MakeQGradGridDesc_MBlock_MPerBlock_KBlock_KPerBlock
(
const
QGridDesc_K0_M_K1_
&
q_grid_desc_k0_m_k1
)
{
const
auto
K0
=
q_grid_desc_k0_m_k1
.
GetLength
(
I0
);
const
auto
M
=
q_grid_desc_k0_m_k1
.
GetLength
(
I1
);
const
auto
K1
=
q_grid_desc_k0_m_k1
.
GetLength
(
I2
);
const
auto
K
=
K0
*
K1
;
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
KBlock
=
K
/
Gemm1NPerBlock
;
// NOTE: QGrad gemm is similar to Y gemm
const
auto
q_grid_desc_m_k
=
transform_tensor_descriptor
(
q_grid_desc_k0_m_k1
,
make_tuple
(
make_pass_through_transform
(
M
),
make_merge_transform_v3_division_mod
(
make_tuple
(
K0
,
K1
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
transform_tensor_descriptor
(
q_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
KBlock
,
Number
<
Gemm1NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
}
template
<
typename
KGridDesc_K0_N_K1_
>
__device__
static
auto
MakeKGridDesc_N0_K_N1
(
const
KGridDesc_K0_N_K1_
&
k_grid_desc_k0_n_k1
)
{
const
auto
K_K0
=
k_grid_desc_k0_n_k1
.
GetLength
(
I0
);
const
auto
N
=
k_grid_desc_k0_n_k1
.
GetLength
(
I1
);
const
auto
K_K1
=
k_grid_desc_k0_n_k1
.
GetLength
(
I2
);
constexpr
auto
K_N1
=
B1K1
;
const
auto
K_N0
=
N
/
K_N1
;
const
auto
k_grid_desc_n0_k_n1
=
transform_tensor_descriptor
(
k_grid_desc_k0_n_k1
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K_N0
,
K_N1
)),
make_merge_transform_v3_division_mod
(
make_tuple
(
K_K0
,
K_K1
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
k_grid_desc_n0_k_n1
;
}
};
struct
KGradGemmTile_N_K_M
{
// B position
template
<
typename
QGridDesc_K0_M_K1_
>
__device__
static
auto
MakeQGridDesc_M0_K_M1
(
const
QGridDesc_K0_M_K1_
&
q_grid_desc_k0_m_k1
)
{
const
auto
Q_K0
=
q_grid_desc_k0_m_k1
.
GetLength
(
I0
);
const
auto
M
=
q_grid_desc_k0_m_k1
.
GetLength
(
I1
);
const
auto
Q_K1
=
q_grid_desc_k0_m_k1
.
GetLength
(
I2
);
constexpr
auto
Q_M1
=
B1K1
;
const
auto
Q_M0
=
M
/
Q_M1
;
const
auto
q_grid_desc_m0_k_m1
=
transform_tensor_descriptor
(
q_grid_desc_k0_m_k1
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Q_M0
,
Q_M1
)),
make_merge_transform_v3_division_mod
(
make_tuple
(
Q_K0
,
Q_K1
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
q_grid_desc_m0_k_m1
;
}
// C position
template
<
typename
KGridDesc_K0_N_K1_
>
__device__
static
auto
MakeKGradGridDesc_N_K
(
const
KGridDesc_K0_N_K1_
&
k_grid_desc_k0_n_k1
)
{
const
auto
K_K0
=
k_grid_desc_k0_n_k1
.
GetLength
(
I0
);
const
auto
N
=
k_grid_desc_k0_n_k1
.
GetLength
(
I1
);
const
auto
K_K1
=
k_grid_desc_k0_n_k1
.
GetLength
(
I2
);
return
transform_tensor_descriptor
(
k_grid_desc_k0_n_k1
,
make_tuple
(
make_pass_through_transform
(
N
),
make_merge_transform_v3_division_mod
(
make_tuple
(
K_K0
,
K_K1
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
};
struct
SharedMemTrait
{
// LDS allocation for A and B: be careful of alignment
static
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
static
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
static
constexpr
auto
b1_block_desc_bk0_n_bk1
=
GetB1BlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
static
constexpr
auto
a2_block_desc_m0_n_m1
=
GetA2BlockDescriptor_M0_N_M1
<
Gemm2Params_N_O_M
>
();
static
constexpr
auto
b2_block_desc_m0_o_m1
=
GetB2BlockDescriptor_M0_O_M1
<
Gemm2Params_N_O_M
>
();
static
constexpr
auto
max_lds_align
=
Number
<
16
/
sizeof
(
DataType
)
>
{};
static
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
static
constexpr
auto
b_block_space_size_aligned
=
math
::
integer_least_multiple
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
(),
max_lds_align
);
static
constexpr
auto
b1_block_space_size_aligned
=
math
::
integer_least_multiple
(
b1_block_desc_bk0_n_bk1
.
GetElementSpaceSize
(),
max_lds_align
);
static
constexpr
auto
p_block_space_size_aligned
=
math
::
integer_least_multiple
(
a2_block_desc_m0_n_m1
.
GetElementSpaceSize
(),
max_lds_align
);
static
constexpr
auto
ygrad_block_space_size_aligned
=
math
::
integer_least_multiple
(
b2_block_desc_m0_o_m1
.
GetElementSpaceSize
(),
max_lds_align
);
static
constexpr
auto
a_block_space_offset
=
0
;
static
constexpr
auto
b_block_space_offset
=
a_block_space_size_aligned
.
value
;
static
constexpr
auto
b1_block_space_offset
=
0
;
static
constexpr
auto
a2_block_space_offset
=
0
;
static
constexpr
auto
b2_block_space_offset
=
p_block_space_size_aligned
.
value
;
// LDS allocation for reduction
static
constexpr
index_t
reduction_space_size_aligned
=
math
::
integer_least_multiple
(
BlockSize
,
max_lds_align
);
static
constexpr
auto
reduction_space_offset
=
0
;
// LDS allocation for C shuffle in LDS
static
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
static
constexpr
auto
c_block_space_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
};
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
const
index_t
gemm0_bytes_end
=
(
SharedMemTrait
::
a_block_space_size_aligned
+
SharedMemTrait
::
b_block_space_size_aligned
)
*
sizeof
(
DataType
);
const
index_t
gemm1_bytes_end
=
(
SharedMemTrait
::
b1_block_space_offset
+
SharedMemTrait
::
b1_block_space_size_aligned
)
*
sizeof
(
DataType
);
const
index_t
vgrad_gemm_bytes_end
=
(
SharedMemTrait
::
p_block_space_size_aligned
+
SharedMemTrait
::
ygrad_block_space_size_aligned
)
*
sizeof
(
DataType
);
const
index_t
softmax_bytes_end
=
(
SharedMemTrait
::
reduction_space_offset
+
SharedMemTrait
::
reduction_space_size_aligned
)
*
sizeof
(
FloatGemmAcc
);
const
index_t
c_block_bytes_end
=
SharedMemTrait
::
c_block_space_size
*
sizeof
(
FloatCShuffle
);
return
math
::
max
(
gemm0_bytes_end
,
gemm1_bytes_end
,
vgrad_gemm_bytes_end
,
softmax_bytes_end
,
c_block_bytes_end
);
}
template
<
bool
HasMainKBlockLoop
,
typename
Block2CTileMap
,
typename
C0MatrixMask
,
typename
VGradGridDescriptor_N_O
,
typename
YGradGridDesc_M0_O_M1
>
__device__
static
void
Run
(
const
DataType
*
__restrict__
p_q_grid
,
const
DataType
*
__restrict__
p_k_grid
,
unsigned
short
*
__restrict__
p_z_grid
,
const
DataType
*
__restrict__
p_v_grid
,
const
DataType
*
__restrict__
p_y_grid
,
const
FloatLSE
*
__restrict__
p_lse_grid
,
const
DataType
*
__restrict__
p_ygrad_grid
,
DataType
*
__restrict__
p_qgrad_grid
,
DataType
*
__restrict__
p_kgrad_grid
,
DataType
*
__restrict__
p_vgrad_grid
,
void
*
__restrict__
p_shared
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
SElementwiseOperation
&
s_element_op
,
const
B1ElementwiseOperation
&
b1_element_op
,
const
CElementwiseOperation
&
c_element_op
,
const
QGridDesc_K0_M_K1
&
q_grid_desc_k0_m_k1
,
const
KGridDesc_K0_N_K1
&
k_grid_desc_k0_n_k1
,
const
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
&
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
const
VGridDesc_N0_O_N1
&
v_grid_desc_n0_o_n1
,
const
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
&
y_grid_desc_mblock_mperblock_oblock_operblock
,
const
LSEGridDesc_M
&
lse_grid_desc_m
,
const
VGradGridDescriptor_N_O
&
vgrad_grid_desc_n_o
,
const
YGradGridDesc_M0_O_M1
&
ygrad_grid_desc_m0_o_m1
,
const
Block2CTileMap
&
block_2_ctile_map
,
const
C0MatrixMask
&
c0_matrix_mask
,
FloatGemmAcc
p_dropout
,
ck
::
philox
&
ph
)
{
const
ushort
p_dropout_in_16bits
=
uint16_t
(
std
::
floor
(
p_dropout
*
65535.0
));
const
FloatGemmAcc
rp_dropout
=
1.0
f
/
p_dropout
;
const
auto
q_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_q_grid
,
q_grid_desc_k0_m_k1
.
GetElementSpaceSize
());
const
auto
k_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_k_grid
,
k_grid_desc_k0_n_k1
.
GetElementSpaceSize
());
const
auto
v_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_v_grid
,
v_grid_desc_n0_o_n1
.
GetElementSpaceSize
());
const
auto
y_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_y_grid
,
y_grid_desc_mblock_mperblock_oblock_operblock
.
GetElementSpaceSize
());
const
auto
lse_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_lse_grid
,
lse_grid_desc_m
.
GetElementSpaceSize
());
const
auto
ygrad_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_ygrad_grid
,
ygrad_grid_desc_m0_o_m1
.
GetElementSpaceSize
());
auto
vgrad_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_vgrad_grid
,
vgrad_grid_desc_n_o
.
GetElementSpaceSize
());
auto
qgrad_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_qgrad_grid
,
q_grid_desc_k0_m_k1
.
GetElementSpaceSize
());
auto
kgrad_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_kgrad_grid
,
k_grid_desc_k0_n_k1
.
GetElementSpaceSize
());
// divide block work by [M, O]
const
auto
block_work_idx
=
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
if
(
!
block_2_ctile_map
.
ValidCTileIndex
(
block_work_idx
,
make_tuple
(
y_grid_desc_mblock_mperblock_oblock_operblock
.
GetLength
(
I0
),
y_grid_desc_mblock_mperblock_oblock_operblock
.
GetLength
(
I2
))))
{
return
;
}
// HACK: this force m/o_block_data_idx_on_grid into SGPR
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
MPerBlock
);
const
index_t
o_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
Gemm1NPerBlock
);
// 6 GEMM operations are categorized into 3 buckets. SizeK == SizeO == head_dim
// S_MNK / dP_MNO Gemm (Gemm0 rcr)
// Y_MON / dQ_MKN Gemm (Gemm1 rrr)
// dV_NOM / dK_NKM Gemm (Gemm2 crr)
//
// set up S / dP Gemm (type 1 rcr)
//
// Gemm0: LDS allocation for A and B: be careful of alignment
auto
gemm0_a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
a_block_space_offset
,
Gemm0
::
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
gemm0_b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
b_block_space_offset
,
Gemm0
::
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
// Gemm0: gridwise GEMM pipeline
// Only supports LoopScheduler::Default
const
auto
gemm0_gridwise_gemm_pipeline
=
GridwiseGemmPipeline_Selector
<
PipelineVer
,
NumGemmKPrefetchStage
,
LoopScheduler
::
Default
>
();
// S: A matrix blockwise copy
auto
s_gemm_tile_q_blockwise_copy
=
typename
Gemm0
::
template
ABlockwiseCopy
<
decltype
(
q_grid_desc_k0_m_k1
)>(
q_grid_desc_k0_m_k1
,
make_multi_index
(
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
Gemm0
::
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
tensor_operation
::
element_wise
::
PassThrough
{});
// S: B matrix blockwise copy
auto
s_gemm_tile_k_blockwise_copy
=
typename
Gemm0
::
template
BBlockwiseCopy
<
decltype
(
k_grid_desc_k0_n_k1
)>(
k_grid_desc_k0_n_k1
,
make_multi_index
(
0
,
0
,
0
),
// will loop over GemmN dimension
b_element_op
,
Gemm0
::
b_block_desc_bk0_n_bk1
,
make_multi_index
(
0
,
0
,
0
),
tensor_operation
::
element_wise
::
PassThrough
{});
// S: blockwise gemm
auto
s_blockwise_gemm
=
typename
Gemm0
::
BlockwiseGemm
{};
// TransposeC
auto
s_slash_p_thread_buf
=
s_blockwise_gemm
.
GetCThreadBuffer
();
const
auto
s_gemm_tile_a_block_reset_copy_step
=
make_multi_index
(
-
q_grid_desc_k0_m_k1
.
GetLength
(
I0
),
0
,
0
);
const
auto
s_gemm_tile_b_block_reset_copy_step
=
make_multi_index
(
-
k_grid_desc_k0_n_k1
.
GetLength
(
I0
),
NPerBlock
,
0
);
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
q_grid_desc_k0_m_k1
.
GetLength
(
I0
)
*
q_grid_desc_k0_m_k1
.
GetLength
(
I2
))
/
KPerBlock
);
// dP: transform input and output tensor descriptors
const
auto
ygrad_grid_desc_o0_m_o1
=
PGradGemmTile_M_N_O
::
MakeYGradGridDesc_O0_M_O1
(
ygrad_grid_desc_m0_o_m1
);
const
auto
v_grid_desc_o0_n_o1
=
PGradGemmTile_M_N_O
::
MakeVGridDesc_O0_N_O1
(
v_grid_desc_n0_o_n1
);
// dP: A matrix blockwise copy
auto
pgrad_gemm_tile_ygrad_blockwise_copy
=
typename
Gemm0
::
template
ABlockwiseCopy
<
decltype
(
ygrad_grid_desc_o0_m_o1
)>(
ygrad_grid_desc_o0_m_o1
,
make_multi_index
(
0
,
m_block_data_idx_on_grid
,
0
),
tensor_operation
::
element_wise
::
PassThrough
{},
Gemm0
::
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
tensor_operation
::
element_wise
::
PassThrough
{});
// dP: B matrix blockwise copy
auto
pgrad_gemm_tile_v_blockwise_copy
=
typename
Gemm0
::
template
BBlockwiseCopy
<
decltype
(
v_grid_desc_o0_n_o1
)>(
v_grid_desc_o0_n_o1
,
make_multi_index
(
0
,
0
,
0
),
// will loop over GemmN dimension
tensor_operation
::
element_wise
::
PassThrough
{},
Gemm0
::
b_block_desc_bk0_n_bk1
,
make_multi_index
(
0
,
0
,
0
),
tensor_operation
::
element_wise
::
PassThrough
{});
// dP: blockwise gemm
// we need separate blockwise gemm object because we need separate thread buffer
auto
pgrad_blockwise_gemm
=
typename
Gemm0
::
BlockwiseGemm
{};
auto
pgrad_thread_buf
=
pgrad_blockwise_gemm
.
GetCThreadBuffer
();
const
auto
pgrad_gemm_tile_ygrad_block_reset_copy_step
=
make_multi_index
(
-
ygrad_grid_desc_o0_m_o1
.
GetLength
(
I0
),
0
,
0
);
const
auto
pgrad_gemm_tile_v_block_reset_copy_step
=
make_multi_index
(
-
v_grid_desc_o0_n_o1
.
GetLength
(
I0
),
NPerBlock
,
0
);
const
index_t
num_o_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
ygrad_grid_desc_o0_m_o1
.
GetLength
(
I0
)
*
ygrad_grid_desc_o0_m_o1
.
GetLength
(
I2
))
/
KPerBlock
);
//
// set up Y / dQ Gemm (type 2 rrr)
//
// Note: Y is pre-calculated in forward pass and loaded to backward pass kernel
using
Gemm1
=
Gemm1
<
decltype
(
s_blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
()),
decltype
(
s_blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
())
>
;
// Gemm1: VGPR allocation for A and LDS allocation for B
auto
gemm1_a_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
DataType
>
(
Gemm1
::
a_thread_desc_k0_m_k1
.
GetElementSpaceSize
());
auto
gemm1_b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
b1_block_space_offset
,
Gemm1
::
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
// dQ: transform input and output tensor descriptors
const
auto
k_grid_desc_n0_k_n1
=
QGradGemmTile_M_K_N
::
MakeKGridDesc_N0_K_N1
(
k_grid_desc_k0_n_k1
);
auto
qgrad_grid_desc_mblock_mperblock_kblock_kperblock
=
QGradGemmTile_M_K_N
::
MakeQGradGridDesc_MBlock_MPerBlock_KBlock_KPerBlock
(
q_grid_desc_k0_m_k1
);
// dQ: A matrix blockwise copy
auto
qgrad_gemm_tile_sgrad_blockwise_copy
=
typename
Gemm1
::
ABlockwiseCopy
{
tensor_operation
::
element_wise
::
PassThrough
{}};
// dQ: B matrix blockwise copy
auto
qgrad_gemm_tile_k_blockwise_copy
=
typename
Gemm1
::
template
BBlockwiseCopy
<
decltype
(
k_grid_desc_n0_k_n1
)>(
k_grid_desc_n0_k_n1
,
make_multi_index
(
0
,
o_block_data_idx_on_grid
,
0
),
b1_element_op
,
Gemm1
::
b_block_desc_bk0_n_bk1
,
// there n actually is k, k is N, so name can be
// b_block_desc_bn0_k_bn1
make_multi_index
(
0
,
0
,
0
),
tensor_operation
::
element_wise
::
PassThrough
{});
// dQ: blockwise gemm
auto
qgrad_blockwise_gemm
=
typename
Gemm1
::
BlockwiseGemm
{
make_tuple
(
0
,
0
,
0
,
0
)};
// A_origin
auto
qgrad_thread_buf
=
qgrad_blockwise_gemm
.
GetCThreadBuffer
();
//
// Blockwise softmax
//
// get acc0 8D thread cluster
constexpr
auto
thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4
=
s_blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
().
GetLengths
()
/
s_blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
().
GetLengths
();
constexpr
auto
tm0
=
thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4
.
At
(
I0
);
constexpr
auto
tn0
=
thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4
.
At
(
I1
);
constexpr
auto
tm1
=
thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4
.
At
(
I2
);
constexpr
auto
tn1
=
thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4
.
At
(
I3
);
constexpr
auto
tm2
=
thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4
.
At
(
I4
);
constexpr
auto
tn2
=
thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4
.
At
(
I5
);
constexpr
auto
tn3
=
thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4
.
At
(
I6
);
constexpr
auto
tn4
=
thread_cluster_m0_n0_m1_n1_m2_n2_n3_n4
.
At
(
I7
);
// get acc0 thread map
constexpr
auto
m0_n_m1_to_m_n_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_unmerge_transform
(
make_tuple
(
tm0
*
tm1
,
tm2
)),
make_pass_through_transform
(
I1
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
constexpr
auto
threadid_to_m0_n_m1_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
tm0
*
tm1
,
tn0
*
tn1
*
tn2
*
tn3
*
tn4
,
tm2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
threadid_to_m_n_thread_cluster_adaptor
=
chain_tensor_adaptors
(
m0_n_m1_to_m_n_adaptor
,
threadid_to_m0_n_m1_adaptor
);
// get acc0 2D thread cluster & 2D thread slice
constexpr
auto
thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
=
s_blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
();
constexpr
auto
m0
=
thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I0
);
constexpr
auto
n0
=
thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I1
);
constexpr
auto
m1
=
thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I2
);
constexpr
auto
n1
=
thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I3
);
constexpr
auto
m2
=
thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I4
);
constexpr
auto
n2
=
thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I5
);
constexpr
auto
n3
=
thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I6
);
constexpr
auto
n4
=
thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I7
);
constexpr
auto
thread_cluster_desc_m_n
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
tm0
*
tm1
*
tm2
,
tn0
*
tn1
*
tn2
*
tn3
*
tn4
));
constexpr
auto
thread_slice_desc_m_n
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
m0
*
m1
*
m2
,
n0
*
n1
*
n2
*
n3
*
n4
));
auto
blockwise_softmax
=
BlockwiseSoftmax
<
BlockSize
,
FloatGemmAcc
,
decltype
(
threadid_to_m_n_thread_cluster_adaptor
),
decltype
(
thread_cluster_desc_m_n
),
decltype
(
thread_slice_desc_m_n
)
>
{};
auto
blockwise_dropout
=
BlockwiseDropout
<
FloatGemmAcc
,
decltype
(
thread_slice_desc_m_n
)
>
{
p_dropout_in_16bits
,
rp_dropout
};
auto
lse_grid_desc_mblock_mrepeat_mwave_mperxdl
=
MakeLSEGridDescriptor_MBlock_MRepeat_NWave_MPerXdl
(
lse_grid_desc_m
);
constexpr
auto
lse_thread_desc_mblock_mrepeat_mwave_mperxdl
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
m0
,
m1
,
m2
));
auto
lse_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatLSE
>
(
lse_thread_desc_mblock_mrepeat_mwave_mperxdl
.
GetElementSpaceSize
());
auto
acc0_thread_origin
=
s_blockwise_gemm
.
CalculateCThreadOriginDataIndex8D
(
Number
<
0
>
{},
Number
<
0
>
{},
Number
<
0
>
{},
Number
<
0
>
{});
auto
lse_thread_copy_global_to_vgpr
=
ThreadwiseTensorSliceTransfer_v2
<
FloatLSE
,
FloatLSE
,
decltype
(
lse_grid_desc_mblock_mrepeat_mwave_mperxdl
),
decltype
(
lse_thread_desc_mblock_mrepeat_mwave_mperxdl
),
Sequence
<
1
,
m0
,
m1
,
m2
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
m2
,
1
,
false
>
{
lse_grid_desc_mblock_mrepeat_mwave_mperxdl
,
make_multi_index
(
block_work_idx
[
I0
],
// mblock
acc0_thread_origin
[
I0
],
// mrepeat
acc0_thread_origin
[
I2
],
// mwave
acc0_thread_origin
[
I4
])};
// mperxdl
//
// z vgpr copy to global
//
// z matrix threadwise desc
constexpr
auto
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
// MBlockId
I1
,
// NBlockID
m0
,
// MRepeat
n0
,
// NRepeat
m1
,
// MWaveId
n1
,
// NWaveId
m2
,
// MPerXdl
n2
,
// NGroupNum
n3
,
// NInputNum
n4
));
// registerNum
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
unsigned
short
,
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
.
GetElementSpaceSize
(),
true
>
z_tenor_buffer
;
z_tenor_buffer
.
Clear
();
// z matrix global desc
/*const auto M = q_grid_desc_k0_m_k1.GetLength(I1);
const auto N = k_grid_desc_k0_n_k1.GetLength(I1);
auto z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
MakeZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(M, N);*/
auto
z_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_z_grid
,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
.
GetElementSpaceSize
());
const
auto
wave_id
=
GetGemm0WaveIdx
();
const
auto
wave_m_n_id
=
GetGemm0WaveMNIdx
(
wave_id
[
I2
]);
// I2: 0~63
auto
z_thread_copy_vgpr_to_global
=
ThreadwiseTensorSliceTransfer_v1r3
<
ushort
,
ushort
,
decltype
(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
),
decltype
(
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
),
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
I1
,
// MBlockId
I1
,
// NBlockID
m0
,
// MRepeat
n0
,
// NRepeat
m1
,
// MWaveId
n1
,
// NWaveId
m2
,
// MPerXdl
n2
,
// NGroupNum
n3
,
// NInputNum
n4
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
>
,
9
,
// DstVectorDim
n4
,
// DstScalarPerVector
InMemoryDataOperationEnum
::
Set
,
1
,
// DstScalarStrideInVector
true
>
{
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
make_multi_index
(
block_work_idx
[
I0
],
// MBlockId
0
,
// NBlockId
0
,
// mrepeat
0
,
// nrepeat
wave_id
[
I0
],
// MWaveId
wave_id
[
I1
],
// NWaveId
wave_m_n_id
[
I1
],
// MPerXdl
0
,
// group
wave_m_n_id
[
I0
],
// NInputIndex
0
),
tensor_operation
::
element_wise
::
PassThrough
{}};
//
// set up dV / dK Gemm (type 3 crr)
//
using
Gemm2
=
Gemm2
<
Gemm2Params_N_O_M
,
decltype
(
s_blockwise_gemm
)
>
;
// Gemm2: LDS allocation for A and B: be careful of alignment
auto
gemm2_a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
a2_block_space_offset
,
Gemm2
::
a_block_desc_m0_n_m1
.
GetElementSpaceSize
());
auto
gemm2_b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
DataType
*>
(
p_shared
)
+
SharedMemTrait
::
b2_block_space_offset
,
Gemm2
::
b_block_desc_m0_o_m1
.
GetElementSpaceSize
());
// dV: transform input and output tensor descriptors
const
auto
vgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
=
Gemm2
::
MakeCGridDesc_N0_O0_N1_O1_N2_O2_O3_O4
(
vgrad_grid_desc_n_o
);
// dV: A matrix VGPR-to-LDS blockwise copy
auto
vgrad_gemm_tile_p_thread_copy_vgpr_to_lds
=
typename
Gemm2
::
template
ABlockwiseCopy
<
tensor_operation
::
element_wise
::
Relu
>{
Gemm2
::
a_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
Gemm2
::
MakeAThreadOriginOnBlock_M0_N0_M1_N1_M2_N2_N3_N4
(),
tensor_operation
::
element_wise
::
Relu
{}};
// relu(P-dropped)
// dV: B matrix global-to-LDS blockwise copy
auto
vgrad_gemm_tile_ygrad_blockwise_copy
=
typename
Gemm2
::
template
BBlockwiseCopy
<
decltype
(
ygrad_grid_desc_m0_o_m1
)>(
ygrad_grid_desc_m0_o_m1
,
make_multi_index
(
m_block_data_idx_on_grid
/
Gemm2Params_N_O_M
::
B_M1
,
o_block_data_idx_on_grid
,
0
),
tensor_operation
::
element_wise
::
PassThrough
{},
Gemm2
::
b_block_desc_m0_o_m1
,
make_multi_index
(
0
,
0
,
0
),
tensor_operation
::
element_wise
::
PassThrough
{});
// dV: blockwise gemm
auto
v_slash_k_grad_blockwise_gemm
=
typename
Gemm2
::
BlockwiseGemm
{};
auto
v_slash_k_grad_thread_buf
=
v_slash_k_grad_blockwise_gemm
.
GetCThreadBuffer
();
// dV: C VGPR-to-global copy
const
auto
vgrad_thread_origin_on_grid_n0_o0_n1_o1_n2_o2_o3_o4
=
Gemm2
::
GetCThreadOriginOnBlock_N0_O0_N1_O1_N2_O2_O3_O4
()
+
make_multi_index
(
I0
,
block_work_idx
[
I1
]
*
Gemm2Params_N_O_M
::
GemmORepeat
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
);
auto
vgrad_thread_copy_vgpr_to_global
=
typename
Gemm2
::
template
CBlockwiseCopy
<
decltype
(
vgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
),
tensor_operation
::
element_wise
::
Scale
>(
vgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
,
vgrad_thread_origin_on_grid_n0_o0_n1_o1_n2_o2_o3_o4
,
tensor_operation
::
element_wise
::
Scale
{
rp_dropout
});
// dK: transform input and output tensor descriptors
const
auto
q_grid_desc_m0_k_m1
=
KGradGemmTile_N_K_M
::
MakeQGridDesc_M0_K_M1
(
q_grid_desc_k0_m_k1
);
const
auto
kgrad_grid_desc_n_k
=
KGradGemmTile_N_K_M
::
MakeKGradGridDesc_N_K
(
k_grid_desc_k0_n_k1
);
const
auto
kgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
=
Gemm2
::
MakeCGridDesc_N0_O0_N1_O1_N2_O2_O3_O4
(
kgrad_grid_desc_n_k
);
// dK: A matrix VGPR-to-LDS blockwise copy
auto
kgrad_gemm_tile_sgrad_thread_copy_vgpr_to_lds
=
typename
Gemm2
::
template
ABlockwiseCopy
<
tensor_operation
::
element_wise
::
PassThrough
>{
Gemm2
::
a_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
Gemm2
::
MakeAThreadOriginOnBlock_M0_N0_M1_N1_M2_N2_N3_N4
(),
tensor_operation
::
element_wise
::
PassThrough
{}};
// dK: B matrix global-to-LDS blockwise copy
auto
kgrad_gemm_tile_q_blockwise_copy
=
typename
Gemm2
::
template
BBlockwiseCopy
<
decltype
(
q_grid_desc_m0_k_m1
)>(
q_grid_desc_m0_k_m1
,
make_multi_index
(
m_block_data_idx_on_grid
/
Gemm2Params_N_O_M
::
B_M1
,
o_block_data_idx_on_grid
,
0
),
tensor_operation
::
element_wise
::
PassThrough
{},
Gemm2
::
b_block_desc_m0_o_m1
,
make_multi_index
(
0
,
0
,
0
),
tensor_operation
::
element_wise
::
PassThrough
{});
// dK: blockwise gemm
/* reuse v_slash_k_grad_blockwise_gemm, v_slash_k_grad_thread_buf */
// dK: C VGPR-to-global copy
const
auto
kgrad_thread_origin_on_grid_n0_o0_n1_o1_n2_o2_o3_o4
=
Gemm2
::
GetCThreadOriginOnBlock_N0_O0_N1_O1_N2_O2_O3_O4
()
+
make_multi_index
(
I0
,
block_work_idx
[
I1
]
*
Gemm2Params_N_O_M
::
GemmORepeat
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
);
auto
kgrad_thread_copy_vgpr_to_global
=
typename
Gemm2
::
template
CBlockwiseCopy
<
decltype
(
kgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
),
decltype
(
s_element_op
)>(
kgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
,
kgrad_thread_origin_on_grid_n0_o0_n1_o1_n2_o2_o3_o4
,
s_element_op
);
//
// set up Y dot dY
//
// m0, n0 are m/n repeat per wave
// m1, n1 are number of waves
constexpr
auto
p_block_lengths
=
s_blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
().
GetLengths
();
constexpr
auto
P_M0
=
p_block_lengths
[
I0
];
// repeats
constexpr
auto
P_M1
=
p_block_lengths
[
I2
];
// waves
constexpr
auto
P_M2
=
p_block_lengths
[
I4
];
// xdl
constexpr
auto
y_thread_desc_m0_m1_o0_o1
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
YDotYGrad_M_O
::
ThreadSliceLength_M
,
I1
,
YDotYGrad_M_O
::
ThreadSliceLength_O
));
constexpr
auto
y_thread_cluster_desc
=
make_cluster_descriptor
(
Sequence
<
I1
,
YDotYGrad_M_O
::
ThreadClusterLength_M
,
I1
,
YDotYGrad_M_O
::
ThreadClusterLength_O
>
{},
Sequence
<
0
,
1
,
2
,
3
>
{});
const
auto
y_thread_cluster_idx
=
y_thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
get_thread_local_1d_id
()));
const
auto
y_thread_data_on_block_idx
=
y_thread_cluster_idx
*
y_thread_desc_m0_m1_o0_o1
.
GetLengths
();
const
auto
y_thread_data_on_grid_idx
=
make_multi_index
(
block_work_idx
[
I0
],
I0
,
I0
/* all WGs start from o_block_idx = 0 */
,
I0
)
+
y_thread_data_on_block_idx
;
// performs double duty for both y and ygrad
auto
yygrad_threadwise_copy
=
ThreadwiseTensorSliceTransfer_v2
<
DataType
,
DataType
,
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
,
decltype
(
y_thread_desc_m0_m1_o0_o1
),
decltype
(
y_thread_desc_m0_m1_o0_o1
.
GetLengths
()),
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
// SrcVectorDim
YDotYGrad_M_O
::
SrcScalarPerVector
,
// SrcScalarPerVector
1
,
// SrcScalarStrideInVector
true
/* ResetCoordAfterRun */
,
true
/* InvalidElementAsNaN */
>
(
y_grid_desc_mblock_mperblock_oblock_operblock
,
y_thread_data_on_grid_idx
);
auto
y_thread_buf
=
typename
YDotYGrad_M_O
::
SrcBufType
{};
auto
ygrad_thread_buf
=
typename
YDotYGrad_M_O
::
SrcBufType
{};
auto
y_dot_ygrad_thread_accum_buf
=
typename
YDotYGrad_M_O
::
DstBufType
{};
auto
y_dot_ygrad_block_accum_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatGemmAcc
*>
(
p_shared
),
MPerBlock
);
constexpr
auto
y_dot_ygrad_block_desc_mblock_mrepeat_mwave_mperxdl
=
make_naive_tensor_descriptor
(
make_tuple
(
I1
,
P_M0
,
P_M1
,
P_M2
),
make_tuple
(
P_M0
*
P_M1
*
P_M2
,
P_M1
*
P_M2
,
P_M2
,
I1
));
constexpr
auto
y_dot_ygrad_thread_desc_mblock_mrepeat_mwave_mperxdl
=
lse_thread_desc_mblock_mrepeat_mwave_mperxdl
;
// reuse LSE thread descriptor because
// per-thread LSE data and y_dot_ygrad is
// tiled the same way
auto
y_dot_ygrad_thread_copy_lds_to_vgpr
=
ThreadwiseTensorSliceTransfer_v2
<
FloatGemmAcc
,
FloatGemmAcc
,
decltype
(
y_dot_ygrad_block_desc_mblock_mrepeat_mwave_mperxdl
),
decltype
(
y_dot_ygrad_thread_desc_mblock_mrepeat_mwave_mperxdl
),
Sequence
<
1
,
m0
,
m1
,
m2
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
m2
,
1
,
false
>
{
y_dot_ygrad_block_desc_mblock_mrepeat_mwave_mperxdl
,
make_multi_index
(
I0
,
// mblock
acc0_thread_origin
[
I0
],
// mrepeat
acc0_thread_origin
[
I2
],
// mwave
acc0_thread_origin
[
I4
])};
// mperxdl
auto
y_dot_ygrad_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatGemmAcc
>
(
y_dot_ygrad_thread_desc_mblock_mrepeat_mwave_mperxdl
.
GetElementSpaceSize
());
//
// calculate Y dot dY
//
// clear accum buffers
y_dot_ygrad_thread_accum_buf
.
Clear
();
y_dot_ygrad_block_accum_buf
.
Clear
();
index_t
oblock_idx
=
0
;
do
{
yygrad_threadwise_copy
.
Run
(
y_grid_desc_mblock_mperblock_oblock_operblock
,
y_grid_buf
,
y_thread_desc_m0_m1_o0_o1
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
y_thread_buf
);
yygrad_threadwise_copy
.
Run
(
y_grid_desc_mblock_mperblock_oblock_operblock
,
ygrad_grid_buf
,
y_thread_desc_m0_m1_o0_o1
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
ygrad_thread_buf
);
static_for
<
0
,
YDotYGrad_M_O
::
ThreadSliceLength_M
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
YDotYGrad_M_O
::
ThreadSliceLength_O
,
1
>
{}([
&
](
auto
iO
)
{
constexpr
auto
offset
=
y_thread_desc_m0_m1_o0_o1
.
CalculateOffset
(
make_multi_index
(
I0
,
iM
,
I0
,
iO
));
y_dot_ygrad_thread_accum_buf
(
iM
)
+=
y_thread_buf
[
Number
<
offset
>
{}]
*
ygrad_thread_buf
[
Number
<
offset
>
{}];
});
});
yygrad_threadwise_copy
.
MoveSrcSliceWindow
(
y_grid_desc_mblock_mperblock_oblock_operblock
,
make_multi_index
(
0
,
0
,
1
,
0
));
oblock_idx
++
;
}
while
(
oblock_idx
<
y_grid_desc_mblock_mperblock_oblock_operblock
.
GetLength
(
I2
));
// blockwise reduction using atomic_add
block_sync_lds
();
static_for
<
0
,
YDotYGrad_M_O
::
ThreadSliceLength_M
,
1
>
{}([
&
](
auto
iM
)
{
const
auto
idx_on_block
=
y_thread_data_on_block_idx
[
I1
]
+
iM
;
y_dot_ygrad_block_accum_buf
.
AtomicAdd
(
idx_on_block
,
true
,
y_dot_ygrad_thread_accum_buf
[
iM
]
*
p_dropout
);
// p_dropoutD1
});
block_sync_lds
();
// distribute y_dot_ygrad to threads; LDS accum buffer can be safely reused after barrier
y_dot_ygrad_thread_copy_lds_to_vgpr
.
Run
(
y_dot_ygrad_block_desc_mblock_mrepeat_mwave_mperxdl
,
y_dot_ygrad_block_accum_buf
,
y_dot_ygrad_thread_desc_mblock_mrepeat_mwave_mperxdl
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
y_dot_ygrad_thread_buf
);
lse_thread_copy_global_to_vgpr
.
Run
(
lse_grid_desc_mblock_mrepeat_mwave_mperxdl
,
lse_grid_buf
,
lse_thread_desc_mblock_mrepeat_mwave_mperxdl
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
lse_thread_buf
);
const
index_t
num_gemm1_k_block_outer_loop
=
k_grid_desc_k0_n_k1
.
GetLength
(
I1
)
/
NPerBlock
;
constexpr
index_t
num_gemm1_k_block_inner_loop
=
NPerBlock
/
Gemm1KPerBlock
;
const
index_t
K
=
k_grid_desc_k0_n_k1
.
GetLength
(
I0
)
*
k_grid_desc_k0_n_k1
.
GetLength
(
I2
);
const
float
scalar
=
1.0
f
/
std
::
sqrt
(
K
);
// Initialize dQ
qgrad_thread_buf
.
Clear
();
// gemm1 K loop
index_t
gemm1_k_block_outer_index
=
0
;
do
{
auto
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
gemm1_k_block_outer_index
*
NPerBlock
);
if
(
c0_matrix_mask
.
IsTileSkippable
(
m_block_data_idx_on_grid
,
n_block_data_idx_on_grid
,
MPerBlock
,
NPerBlock
))
{
continue
;
}
// S = Q * K^T
gemm0_gridwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
>(
q_grid_desc_k0_m_k1
,
Gemm0
::
a_block_desc_ak0_m_ak1
,
s_gemm_tile_q_blockwise_copy
,
q_grid_buf
,
gemm0_a_block_buf
,
Gemm0
::
a_block_slice_copy_step
,
k_grid_desc_k0_n_k1
,
Gemm0
::
b_block_desc_bk0_n_bk1
,
s_gemm_tile_k_blockwise_copy
,
k_grid_buf
,
gemm0_b_block_buf
,
Gemm0
::
b_block_slice_copy_step
,
s_blockwise_gemm
,
s_slash_p_thread_buf
,
num_k_block_main_loop
);
// do MNK padding or upper triangular masking
if
constexpr
(
MaskOutUpperTriangle
||
PadN
)
{
// 8d thread_desc in thread scope
constexpr
auto
c_thread_lengths
=
s_blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
().
GetLengths
();
// 8d block_desc in block scope
constexpr
auto
c_block_lengths
=
s_blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
().
GetLengths
();
constexpr
auto
M0
=
c_block_lengths
[
I0
];
constexpr
auto
N0
=
c_block_lengths
[
I1
];
constexpr
auto
M1
=
c_block_lengths
[
I2
];
constexpr
auto
N1
=
c_block_lengths
[
I3
];
constexpr
auto
M2
=
c_block_lengths
[
I4
];
constexpr
auto
N2
=
c_block_lengths
[
I5
];
constexpr
auto
N3
=
c_block_lengths
[
I6
];
constexpr
auto
N4
=
c_block_lengths
[
I7
];
// works like multi-dimension static_for (static_ford), but provides both the linear
// index as well as n-d index
using
Acc0TileIterator
=
SpaceFillingCurve
<
decltype
(
c_thread_lengths
),
typename
arithmetic_sequence_gen
<
0
,
c_thread_lengths
.
Size
(),
1
>::
type
,
typename
uniform_sequence_gen
<
c_thread_lengths
.
Size
(),
1
>::
type
,
false
>
;
// SnakeCurved
constexpr
auto
block_idx_to_m_n_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M0
,
M1
,
M2
)),
make_unmerge_transform
(
make_tuple
(
N0
,
N1
,
N2
,
N3
,
N4
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
1
,
3
,
5
,
6
,
7
>
{}));
static_for
<
0
,
Acc0TileIterator
::
GetNumOfAccess
(),
1
>
{}([
&
](
auto
i
)
{
auto
acc0_thread_idx
=
Acc0TileIterator
::
GetIndex
(
i
)
+
acc0_thread_origin
;
auto
m_local
=
block_idx_to_m_n_adaptor
.
CalculateBottomIndex
(
acc0_thread_idx
)[
I0
];
auto
n_local
=
block_idx_to_m_n_adaptor
.
CalculateBottomIndex
(
acc0_thread_idx
)[
I1
];
auto
m_global
=
m_local
+
m_block_data_idx_on_grid
;
auto
n_global
=
n_local
+
n_block_data_idx_on_grid
;
if
(
c0_matrix_mask
.
IsMaskedElement
(
m_global
,
n_global
))
{
s_slash_p_thread_buf
(
i
)
=
-
ck
::
NumericLimits
<
float
>::
Infinity
();
}
else
{
s_slash_p_thread_buf
(
i
)
=
scalar
*
s_slash_p_thread_buf
[
i
];
}
});
}
else
{
static_for
<
0
,
s_slash_p_thread_buf
.
Size
(),
1
>
{}(
[
&
](
auto
i
)
{
s_slash_p_thread_buf
(
i
)
=
scalar
*
s_slash_p_thread_buf
[
i
];
});
}
block_sync_lds
();
// wait for lds read in gemm0 blockwise gemm
// P_i: = softmax(scalar * S_i:)
// scaling is already performed in the preceding statements with s_element_op
blockwise_softmax
.
RunWithPreCalcStats
(
s_slash_p_thread_buf
,
lse_thread_buf
);
// save z to global
if
(
p_z_grid
)
{
// P_dropped
blockwise_dropout
.
template
ApplyDropout
<
decltype
(
s_slash_p_thread_buf
),
decltype
(
z_tenor_buffer
),
true
>(
s_slash_p_thread_buf
,
ph
,
z_tenor_buffer
);
z_thread_copy_vgpr_to_global
.
Run
(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
z_tenor_buffer
,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
z_grid_buf
);
}
else
{
// P_dropped
blockwise_dropout
.
template
ApplyDropout
<
decltype
(
s_slash_p_thread_buf
),
true
>(
s_slash_p_thread_buf
,
ph
);
}
block_sync_lds
();
// wait for gemm1 LDS read
SubThreadBlock
<
BlockSize
>
gemm2_a_copy_subgroup
(
s_blockwise_gemm
.
GetWaveIdx
()[
I0
],
s_blockwise_gemm
.
GetWaveIdx
()[
I1
]);
constexpr
index_t
num_gemm2_loop
=
MPerBlock
/
Gemm2Params_N_O_M
::
Sum_M
;
static_assert
(
Gemm2
::
ASrcBlockSliceWindowIterator
::
GetNumOfAccess
()
==
num_gemm2_loop
,
""
);
// TODO: tune gemm2 pipeline
// dV = P_drop^T * dY
v_slash_k_grad_thread_buf
.
Clear
();
static_for
<
0
,
num_gemm2_loop
,
1
>
{}([
&
](
auto
gemm2_loop_idx
)
{
// gemm dV
// load VGrad Gemm B
vgrad_gemm_tile_ygrad_blockwise_copy
.
RunRead
(
ygrad_grid_desc_m0_o_m1
,
ygrad_grid_buf
);
// load VGrad Gemm A
const
auto
p_slice_idx
=
Gemm2
::
ASrcBlockSliceWindowIterator
::
GetIndexTupleOfNumber
(
gemm2_loop_idx
);
constexpr
auto
mwave_range
=
make_tuple
(
p_slice_idx
[
I2
],
p_slice_idx
[
I2
]
+
Gemm2Params_N_O_M
::
ABlockSliceLengths_M0_N0_M1_N1
::
At
(
I2
));
constexpr
auto
nwave_range
=
make_tuple
(
p_slice_idx
[
I3
],
p_slice_idx
[
I3
]
+
Gemm2Params_N_O_M
::
ABlockSliceLengths_M0_N0_M1_N1
::
At
(
I3
));
if
(
gemm2_a_copy_subgroup
.
IsBelong
(
mwave_range
,
nwave_range
))
{
vgrad_gemm_tile_p_thread_copy_vgpr_to_lds
.
Run
(
Gemm2
::
a_src_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
make_tuple
(
p_slice_idx
[
I0
],
p_slice_idx
[
I1
],
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
s_slash_p_thread_buf
,
Gemm2
::
a_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
gemm2_a_block_buf
);
}
// ygrad slice window is moved with MoveSrcSliceWindow() since it is dynamic buffer
// p slice window is moved by loop index
vgrad_gemm_tile_ygrad_blockwise_copy
.
MoveSrcSliceWindow
(
ygrad_grid_desc_m0_o_m1
,
Gemm2
::
b_block_slice_copy_step
);
block_sync_lds
();
// sync before write
vgrad_gemm_tile_ygrad_blockwise_copy
.
RunWrite
(
Gemm2
::
b_block_desc_m0_o_m1
,
gemm2_b_block_buf
);
block_sync_lds
();
// sync before read
v_slash_k_grad_blockwise_gemm
.
Run
(
gemm2_a_block_buf
,
gemm2_b_block_buf
,
v_slash_k_grad_thread_buf
);
});
// end gemm dV
// atomic_add dV
vgrad_thread_copy_vgpr_to_global
.
Run
(
Gemm2
::
c_thread_desc_n0_o0_n1_o1_n2_o2_o3_o4
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
v_slash_k_grad_thread_buf
,
vgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
,
vgrad_grid_buf
);
// gemm dP
block_sync_lds
();
// dP = dY * V^T
// assume size K == size O so HasMainKBlockLoop is the same
gemm0_gridwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
>(
ygrad_grid_desc_o0_m_o1
,
Gemm0
::
a_block_desc_ak0_m_ak1
,
// reuse
pgrad_gemm_tile_ygrad_blockwise_copy
,
ygrad_grid_buf
,
gemm0_a_block_buf
,
// reuse
Gemm0
::
a_block_slice_copy_step
,
// reuse
v_grid_desc_o0_n_o1
,
Gemm0
::
b_block_desc_bk0_n_bk1
,
// reuse
pgrad_gemm_tile_v_blockwise_copy
,
v_grid_buf
,
gemm0_b_block_buf
,
// reuse
Gemm0
::
b_block_slice_copy_step
,
// reuse
pgrad_blockwise_gemm
,
pgrad_thread_buf
,
num_o_block_main_loop
);
// dS = P * (dP - Y_dot_dY)
auto
&
sgrad_thread_buf
=
pgrad_thread_buf
;
constexpr
auto
pgrad_thread_tile_iterator
=
pgrad_blockwise_gemm
.
MakeCThreadTileIterator
();
constexpr
auto
pgrad_thread_idx_to_m_n_adaptor
=
pgrad_blockwise_gemm
.
MakeCThreadIndexAdaptor8DTo2D
();
static_for
<
0
,
pgrad_thread_tile_iterator
.
GetNumOfAccess
(),
1
>
{}([
&
](
auto
i
)
{
constexpr
auto
pgrad_thread_idx
=
pgrad_thread_tile_iterator
.
GetIndex
(
i
);
constexpr
auto
m
=
pgrad_thread_idx_to_m_n_adaptor
.
CalculateBottomIndex
(
pgrad_thread_idx
)[
I0
];
// dS and P has same thread buf layout
if
(
s_slash_p_thread_buf
[
i
]
>=
0
)
{
sgrad_thread_buf
(
i
)
=
s_slash_p_thread_buf
[
i
]
*
(
pgrad_thread_buf
[
i
]
-
y_dot_ygrad_thread_buf
[
Number
<
m
>
{}]);
}
else
{
sgrad_thread_buf
(
i
)
=
s_slash_p_thread_buf
[
i
]
*
y_dot_ygrad_thread_buf
[
Number
<
m
>
{}];
}
});
// gemm dQ
// dQ = scalar * dS * K
{
// TODO: explore using dynamic buffer for a1 thread buffer
// For a1_blockwise_copy, the goal is to satisfy pipeline requirements RunRead(),
// RunWrite(), and MoveSliceWindow(). But it is impossible to implement given that
// the A1 source buffer is static buffer holding the output of first GEMM and
// requires constexpr offset by design. Therefore, we pass tensor coordinate offset
// explicitly in Run() below.
// preload data into LDS
qgrad_gemm_tile_k_blockwise_copy
.
RunRead
(
k_grid_desc_n0_k_n1
,
k_grid_buf
);
qgrad_gemm_tile_k_blockwise_copy
.
MoveSrcSliceWindow
(
k_grid_desc_n0_k_n1
,
Gemm1
::
b_block_slice_copy_step
);
block_sync_lds
();
// wait for previous LDS read
qgrad_gemm_tile_k_blockwise_copy
.
RunWrite
(
Gemm1
::
b_block_desc_bk0_n_bk1
,
gemm1_b_block_buf
);
// main body
if
constexpr
(
num_gemm1_k_block_inner_loop
>
1
)
{
static_for
<
0
,
num_gemm1_k_block_inner_loop
-
1
,
1
>
{}([
&
](
auto
i
)
{
qgrad_gemm_tile_sgrad_blockwise_copy
.
Run
(
Gemm1
::
a_src_thread_desc_k0_m_k1
,
Gemm1
::
a_block_slice_copy_step
*
i
,
sgrad_thread_buf
,
Gemm1
::
a_thread_desc_k0_m_k1
,
make_tuple
(
I0
,
I0
,
I0
),
gemm1_a_thread_buf
);
qgrad_gemm_tile_k_blockwise_copy
.
RunRead
(
k_grid_desc_n0_k_n1
,
k_grid_buf
);
block_sync_lds
();
qgrad_blockwise_gemm
.
Run
(
gemm1_a_thread_buf
,
gemm1_b_block_buf
,
qgrad_thread_buf
);
block_sync_lds
();
qgrad_gemm_tile_k_blockwise_copy
.
MoveSrcSliceWindow
(
k_grid_desc_n0_k_n1
,
Gemm1
::
b_block_slice_copy_step
);
qgrad_gemm_tile_k_blockwise_copy
.
RunWrite
(
Gemm1
::
b_block_desc_bk0_n_bk1
,
gemm1_b_block_buf
);
});
}
// tail
{
qgrad_gemm_tile_sgrad_blockwise_copy
.
Run
(
Gemm1
::
a_src_thread_desc_k0_m_k1
,
Gemm1
::
a_block_slice_copy_step
*
Number
<
num_gemm1_k_block_inner_loop
-
1
>
{},
sgrad_thread_buf
,
Gemm1
::
a_thread_desc_k0_m_k1
,
make_tuple
(
I0
,
I0
,
I0
),
gemm1_a_thread_buf
);
block_sync_lds
();
qgrad_blockwise_gemm
.
Run
(
gemm1_a_thread_buf
,
gemm1_b_block_buf
,
qgrad_thread_buf
);
}
}
// end gemm dQ
// dK = scalar * dS^T * dQ
v_slash_k_grad_thread_buf
.
Clear
();
static_for
<
0
,
num_gemm2_loop
,
1
>
{}([
&
](
auto
gemm2_loop_idx
)
{
// gemm dK
// load KGrad Gemm B
kgrad_gemm_tile_q_blockwise_copy
.
RunRead
(
q_grid_desc_m0_k_m1
,
q_grid_buf
);
// load KGrad Gemm A
const
auto
sgrad_slice_idx
=
Gemm2
::
ASrcBlockSliceWindowIterator
::
GetIndexTupleOfNumber
(
gemm2_loop_idx
);
constexpr
auto
mwave_range
=
make_tuple
(
sgrad_slice_idx
[
I2
],
sgrad_slice_idx
[
I2
]
+
Gemm2Params_N_O_M
::
ABlockSliceLengths_M0_N0_M1_N1
::
At
(
I2
));
constexpr
auto
nwave_range
=
make_tuple
(
sgrad_slice_idx
[
I3
],
sgrad_slice_idx
[
I3
]
+
Gemm2Params_N_O_M
::
ABlockSliceLengths_M0_N0_M1_N1
::
At
(
I3
));
if
(
gemm2_a_copy_subgroup
.
IsBelong
(
mwave_range
,
nwave_range
))
{
kgrad_gemm_tile_sgrad_thread_copy_vgpr_to_lds
.
Run
(
Gemm2
::
a_src_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
make_tuple
(
sgrad_slice_idx
[
I0
],
sgrad_slice_idx
[
I1
],
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
sgrad_thread_buf
,
Gemm2
::
a_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
gemm2_a_block_buf
);
}
// kgrad slice window is moved with MoveSrcSliceWindow() since it is dynamic buffer
// sgrad slice window is moved by loop index
kgrad_gemm_tile_q_blockwise_copy
.
MoveSrcSliceWindow
(
q_grid_desc_m0_k_m1
,
Gemm2
::
b_block_slice_copy_step
);
block_sync_lds
();
// sync before write
kgrad_gemm_tile_q_blockwise_copy
.
RunWrite
(
Gemm2
::
b_block_desc_m0_o_m1
,
gemm2_b_block_buf
);
block_sync_lds
();
// sync before read
v_slash_k_grad_blockwise_gemm
.
Run
(
gemm2_a_block_buf
,
gemm2_b_block_buf
,
v_slash_k_grad_thread_buf
);
});
// end gemm dK
// atomic_add dK
kgrad_thread_copy_vgpr_to_global
.
Run
(
Gemm2
::
c_thread_desc_n0_o0_n1_o1_n2_o2_o3_o4
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
v_slash_k_grad_thread_buf
,
kgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
,
kgrad_grid_buf
);
// move slice window
s_gemm_tile_q_blockwise_copy
.
MoveSrcSliceWindow
(
q_grid_desc_k0_m_k1
,
s_gemm_tile_a_block_reset_copy_step
);
// rewind K
s_gemm_tile_k_blockwise_copy
.
MoveSrcSliceWindow
(
k_grid_desc_k0_n_k1
,
s_gemm_tile_b_block_reset_copy_step
);
// rewind K and step N
vgrad_gemm_tile_ygrad_blockwise_copy
.
MoveSrcSliceWindow
(
ygrad_grid_desc_m0_o_m1
,
Gemm2
::
b_block_reset_copy_step
);
// rewind M
vgrad_thread_copy_vgpr_to_global
.
MoveDstSliceWindow
(
vgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
,
Gemm2
::
c_block_slice_copy_step
);
// step N
pgrad_gemm_tile_ygrad_blockwise_copy
.
MoveSrcSliceWindow
(
ygrad_grid_desc_o0_m_o1
,
pgrad_gemm_tile_ygrad_block_reset_copy_step
);
// rewind O
pgrad_gemm_tile_v_blockwise_copy
.
MoveSrcSliceWindow
(
v_grid_desc_o0_n_o1
,
pgrad_gemm_tile_v_block_reset_copy_step
);
// rewind O and step N
kgrad_gemm_tile_q_blockwise_copy
.
MoveSrcSliceWindow
(
q_grid_desc_m0_k_m1
,
Gemm2
::
b_block_reset_copy_step
);
// rewind M
kgrad_thread_copy_vgpr_to_global
.
MoveDstSliceWindow
(
kgrad_grid_desc_n0_o0_n1_o1_n2_o2_o3_o4
,
Gemm2
::
c_block_slice_copy_step
);
// step N
z_thread_copy_vgpr_to_global
.
MoveDstSliceWindow
(
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
make_multi_index
(
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
));
}
while
(
++
gemm1_k_block_outer_index
<
num_gemm1_k_block_outer_loop
);
// end j loop
// shuffle dQ and write
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
Gemm1NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
Gemm1NPerBlock
/
(
Gemm1NXdlPerWave
*
NPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
=
qgrad_blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp
=
qgrad_blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp
.
GetLength
(
I4
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp
.
GetLength
(
I5
);
constexpr
auto
N3
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp
.
GetLength
(
I6
);
constexpr
auto
N4
=
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatCShuffle
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
)),
// M2 = MPerXdl
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
,
// N2 * N3 * N4 = NPerXdl
N3
,
N4
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
5
,
6
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
qgrad_blockwise_gemm
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_n3_n4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
,
N3
,
N4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_n3_n4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatGemmAcc
,
FloatCShuffle
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
),
SElementwiseOperation
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
I1
,
N2
,
I1
,
N4
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
n_thread_data_on_block_idx
[
I2
],
n_thread_data_on_block_idx
[
I3
],
n_thread_data_on_block_idx
[
I4
]),
s_element_op
};
// shuffle: blockwise copy C from LDS to global
auto
c_shuffle_block_copy_lds_to_global
=
ThreadGroupTensorSliceTransfer_v6r1
<
ThisThreadBlock
,
// ThreadGroup
CElementwiseOperation
,
// ElementwiseOperation,
CGlobalMemoryDataOperation
,
// DstInMemOp,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
FloatCShuffle
,
// typename SrcData,
DataType
,
// typename DstData,
decltype
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
qgrad_grid_desc_mblock_mperblock_kblock_kperblock
),
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
// index_t ScalarPerVector,
true
,
// bool ThreadTransferSrcResetCoordinateAfterRun,
false
>
// bool ThreadTransferDstResetCoordinateAfterRun>
{
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
0
,
0
,
0
,
0
),
qgrad_grid_desc_mblock_mperblock_kblock_kperblock
,
make_multi_index
(
block_work_idx
[
I0
],
0
,
block_work_idx
[
I1
],
0
),
c_element_op
};
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
Gemm1NXdlPerWave
,
1
,
1
,
1
,
N2
,
1
,
N4
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
1
,
N2
,
1
,
N4
>>
{};
// space filling curve for shuffled blockwise C in global mem
constexpr
auto
sfc_c_global
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
Gemm1NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
static_assert
(
num_access
==
sfc_c_global
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
qgrad_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_n2_n3_n4
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global
.
Run
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
c_shuffle_block_buf
,
qgrad_grid_desc_mblock_mperblock_kblock_kperblock
,
qgrad_grid_buf
);
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
c_global_step
=
sfc_c_global
.
GetForwardStep
(
access_id
);
// move on C
c_shuffle_block_copy_lds_to_global
.
MoveDstSliceWindow
(
qgrad_grid_desc_mblock_mperblock_kblock_kperblock
,
c_global_step
);
}
});
}
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_forward_xdl_cshuffle.hpp
View file @
66052232
...
...
@@ -35,6 +35,7 @@ template <typename FloatAB,
typename
BGridDesc_BK0_N_BK1
,
typename
B1GridDesc_BK0_N_BK1
,
typename
CGridDesc_M_N
,
typename
ZGridDesc_M_N
,
typename
LSEGridDesc_M
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
...
...
@@ -97,6 +98,8 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
static
constexpr
auto
WaveSize
=
64
;
// K1 should be Number<...>
// Gemm0
static
constexpr
auto
AK0
=
Number
<
KPerBlock
/
AK1Value
>
{};
...
...
@@ -116,6 +119,65 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle
using
GridwiseGemmPipe
=
remove_cvref_t
<
decltype
(
GridwiseGemmPipeline_Selector
<
PipelineVer
,
NumGemmKPrefetchStage
>
())
>
;
// C desc for source in blockwise copy
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
(
const
ZGridDesc_M_N
&
z_grid_desc_m_n
)
////=> for z use
{
const
auto
M
=
z_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
z_grid_desc_m_n
.
GetLength
(
I1
);
constexpr
auto
mfma
=
MfmaSelector
<
FloatAB
,
MPerXdl
,
NPerXdl
>::
selected_mfma
;
constexpr
auto
N3
=
mfma
.
num_groups_per_blk
;
constexpr
auto
N4
=
mfma
.
num_input_blks
;
constexpr
auto
N5
=
mfma
.
group_size
;
return
transform_tensor_descriptor
(
z_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M
/
MPerBlock
,
MXdlPerWave
,
Gemm0MWaves
,
MPerXdl
)),
make_unmerge_transform
(
make_tuple
(
N
/
NPerBlock
,
NXdlPerWave
,
Gemm0NWaves
,
N3
,
N4
,
N5
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
,
4
,
6
>
{},
Sequence
<
1
,
3
,
5
,
7
,
8
,
9
>
{}));
}
__host__
__device__
static
constexpr
auto
MakeZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
(
const
index_t
M
,
const
index_t
N
)
////=> for z use
{
constexpr
auto
mfma
=
MfmaSelector
<
FloatAB
,
MPerXdl
,
NPerXdl
>::
selected_mfma
;
constexpr
auto
N3
=
mfma
.
num_groups_per_blk
;
constexpr
auto
N4
=
mfma
.
num_input_blks
;
constexpr
auto
N5
=
mfma
.
group_size
;
return
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
M
,
N
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M
/
MPerBlock
,
MXdlPerWave
,
Gemm0MWaves
,
MPerXdl
)),
make_unmerge_transform
(
make_tuple
(
N
/
NPerBlock
,
NXdlPerWave
,
Gemm0NWaves
,
N3
,
N4
,
N5
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
,
4
,
6
>
{},
Sequence
<
1
,
3
,
5
,
7
,
8
,
9
>
{}));
}
__device__
static
auto
GetGemm0WaveIdx
()
{
const
index_t
thread_id
=
get_thread_local_1d_id
();
constexpr
auto
threadid_to_wave_idx_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
Gemm0MWaves
,
Gemm0NWaves
,
WaveSize
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
threadid_to_wave_idx_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
thread_id
));
}
__device__
static
auto
GetGemm0WaveMNIdx
(
const
index_t
thread_id
)
{
constexpr
auto
wave_threadid_to_mn_idx_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
WaveSize
/
MPerXdl
,
MPerXdl
))),
make_tuple
(
Sequence
<
0
,
1
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
wave_threadid_to_mn_idx_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
thread_id
));
}
template
<
typename
ABlockDesc_AK0_M_AK1
>
__host__
__device__
static
constexpr
auto
MakeGemm0AMmaTileDescriptor_M0_M1_M2_K
(
const
ABlockDesc_AK0_M_AK1
&
)
...
...
@@ -323,6 +385,9 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle
using
DefaultBlock2CTileMap
=
remove_cvref_t
<
decltype
(
MakeDefaultBlock2CTileMap
(
CGridDesc_M_N
{}))
>
;
using
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
(
ZGridDesc_M_N
{}))
>
;
struct
SharedMemTrait
{
// LDS allocation for A and B: be careful of alignment
...
...
@@ -367,6 +432,7 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle
const
FloatAB
*
__restrict__
p_b_grid
,
const
FloatAB
*
__restrict__
p_b1_grid
,
FloatC
*
__restrict__
p_c_grid
,
unsigned
short
*
__restrict__
p_z_grid
,
FloatLSE
*
__restrict__
p_lse_grid
,
void
*
__restrict__
p_shared
,
const
AElementwiseOperation
&
a_element_op
,
...
...
@@ -379,6 +445,8 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle
const
B1GridDesc_BK0_N_BK1
&
b1_grid_desc_bk0_n_bk1
,
const
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
c_grid_desc_mblock_mperblock_nblock_nperblock
,
const
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
&
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
const
LSEGridDesc_M
&
lse_grid_desc_m
,
const
Block2CTileMap
&
block_2_ctile_map
,
const
C0MatrixMask
&
c0_matrix_mask
,
...
...
@@ -782,6 +850,79 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle
// gemm1 K loop
index_t
gemm1_k_block_outer_index
=
0
;
///////////////////=>z for dropout
//
// z vgpr copy to global
//
// z matrix threadwise desc
constexpr
auto
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
// MBlockId
I1
,
// NBlockID
m0
,
// MRepeat
n0
,
// NRepeat
m1
,
// MWaveId
n1
,
// NWaveId
m2
,
// MPerXdl
n2
,
// NGroupNum
n3
,
// NInputNum
n4
));
// registerNum
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
unsigned
short
,
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
.
GetElementSpaceSize
(),
true
>
z_tenor_buffer
;
z_tenor_buffer
.
Clear
();
// z matrix global desc
/*const auto M = q_grid_desc_k0_m_k1.GetLength(I1);
const auto N = k_grid_desc_k0_n_k1.GetLength(I1);
auto z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
MakeZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(M, N);*/
auto
z_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_z_grid
,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
.
GetElementSpaceSize
());
const
auto
wave_id
=
GetGemm0WaveIdx
();
const
auto
wave_m_n_id
=
GetGemm0WaveMNIdx
(
wave_id
[
I2
]);
// I2: 0~63
auto
z_thread_copy_vgpr_to_global
=
ThreadwiseTensorSliceTransfer_v1r3
<
ushort
,
ushort
,
decltype
(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
),
decltype
(
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
),
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
I1
,
// MBlockId
I1
,
// NBlockID
m0
,
// MRepeat
n0
,
// NRepeat
m1
,
// MWaveId
n1
,
// NWaveId
m2
,
// MPerXdl
n2
,
// NGroupNum
n3
,
// NInputNum
n4
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
>
,
9
,
// DstVectorDim
n4
,
// DstScalarPerVector
InMemoryDataOperationEnum
::
Set
,
1
,
// DstScalarStrideInVector
true
>
{
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
make_multi_index
(
block_work_idx
[
I0
],
// MBlockId
0
,
// NBlockId
0
,
// mrepeat
0
,
// nrepeat
wave_id
[
I0
],
// MWaveId
wave_id
[
I1
],
// NWaveId
wave_m_n_id
[
I1
],
// MPerXdl
0
,
// group
wave_m_n_id
[
I0
],
// NInputIndex
0
),
tensor_operation
::
element_wise
::
PassThrough
{}};
///////////////////=>z for dropout
do
{
auto
n_block_data_idx_on_grid
=
...
...
@@ -876,9 +1017,35 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle
if
constexpr
(
IsDropout
)
// dropout
{
blockwise_dropout
.
ApplyDropout
(
acc_thread_buf
,
ph
);
// save z to global
if
(
p_z_grid
)
{
// P_dropped
blockwise_dropout
.
template
ApplyDropout
<
decltype
(
acc_thread_buf
),
decltype
(
z_tenor_buffer
),
true
>(
acc_thread_buf
,
ph
,
z_tenor_buffer
);
z_thread_copy_vgpr_to_global
.
Run
(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
z_tenor_buffer
,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
z_grid_buf
);
}
else
{
// P_dropped
blockwise_dropout
.
template
ApplyDropout
<
decltype
(
acc_thread_buf
),
true
>(
acc_thread_buf
,
ph
);
}
}
//if constexpr(IsDropout) // dropout
//{
// blockwise_dropout.ApplyDropout(acc_thread_buf, ph);
//}
// TODO: may convert to log domain
running_max_new
=
mathext
::
max
(
max
,
running_max
);
running_sum_new
=
mathext
::
exp
(
running_max
-
running_max_new
)
*
running_sum
+
...
...
include/ck/utility/data_type.hpp
View file @
66052232
...
...
@@ -1010,6 +1010,42 @@ inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, float>(float
return
uint16_t
(
u
.
int32
>>
16
);
}
// convert fp16 to bf16
template
<
>
inline
__host__
__device__
bhalf_t
type_convert
<
bhalf_t
,
half_t
>
(
half_t
x
)
{
union
{
float
fp32
;
uint32_t
int32
;
}
u
=
{
static_cast
<
float
>
(
x
)};
return
uint16_t
(
u
.
int32
>>
16
);
}
template
<
>
inline
__host__
__device__
bhalf2_t
type_convert
<
bhalf2_t
,
half2_t
>
(
half2_t
x
)
{
float
y0
{
0
},
y1
{
0
};
bhalf2_t
y
{
0
};
asm
volatile
(
"
\n
\
v_cvt_f32_f16 %0, %1
\n
\
"
:
"=v"
(
y0
)
:
"v"
(
x
));
asm
volatile
(
"
\n
\
v_cvt_f32_f16 %0, %1 src0_sel:WORD_1
\n
\
"
:
"=v"
(
y1
)
:
"v"
(
x
));
asm
volatile
(
"
\n
\
v_pack_b32_f16 %0, %1, %2 op_sel:[1, 1]
\n
\
"
:
"=v"
(
y
)
:
"v"
(
y0
),
"v"
(
y1
));
return
y
;
}
template
<
typename
T
>
struct
NumericLimits
{
...
...
include/ck/utility/philox_rand.hpp
View file @
66052232
...
...
@@ -109,12 +109,9 @@ class philox
__device__
uint2
u32_high_low_multi
(
const
unsigned
int
a
,
const
unsigned
int
b
)
{
uint2
*
res
;
uint2
tmp_res
;
asm
(
"v_mul_hi_u32 %0, %2, %3
\n\t
"
"v_mul_lo_u32 %1, %2, %3
\n\t
"
:
"=v"
(
tmp_res
.
x
),
"=v"
(
tmp_res
.
y
)
:
"v"
(
a
),
"v"
(
b
));
res
=
&
tmp_res
;
unsigned
long
long
tmp
;
tmp
=
static_cast
<
unsigned
long
long
>
(
a
)
*
b
;
res
=
reinterpret_cast
<
uint2
*>
(
&
tmp
);
return
*
res
;
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment