Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
64fbf5a2
Commit
64fbf5a2
authored
Jun 08, 2022
by
wangshaojie6
Browse files
add prefetch 4 global load version. perf seems not good
parent
428ae72a
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
1920 additions
and
7 deletions
+1920
-7
example/01_gemm/CMakeLists.txt
example/01_gemm/CMakeLists.txt
+1
-0
example/01_gemm/gemm_xdl_skip_all_lds_fp16.cpp
example/01_gemm/gemm_xdl_skip_all_lds_fp16.cpp
+247
-0
example/01_gemm/gemm_xdl_skip_b_lds_fp16.cpp
example/01_gemm/gemm_xdl_skip_b_lds_fp16.cpp
+5
-4
include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops_skip_all_lds.hpp
...peration/gpu/block/blockwise_gemm_xdlops_skip_all_lds.hpp
+272
-0
include/ck/tensor_operation/gpu/device/device_gemm_xdl_skip_all_lds.hpp
...sor_operation/gpu/device/device_gemm_xdl_skip_all_lds.hpp
+520
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_skip_all_lds_v1.hpp
...eration/gpu/grid/gridwise_gemm_xdlops_skip_all_lds_v1.hpp
+874
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_skip_b_lds_v1.hpp
...operation/gpu/grid/gridwise_gemm_xdlops_skip_b_lds_v1.hpp
+1
-3
No files found.
example/01_gemm/CMakeLists.txt
View file @
64fbf5a2
...
@@ -5,5 +5,6 @@ add_example_executable(example_gemm_xdl_fp16 gemm_xdl_fp16.cpp)
...
@@ -5,5 +5,6 @@ add_example_executable(example_gemm_xdl_fp16 gemm_xdl_fp16.cpp)
add_example_executable
(
example_gemm_xdl_bf16 gemm_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_xdl_bf16 gemm_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_xdl_int8 gemm_xdl_int8.cpp
)
add_example_executable
(
example_gemm_xdl_int8 gemm_xdl_int8.cpp
)
add_example_executable
(
example_gemm_xdl_skip_b_lds_fp16 gemm_xdl_skip_b_lds_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_skip_b_lds_fp16 gemm_xdl_skip_b_lds_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_skip_all_lds_fp16 gemm_xdl_skip_all_lds_fp16.cpp
)
# FIXME: re-enable this exampe as test when SWDEV-335738 is fixed
# FIXME: re-enable this exampe as test when SWDEV-335738 is fixed
add_example_executable_no_testing
(
example_gemm_xdl_fp64 gemm_xdl_fp64.cpp
)
add_example_executable_no_testing
(
example_gemm_xdl_fp64 gemm_xdl_fp64.cpp
)
example/01_gemm/gemm_xdl_skip_all_lds_fp16.cpp
0 → 100644
View file @
64fbf5a2
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl_skip_b_lds.hpp"
#include "device_gemm_xdl_skip_all_lds.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdlSkipAllLds
//###########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BThreadTransfer| CThreadTransfer| CThreadTransfer|
//###########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| SrcScalar| SrcDstVectorDim| DstScalar|
//###########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | PerVector|
//###########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 16, 64, 4, 8, 16, 16, 1, 4, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 8, 7, 1>;
<
F16
,
F16
,
F16
,
F32
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
64
,
16
,
16
,
4
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
8
,
7
,
1
>
;
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
float
,
AElementOp
,
BElementOp
,
CElementOp
>
;
template
<
typename
DataType
>
std
::
ostream
&
show_2d_matrix
(
std
::
ostream
&
os
,
Tensor
<
DataType
>&
matrix
)
{
os
<<
"["
<<
std
::
endl
;
for
(
size_t
x
=
0
;
x
<
matrix
.
mDesc
.
GetLengths
()[
0
];
x
++
)
{
os
<<
"["
;
for
(
size_t
y
=
0
;
y
<
matrix
.
mDesc
.
GetLengths
()[
1
];
y
++
)
{
os
<<
std
::
setw
(
5
)
<<
static_cast
<
float
>
(
matrix
(
x
,
y
));
}
os
<<
"]"
<<
std
::
endl
;
}
os
<<
"]"
;
return
os
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
bool
time_kernel
=
false
;
// GEMM shape
#if 1
ck
::
index_t
M
=
128
*
360
;
ck
::
index_t
N
=
64
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
N
;
#else
ck
::
index_t
M
=
16
;
ck
::
index_t
N
=
16
;
ck
::
index_t
K
=
8
;
ck
::
index_t
StrideA
=
8
;
ck
::
index_t
StrideB
=
8
;
ck
::
index_t
StrideC
=
16
;
#endif
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
//a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
//a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
0
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
0
,
2
});
//b_k_n.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
// a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
#if 0
{
show_2d_matrix(std::cout << "a : ", a_m_k) << std::endl;
show_2d_matrix(std::cout << "b: ", b_k_n) << std::endl;
show_2d_matrix(std::cout << "c_device: ", c_m_n_device_result) << std::endl;
show_2d_matrix(std::cout << "c_host :", c_m_n_host_result) << std::endl;
}
#endif
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
}
return
0
;
}
example/01_gemm/gemm_xdl_skip_b_lds_fp16.cpp
View file @
64fbf5a2
...
@@ -47,16 +47,17 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSkipBLds
...
@@ -47,16 +47,17 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSkipBLds
//###########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| SrcScalar| SrcDstVectorDim| DstScalar|
//###########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| SrcScalar| SrcDstVectorDim| DstScalar|
//###########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | PerVector|
//###########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | PerVector|
//###########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//###########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if 0
#if 1
< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 8, 7, 1>;
//< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 16, 64, 4, 8, 16, 16, 1, 4, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 8, 7, 1>;
<
F16
,
F16
,
F16
,
F32
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
64
,
16
,
16
,
4
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
8
,
7
,
1
>
;
using
ADataType
=
ck
::
half_t
;
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
AccDataType
=
float
;
#else
#else
//
< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault,
25
6, 6
4
, 16, 4, 4, 16, 16, 1, 1, S<4, 6
4
, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 4, 7, 1>;
<
F32
,
F32
,
F32
,
F32
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
6
4
,
1
6
,
16
,
4
,
4
,
16
,
16
,
1
,
1
,
S
<
4
,
1
6
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
4
,
7
,
1
>
;
// < F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 32, 4, 4, 32, 32, 1, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 4, 7, 1>;
// < F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 32, 4, 4, 32, 32, 1, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 4, 7, 1>;
<
F32
,
F32
,
F32
,
F32
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
64
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
4
,
7
,
1
>
;
//
< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 4, 7, 1>;
using
ADataType
=
float
;
using
ADataType
=
float
;
using
BDataType
=
float
;
using
BDataType
=
float
;
using
CDataType
=
float
;
using
CDataType
=
float
;
...
...
include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops_skip_all_lds.hpp
0 → 100644
View file @
64fbf5a2
#pragma once
#include "common_header.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "xdlops_gemm.hpp"
#include "tensor_adaptor.hpp"
namespace
ck
{
template
<
index_t
BlockSize
,
typename
FloatAB
,
typename
FloatAcc
,
typename
AK0AM0M1M2M3K1BlockDesc
,
typename
BK0BN0N1N2N3K1BlockDesc
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
K0PerBlock
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MRepeat
,
index_t
NRepeat
,
index_t
KPack
>
struct
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_non_lds
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
index_t
WaveSize
=
64
;
static
constexpr
index_t
KPerBlock
=
K0PerBlock
*
KPack
;
static
constexpr
auto
xdlops_gemm
=
XdlopsGemm
<
FloatAB
,
MPerXDL
,
NPerXDL
,
KPack
>
{};
static
constexpr
index_t
KPerThread
=
KPerBlock
/
xdlops_gemm
.
K0PerXdlops
;
static
constexpr
index_t
K0PerThread
=
K0PerBlock
/
xdlops_gemm
.
K0PerXdlops
;
static
constexpr
index_t
MWaves
=
MPerBlock
/
(
MRepeat
*
MPerXDL
);
static
constexpr
index_t
NWaves
=
NPerBlock
/
(
NRepeat
*
NPerXDL
);
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
FloatAcc
,
MRepeat
*
NRepeat
,
xdlops_gemm
.
GetRegSizePerXdlops
(),
true
>
c_thread_buf_
;
__host__
__device__
constexpr
auto
&
GetCThreadBuffer
()
{
return
c_thread_buf_
;
}
__device__
static
auto
GetWaveIdx
()
{
const
index_t
thread_id
=
get_thread_local_1d_id
();
constexpr
auto
threadid_to_wave_idx_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
MWaves
,
NWaves
,
WaveSize
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
threadid_to_wave_idx_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
thread_id
));
}
__device__
static
auto
CalculateAThreadOriginDataIndex
()
{
const
auto
wave_idx
=
GetWaveIdx
();
const
auto
waveId_m
=
wave_idx
[
I0
];
const
auto
xdlops_a_idx
=
xdlops_gemm
.
CalculateAThreadOriginDataIndex
();
return
make_tuple
(
0
,
waveId_m
,
xdlops_a_idx
[
I1
],
KPerThread
*
xdlops_a_idx
[
I0
]);
}
__device__
static
auto
CalculateBThreadOriginDataIndex
()
{
const
auto
wave_idx
=
GetWaveIdx
();
const
auto
waveId_n
=
wave_idx
[
I1
];
const
auto
xdlops_b_idx
=
xdlops_gemm
.
CalculateBThreadOriginDataIndex
();
return
make_tuple
(
0
,
waveId_n
,
xdlops_b_idx
[
I1
],
KPerThread
*
xdlops_b_idx
[
I0
]);
}
template
<
index_t
m0
,
index_t
n0
,
index_t
xdlops_i
,
index_t
blk_i
>
__device__
static
auto
CalculateCThreadOriginDataIndex
(
Number
<
m0
>
,
Number
<
n0
>
,
Number
<
xdlops_i
>
,
Number
<
blk_i
>
)
{
const
auto
wave_idx
=
GetWaveIdx
();
const
auto
waveId_m
=
wave_idx
[
I0
];
const
auto
waveId_n
=
wave_idx
[
I1
];
const
auto
blk_idx
=
xdlops_gemm
.
GetBeginOfThreadBlk
(
xdlops_i
,
blk_i
);
constexpr
auto
mrepeat_mwave_mperxdl_to_m_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MRepeat
,
MWaves
,
MPerXDL
))),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}));
constexpr
auto
nrepeat_nwave_nperxdl_to_n_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_unmerge_transform
(
make_tuple
(
NRepeat
,
NWaves
,
NPerXDL
))),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}));
const
index_t
c_thread_m
=
mrepeat_mwave_mperxdl_to_m_adaptor
.
CalculateBottomIndex
(
make_tuple
(
m0
,
waveId_m
,
blk_idx
[
I0
]))[
I0
];
const
index_t
c_thread_n
=
nrepeat_nwave_nperxdl_to_n_adaptor
.
CalculateBottomIndex
(
make_tuple
(
n0
,
waveId_n
,
blk_idx
[
I1
]))[
I0
];
return
make_tuple
(
c_thread_m
,
c_thread_n
);
}
__host__
__device__
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_non_lds
()
{
static_assert
(
AK0AM0M1M2M3K1BlockDesc
::
IsKnownAtCompileTime
()
&&
BK0BN0N1N2N3K1BlockDesc
::
IsKnownAtCompileTime
(),
"wrong! Desc should be known at compile-time"
);
static_assert
(
BlockSize
==
MWaves
*
NWaves
*
WaveSize
,
"BlockSize != MWaves * NWaves * WaveSize
\n
"
);
static_assert
(
MPerBlock
%
(
MPerXDL
*
MRepeat
)
==
0
&&
NPerBlock
%
(
NPerXDL
*
NRepeat
)
==
0
,
"wrong!"
);
}
__host__
__device__
static
constexpr
auto
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
()
{
constexpr
auto
c_m0_m1_m2_n_tblk_lens
=
xdlops_gemm
.
GetCM0M1M2NThreadBlkLengths
();
constexpr
auto
M0
=
c_m0_m1_m2_n_tblk_lens
[
I0
];
constexpr
auto
M1
=
c_m0_m1_m2_n_tblk_lens
[
I1
];
constexpr
auto
M2
=
c_m0_m1_m2_n_tblk_lens
[
I2
];
constexpr
auto
N
=
c_m0_m1_m2_n_tblk_lens
[
I3
];
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MRepeat
>
{},
Number
<
NRepeat
>
{},
I1
,
I1
,
M0
,
M1
,
M2
,
N
));
}
__host__
__device__
static
constexpr
auto
GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2
()
{
constexpr
auto
c_m0_m1_m2_n_tblk_lens
=
xdlops_gemm
.
GetCM0M1M2NThreadBlkLengths
();
constexpr
auto
M0
=
c_m0_m1_m2_n_tblk_lens
[
I0
];
constexpr
auto
M1
=
c_m0_m1_m2_n_tblk_lens
[
I1
];
constexpr
auto
M2
=
c_m0_m1_m2_n_tblk_lens
[
I2
];
constexpr
auto
N
=
c_m0_m1_m2_n_tblk_lens
[
I3
];
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
MRepeat
>
{},
Number
<
NRepeat
>
{},
I1
,
I1
,
M0
,
M1
,
M2
,
N
));
}
__host__
__device__
static
constexpr
auto
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
()
{
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_n2
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MRepeat
>
{},
Number
<
NRepeat
>
{},
Number
<
MWaves
>
{},
Number
<
NWaves
>
{},
Number
<
MPerXDL
>
{},
Number
<
NPerXDL
>
{}));
return
xdlops_gemm
.
MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
c_block_desc_m0_n0_m1_n1_m2_n2
);
}
__host__
__device__
static
constexpr
auto
GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2
()
{
constexpr
auto
c_block_desc_g_m0_n0_m1_n1_m2_n2
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
MRepeat
>
{},
Number
<
NRepeat
>
{},
Number
<
MWaves
>
{},
Number
<
NWaves
>
{},
Number
<
MPerXDL
>
{},
Number
<
NPerXDL
>
{}));
return
xdlops_gemm
.
MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2
(
c_block_desc_g_m0_n0_m1_n1_m2_n2
);
}
template
<
typename
CGridDesc_M_N
>
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
c_grid_desc_m0_n0_m1_n1_m2_n2
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M
/
(
MWaves
*
MPerXDL
),
MWaves
,
MPerXDL
)),
make_unmerge_transform
(
make_tuple
(
N
/
(
NWaves
*
NPerXDL
),
NWaves
,
NPerXDL
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
1
,
3
,
5
>
{}));
return
xdlops_gemm
.
MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
c_grid_desc_m0_n0_m1_n1_m2_n2
);
}
template
<
typename
CGridDesc_G_M_N
>
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2
(
const
CGridDesc_G_M_N
&
c_grid_desc_g_m_n
)
{
const
auto
G
=
c_grid_desc_g_m_n
.
GetLength
(
I0
);
const
auto
M
=
c_grid_desc_g_m_n
.
GetLength
(
I1
);
const
auto
N
=
c_grid_desc_g_m_n
.
GetLength
(
I2
);
const
auto
c_grid_desc_g_m0_n0_m1_n1_m2_n2
=
transform_tensor_descriptor
(
c_grid_desc_g_m_n
,
make_tuple
(
make_pass_through_transform
(
G
),
make_unmerge_transform
(
make_tuple
(
M
/
(
MWaves
*
MPerXDL
),
MWaves
,
MPerXDL
)),
make_unmerge_transform
(
make_tuple
(
N
/
(
NWaves
*
NPerXDL
),
NWaves
,
NPerXDL
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
2
,
4
,
6
>
{}));
return
xdlops_gemm
.
MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2
(
c_grid_desc_g_m0_n0_m1_n1_m2_n2
);
}
template
<
typename
ABlockBuffer
,
typename
BBlockBuffer
,
typename
CThreadBuffer
>
__device__
void
Run
(
const
ABlockBuffer
&
a_thread_buf
,
const
BBlockBuffer
&
b_thread_buf
,
CThreadBuffer
&
c_thread_buf
)
const
{
static_for
<
0
,
MRepeat
,
1
>
{}([
&
](
auto
m0
)
{
static_for
<
0
,
NRepeat
,
1
>
{}([
&
](
auto
n0
)
{
// read B
static_for
<
0
,
KPerThread
,
KPack
>
{}([
&
](
auto
k
)
{
vector_type
<
FloatAB
,
KPack
>
a_thread_vec
;
vector_type
<
FloatAB
,
KPack
>
b_thread_vec
;
constexpr
index_t
k0
=
k
/
KPack
;
static_for
<
0
,
KPack
,
1
>
{}([
&
](
auto
i
)
{
a_thread_vec
.
template
AsType
<
FloatAB
>()(
i
)
=
a_thread_buf
[
Number
<
a_thread_desc_
.
CalculateOffset
(
make_tuple
(
k0
,
m0
,
i
))
>
{}];
b_thread_vec
.
template
AsType
<
FloatAB
>()(
i
)
=
b_thread_buf
[
Number
<
b_thread_desc_
.
CalculateOffset
(
make_tuple
(
k0
,
n0
,
i
))
>
{}];
});
using
mfma_input_type
=
typename
vector_type
<
FloatAB
,
xdlops_gemm
.
K1PerXdlops
>::
type
;
constexpr
index_t
c_offset
=
c_thread_desc_
.
CalculateOffset
(
make_tuple
(
m0
,
n0
,
0
));
xdlops_gemm
.
template
Run
(
a_thread_vec
.
template
AsType
<
mfma_input_type
>(),
b_thread_vec
.
template
AsType
<
mfma_input_type
>(),
c_thread_buf
.
GetVectorTypeReference
(
Number
<
c_offset
>{}));
});
});
});
}
private:
// A[M0, M1, M2, KPerThread]
static
constexpr
auto
a_thread_desc_
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
K0PerThread
>
{},
// KPerThread
Number
<
MRepeat
>
{},
// repeat
Number
<
KPack
>
{}));
// B[N0, N1, N2, KPerThread]
static
constexpr
auto
b_thread_desc_
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
K0PerThread
>
{},
// KPerThread
Number
<
NRepeat
>
{},
// repeat
Number
<
KPack
>
{}));
// C[M, N, NumRegXdlops]
static
constexpr
auto
c_thread_desc_
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MRepeat
>
{},
Number
<
NRepeat
>
{},
xdlops_gemm
.
GetRegSizePerXdlops
()));
};
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_gemm_xdl_skip_all_lds.hpp
0 → 100644
View file @
64fbf5a2
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_skip_b_lds_v1.hpp"
#include "gridwise_gemm_xdlops_skip_all_lds_v1.hpp"
#include "gemm_specialization.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
K0PerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
MPerXDL
,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
ABlockLdsAddExtraM
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
CThreadTransferSrcDstVectorDim
,
ck
::
index_t
CThreadTransferDstScalarPerVector
>
struct
DeviceGemmXdlSkipAllLds
:
public
DeviceGemm
<
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
K1Number
=
Number
<
K1
>
{};
static
auto
MakeAGridDescriptor_K0_M_K1
(
index_t
M
,
index_t
K
,
index_t
StrideA
)
{
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
const
auto
a_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_right_pad_transform
(
M
,
PadM
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
MakeBGridDescriptor_K0_N_K1
(
index_t
K
,
index_t
N
,
index_t
StrideB
)
{
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
const
auto
b_grid_desc_k_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
StrideB
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
I1
,
StrideB
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
N
,
index_t
StrideC
)
{
const
auto
c_grid_desc_m_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_right_pad_transform
(
M
,
PadM
),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_pass_through_transform
(
M
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}
using
AGridDesc_K0_M_K1
=
decltype
(
MakeAGridDescriptor_K0_M_K1
(
1
,
1
,
1
));
using
BGridDesc_K0_N_K1
=
decltype
(
MakeBGridDescriptor_K0_N_K1
(
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
(
1
,
1
,
1
));
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemm_k0mk1_k0nk1_mn_xdlops_skip_all_lds_v1
<
BlockSize
,
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CDataType
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_K0_M_K1
,
BGridDesc_K0_N_K1
,
CGridDesc_M_N
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerXDL
,
NPerXDL
,
K1
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM
,
BBlockTransferSrcScalarPerVector
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
Sequence
<
0
,
2
,
4
,
5
,
6
,
1
,
3
,
7
>
,
// CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim
,
CThreadTransferDstScalarPerVector
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
CDataType
*
p_c_grid
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
M01
,
index_t
N01
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
p_a_grid_
{
p_a_grid
},
p_b_grid_
{
p_b_grid
},
p_c_grid_
{
p_c_grid
},
a_grid_desc_k0_m_k1_
{},
b_grid_desc_k0_n_k1_
{},
c_grid_desc_m_n_
{},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
{},
block_2_ctile_map_
{},
M01_
{
M01
},
N01_
{
N01
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
a_grid_desc_k0_m_k1_
=
DeviceGemmXdlSkipAllLds
::
MakeAGridDescriptor_K0_M_K1
(
M
,
K
,
StrideA
);
b_grid_desc_k0_n_k1_
=
DeviceGemmXdlSkipAllLds
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
StrideB
);
c_grid_desc_m_n_
=
DeviceGemmXdlSkipAllLds
::
MakeCGridDescriptor_M_N
(
M
,
N
,
StrideC
);
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_k0_m_k1_
,
b_grid_desc_k0_n_k1_
,
c_grid_desc_m_n_
,
M01_
,
N01_
))
{
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
=
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
c_grid_desc_m_n_
);
block_2_ctile_map_
=
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
c_grid_desc_m_n_
,
M01
,
N01
);
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3_
=
GridwiseGemm
::
MakeAGridDescriptor_K0_K1_K2_M0_M1_M2_M3_K3
(
a_grid_desc_k0_m_k1_
);
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3_
=
GridwiseGemm
::
MakeBGridDescriptor_K0_K1_K2_N0_N1_N2_N3_K3
(
b_grid_desc_k0_n_k1_
);
}
}
// private:
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
CDataType
*
p_c_grid_
;
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1_
;
BGridDesc_K0_N_K1
b_grid_desc_k0_n_k1_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
typename
GridwiseGemm
::
AGridDesc_K0_K1_K2_M0_M1_M2_M3_K3
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3_
;
typename
GridwiseGemm
::
BGridDesc_K0_K1_K2_N0_N1_N2_N3_K3
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3_
;
typename
GridwiseGemm
::
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
;
typename
GridwiseGemm
::
DefaultBlock2CTileMap
block_2_ctile_map_
;
index_t
M01_
;
index_t
N01_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceGemmXdlSkipAllLds
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
{
std
::
cout
<<
"arg.a_grid_desc_k0_m_k1_{"
<<
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I2
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"arg.b_grid_desc_k0_n_k1_{"
<<
arg
.
b_grid_desc_k0_n_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
b_grid_desc_k0_n_k1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
b_grid_desc_k0_n_k1_
.
GetLength
(
I2
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"arg.c_grid_desc_m_n_{ "
<<
arg
.
c_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
c_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
M01_
,
arg
.
N01_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting"
);
}
const
index_t
grid_size
=
GridwiseGemm
::
CalculateGridSize
(
arg
.
c_grid_desc_m_n_
);
const
auto
K0
=
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
);
const
bool
has_main_k0_block_loop
=
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
);
float
ave_time
=
0
;
if
(
has_main_k0_block_loop
)
{
const
auto
kernel
=
kernel_gemm_xdlops_skip_all_lds_v1
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
remove_reference_t
<
DeviceGemmXdlSkipAllLds
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
typename
GridwiseGemm
::
AGridDesc_K0_K1_K2_M0_M1_M2_M3_K3
>
,
remove_reference_t
<
DeviceGemmXdlSkipAllLds
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
typename
GridwiseGemm
::
BGridDesc_K0_K1_K2_N0_N1_N2_N3_K3
>
,
remove_reference_t
<
typename
GridwiseGemm
::
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
>
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
remove_reference_t
<
typename
GridwiseGemm
::
DefaultBlock2CTileMap
>
,
true
>
;
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3_
,
arg
.
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3_
,
arg
.
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
block_2_ctile_map_
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdlops_skip_all_lds_v1
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
remove_reference_t
<
DeviceGemmXdlSkipAllLds
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
typename
GridwiseGemm
::
AGridDesc_K0_K1_K2_M0_M1_M2_M3_K3
>
,
remove_reference_t
<
DeviceGemmXdlSkipAllLds
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
typename
GridwiseGemm
::
BGridDesc_K0_K1_K2_N0_N1_N2_N3_K3
>
,
remove_reference_t
<
typename
GridwiseGemm
::
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
>
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
remove_reference_t
<
typename
GridwiseGemm
::
DefaultBlock2CTileMap
>
,
false
>
;
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3_
,
arg
.
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3_
,
arg
.
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
block_2_ctile_map_
);
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
M01_
,
arg
.
N01_
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_c
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
1
,
1
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
index_t
/* KBatch */
=
1
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
CDataType
*>
(
p_c
),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
1
,
1
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGemmXdlSkipAllLds"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
", "
<<
K1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_skip_all_lds_v1.hpp
0 → 100644
View file @
64fbf5a2
#pragma once
#include "common_header.hpp"
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "blockwise_gemm_xdlops_skip_b_lds.hpp"
#include "blockwise_gemm_xdlops_skip_all_lds.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "gridwise_gemm_pipeline_v1.hpp"
namespace
ck
{
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatC
,
typename
AGridDesc_K0_M_K1
,
typename
AGridDesc_K0_K1_K2_M0_M1_M2_M3_K3
,
typename
BGridDesc_K0_N_K1
,
typename
BGridDesc_K0_K1_K2_N0_N1_N2_N3_K3
,
typename
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
Block2CTileMap
,
bool
HasMainK0BlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_xdlops_skip_all_lds_v1
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
const
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1
,
const
AGridDesc_K0_K1_K2_M0_M1_M2_M3_K3
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
const
BGridDesc_K0_K1_K2_N0_N1_N2_N3_K3
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
const
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CElementwiseOperation
c_element_op
,
const
Block2CTileMap
block_2_ctile_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
//__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm
::
template
Run
<
HasMainK0BlockLoop
>(
p_a_grid
,
p_b_grid
,
p_c_grid
,
//p_shared,
a_grid_desc_k0_m_k1
,
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
a_element_op
,
b_element_op
,
c_element_op
,
block_2_ctile_map
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_c_grid
;
ignore
=
a_grid_desc_k0_m_k1
;
ignore
=
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
;
ignore
=
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
c_element_op
;
ignore
=
block_2_ctile_map
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template
<
index_t
BlockSize
,
typename
FloatAB
,
typename
FloatAcc
,
typename
FloatC
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
typename
AGridDesc_K0_M_K1
,
typename
BGridDesc_K0_N_K1
,
typename
CGridDesc_M_N
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
K0PerBlock
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
K1Value
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
bool
ABlockLdsExtraM
,
index_t
BBlockTransferSrcScalarPerVector
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
typename
CThreadTransferSrcDstAccessOrder
,
index_t
CThreadTransferSrcDstVectorDim
,
index_t
CThreadTransferDstScalarPerVector
>
struct
GridwiseGemm_k0mk1_k0nk1_mn_xdlops_skip_all_lds_v1
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
static
constexpr
auto
MultiK0
=
4
*
1
;
// K1 should be Number<...>
static
constexpr
auto
K1
=
Number
<
K1Value
>
{};
static
constexpr
index_t
WaveSize
=
64
;
static
constexpr
index_t
MWaves
=
MPerBlock
/
(
MXdlPerWave
*
MPerXDL
);
static
constexpr
index_t
NWaves
=
NPerBlock
/
(
NXdlPerWave
*
NPerXDL
);
static
constexpr
auto
xdlops_gemm
=
XdlopsGemm
<
FloatAB
,
MPerXDL
,
NPerXDL
,
K1
>
{};
static
constexpr
index_t
K0PerThread
=
K0PerBlock
/
xdlops_gemm
.
K0PerXdlops
;
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_K0PerBlock_MPerBlock_K1
()
{
constexpr
auto
max_lds_align
=
K1
;
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_k0_m_k1
=
[
&
]()
{
if
constexpr
(
ABlockLdsExtraM
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
K0PerBlock
*
MultiK0
>
{},
Number
<
MPerBlock
>
{},
K1
),
make_tuple
(
Number
<
MPerBlock
+
1
>
{}
*
K1
,
K1
,
I1
));
}
else
{
return
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K0PerBlock
*
MultiK0
>
{},
Number
<
MPerBlock
>
{},
K1
),
max_lds_align
);
}
}();
return
a_block_desc_k0_m_k1
;
}
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_k0_m_k1
=
GetABlockDescriptor_K0PerBlock_MPerBlock_K1
();
constexpr
auto
max_lds_align
=
K1
;
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_k0_m_k1
.
GetElementSpaceSize
(),
max_lds_align
);
return
(
a_block_space_size_aligned
)
*
sizeof
(
FloatAB
);
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
AGridDesc_K0_M_K1
&
a_grid_desc_k0_m_k1
,
const
BGridDesc_K0_N_K1
&
b_grid_desc_k0_n_k1
,
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
,
index_t
N01
)
{
static_assert
(
is_known_at_compile_time
<
remove_cv_t
<
decltype
(
K1
)
>>::
value
,
"wrong! K1 need to be known at compile-time"
);
static_assert
((
MPerBlock
%
(
MPerXDL
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXDL
))
==
0
,
"Invalid tuning param!"
);
const
auto
M
=
a_grid_desc_k0_m_k1
.
GetLength
(
I1
);
const
auto
N
=
b_grid_desc_k0_n_k1
.
GetLength
(
I1
);
const
auto
K0
=
a_grid_desc_k0_m_k1
.
GetLength
(
I0
);
if
(
!
(
M
==
c_grid_desc_m_n
.
GetLength
(
I0
)
&&
N
==
c_grid_desc_m_n
.
GetLength
(
I1
)
&&
K0
==
b_grid_desc_k0_n_k1
.
GetLength
(
I0
)
&&
K1
==
a_grid_desc_k0_m_k1
.
GetLength
(
I2
)
&&
K1
==
b_grid_desc_k0_n_k1
.
GetLength
(
I2
)))
return
false
;
if
(
!
(
M
%
MPerBlock
==
0
&&
N
%
NPerBlock
==
0
&&
K0
%
K0PerBlock
==
0
))
return
false
;
// 2-stage prefetch currently only support even number of K0 loop
// TODO: add support for odd number of K0 loop
if
(
!
((
K0
/
K0PerBlock
)
%
2
==
0
))
{
return
false
;
}
// check M01, N01
constexpr
auto
M1
=
Number
<
MPerBlock
>
{};
constexpr
auto
N1
=
Number
<
NPerBlock
>
{};
const
auto
M0
=
M
/
M1
;
const
auto
N0
=
N
/
N1
;
if
(
!
(
M0
%
M01
==
0
&&
N0
%
N01
==
0
))
return
false
;
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
const
index_t
grid_size
=
(
M
/
MPerBlock
)
*
(
N
/
NPerBlock
);
return
grid_size
;
}
// TODO move this function into GEMM-pipeline class
__host__
__device__
static
constexpr
bool
CalculateHasMainK0BlockLoop
(
index_t
K0
)
{
const
bool
has_main_k0_block_loop
=
(
K0
/
(
MultiK0
*
K0PerBlock
))
>
1
;
return
has_main_k0_block_loop
;
}
__host__
__device__
static
constexpr
auto
MakeAGridDescriptor_K0_K1_K2_M0_M1_M2_M3_K3
(
const
AGridDesc_K0_M_K1
&
a_grid_desc_k0_m_k1
)
{
const
auto
K0
=
a_grid_desc_k0_m_k1
.
GetLength
(
I0
);
const
auto
M
=
a_grid_desc_k0_m_k1
.
GetLength
(
I1
);
const
auto
a_griddesc_k0_mblockid_mrepeat_mwaves_mperxdlops_k1
=
transform_tensor_descriptor
(
a_grid_desc_k0_m_k1
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
/
K0PerBlock
,
xdlops_gemm
.
K0PerXdlops
,
K0PerThread
)),
make_unmerge_transform
(
make_tuple
(
M
/
(
MXdlPerWave
*
MWaves
*
MPerXDL
),
MXdlPerWave
,
MWaves
,
MPerXDL
)),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
,
4
,
5
,
6
>
{},
Sequence
<
7
>
{}));
return
a_griddesc_k0_mblockid_mrepeat_mwaves_mperxdlops_k1
;
}
__host__
__device__
static
constexpr
auto
MakeBGridDescriptor_K0_K1_K2_N0_N1_N2_N3_K3
(
const
BGridDesc_K0_N_K1
&
b_grid_desc_k0_n_k1
)
{
const
auto
K0
=
b_grid_desc_k0_n_k1
.
GetLength
(
I0
);
const
auto
N
=
b_grid_desc_k0_n_k1
.
GetLength
(
I1
);
const
auto
b_griddesc_k0_nblockid_nrepeat_nwaves_nperxdlops_k1
=
transform_tensor_descriptor
(
b_grid_desc_k0_n_k1
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
/
K0PerBlock
,
xdlops_gemm
.
K0PerXdlops
,
K0PerThread
)),
make_unmerge_transform
(
make_tuple
(
N
/
(
NXdlPerWave
*
NWaves
*
NPerXDL
),
NXdlPerWave
,
NWaves
,
NPerXDL
)),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
,
4
,
5
,
6
>
{},
Sequence
<
7
>
{}));
return
b_griddesc_k0_nblockid_nrepeat_nwaves_nperxdlops_k1
;
}
__device__
static
auto
GetWaveIdx
()
{
const
index_t
thread_id
=
get_thread_local_1d_id
();
constexpr
auto
threadid_to_wave_idx_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
MWaves
,
NWaves
,
WaveSize
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
threadid_to_wave_idx_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
thread_id
));
}
__device__
static
auto
GetWaveKNIdx
(
const
index_t
thread_id
)
{
constexpr
auto
wave_threadid_to_nk_idx_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
xdlops_gemm
.
K0PerXdlops
,
NPerXDL
))),
make_tuple
(
Sequence
<
0
,
1
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
wave_threadid_to_nk_idx_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
thread_id
));
}
__device__
static
auto
GetWaveKMIdx
(
const
index_t
thread_id
)
{
constexpr
auto
wave_threadid_to_mk_idx_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
xdlops_gemm
.
K0PerXdlops
,
MPerXDL
))),
make_tuple
(
Sequence
<
0
,
1
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
wave_threadid_to_mk_idx_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
thread_id
));
}
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
constexpr
auto
max_lds_align
=
K1
;
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_k0_m_k1
=
[
&
]()
{
if
constexpr
(
ABlockLdsExtraM
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
MPerBlock
>
{},
K1
),
make_tuple
(
Number
<
MPerBlock
+
1
>
{}
*
K1
,
K1
,
I1
));
}
else
{
return
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
MPerBlock
>
{},
K1
),
max_lds_align
);
}
}();
// B matrix threadwise copy
constexpr
auto
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
I1
,
Number
<
K0PerThread
>
{},
// K0PerThread
I1
,
// NBlockId
Number
<
NXdlPerWave
>
{},
// repeat
I1
,
// waves
I1
,
// NPerXdlops
Number
<
K1
>
{}));
using
BlockwiseGemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1r1
<
BlockSize
,
FloatAB
,
FloatAcc
,
decltype
(
a_block_desc_k0_m_k1
),
decltype
(
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
),
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
K1
>
;
return
BlockwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
c_grid_desc_m_n
);
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2CTileMap
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
,
index_t
N01
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
constexpr
auto
M1
=
Number
<
MPerBlock
>
{};
constexpr
auto
N1
=
Number
<
NPerBlock
>
{};
const
auto
M0
=
M
/
M1
;
const
auto
N0
=
N
/
N1
;
const
auto
M00
=
M0
/
M01
;
const
auto
N00
=
N0
/
N01
;
const
auto
m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M00
,
M01
)),
make_unmerge_transform
(
make_tuple
(
N00
,
N01
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
,
3
>
{}));
const
auto
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M00
,
N00
,
M01
,
N01
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
cblockid_to_m0_n0_block_cluster_adaptor
=
chain_tensor_adaptors
(
m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor
);
return
cblockid_to_m0_n0_block_cluster_adaptor
;
}
using
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
=
decltype
(
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
CGridDesc_M_N
{}));
using
DefaultBlock2CTileMap
=
decltype
(
MakeDefaultBlock2CTileMap
(
CGridDesc_M_N
{},
1
,
1
));
using
BGridDesc_K0_K1_K2_N0_N1_N2_N3_K3
=
decltype
(
MakeBGridDescriptor_K0_K1_K2_N0_N1_N2_N3_K3
(
BGridDesc_K0_N_K1
{}));
using
AGridDesc_K0_K1_K2_M0_M1_M2_M3_K3
=
decltype
(
MakeAGridDescriptor_K0_K1_K2_M0_M1_M2_M3_K3
(
AGridDesc_K0_M_K1
{}));
template
<
bool
HasMainK0BlockLoop
,
typename
Block2CTileMap
=
DefaultBlock2CTileMap
>
__device__
static
void
Run
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
//void* __restrict__ p_shared,
const
AGridDesc_K0_M_K1
&
a_grid_desc_k0_m_k1
,
const
AGridDesc_K0_K1_K2_M0_M1_M2_M3_K3
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
const
BGridDesc_K0_K1_K2_N0_N1_N2_N3_K3
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
const
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
&
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CElementwiseOperation
&
c_element_op
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
.
GetElementSpaceSize
());
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2
.
GetElementSpaceSize
());
const
auto
K0
=
a_grid_desc_k0_m_k1
.
GetLength
(
I0
);
// divide block work by [M, N]
const
auto
block_work_idx
=
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
NPerBlock
);
// A matrix blockwise copy
// a thread wise copy
ignore
=
a_element_op
;
constexpr
auto
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
I1
,
Number
<
K0PerThread
>
{},
// K0PerThread
I1
,
// NBlockId
Number
<
MXdlPerWave
>
{},
// repeat
I1
,
// waves
I1
,
// NPerXdlops
Number
<
K1
>
{}));
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
FloatAB
,
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
.
GetElementSpaceSize
(),
true
>
a_thread_buf_0
,
a_thread_buf_1
,
a_thread_buf_2
,
a_thread_buf_3
;
ignore
=
b_element_op
;
// B matrix threadwise copy
constexpr
auto
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
I1
,
Number
<
K0PerThread
>
{},
// K0PerThread
I1
,
// NBlockId
Number
<
NXdlPerWave
>
{},
// repeat
I1
,
// waves
I1
,
// NPerXdlops
Number
<
K1
>
{}));
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
FloatAB
,
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
.
GetElementSpaceSize
(),
true
>
b_thread_buf_0
,
b_thread_buf_1
,
b_thread_buf_2
,
b_thread_buf_3
;
const
auto
wave_id
=
GetWaveIdx
();
const
auto
wave_k_n_id
=
GetWaveKNIdx
(
wave_id
[
I2
]);
const
auto
wave_k_m_id
=
GetWaveKMIdx
(
wave_id
[
I2
]);
#if 0
const index_t block_id = get_block_1d_id();
const index_t thread_id = get_thread_local_1d_id();
printf("block id: %d m blockid: %d n block id: %d ,thread id: %d, wave id :{%d %d %d} "
"kn id: {%d %d}, km id: {%d %d}\n",
block_id,
block_work_idx[I0],
block_work_idx[I1],
thread_id,
wave_id[I0],
wave_id[I1],
wave_id[I2],
wave_k_n_id[I0],
wave_k_n_id[I1],
wave_k_m_id[I0],
wave_k_m_id[I1]);
printf("mfma thread k per xdlops: %d K0PerThread: %d HasMainK0BlockLoop: %d K0: %d \t",
xdlops_gemm.K0PerXdlops, K0PerThread, HasMainK0BlockLoop, b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3.GetLength(I0));
#endif
auto
a_threadwise_copy
=
ThreadwiseTensorSliceTransfer_v2
<
FloatAB
,
FloatAB
,
decltype
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
),
decltype
(
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
),
Sequence
<
I1
,
I1
,
Number
<
K0PerThread
>
{},
I1
,
Number
<
MXdlPerWave
>
{},
I1
,
I1
,
Number
<
K1
>
{}
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
ABlockTransferSrcScalarPerVector
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
make_multi_index
(
0
,
wave_k_m_id
[
I0
],
0
,
block_work_idx
[
I0
],
0
,
wave_id
[
I1
],
wave_k_m_id
[
I1
],
0
));
auto
b_threadwise_copy
=
ThreadwiseTensorSliceTransfer_v2
<
FloatAB
,
FloatAB
,
decltype
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
),
decltype
(
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
),
Sequence
<
I1
,
I1
,
Number
<
K0PerThread
>
{},
I1
,
Number
<
NXdlPerWave
>
{},
I1
,
I1
,
Number
<
K1
>
{}
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
BBlockTransferSrcScalarPerVector
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
make_multi_index
(
0
,
wave_k_n_id
[
I0
],
0
,
block_work_idx
[
I1
],
0
,
wave_id
[
I1
],
wave_k_n_id
[
I1
],
0
));
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_non_lds
<
BlockSize
,
FloatAB
,
FloatAcc
,
decltype
(
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
),
decltype
(
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
),
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
K1
>
{};
auto
c_thread_buf
=
blockwise_gemm
.
GetCThreadBuffer
();
// gridwise GEMM pipeline
//constexpr auto a_block_slice_copy_step = make_multi_index(K0PerBlock * MultiK0, 0, 0);
constexpr
auto
a_thread_slice_copy_step
=
make_multi_index
(
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
);
constexpr
auto
b_thread_slice_copy_step
=
make_multi_index
(
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
);
// preload data to regiester and LDS
{
// Read
a_threadwise_copy
.
Run
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_grid_buf
,
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
a_thread_buf_0
);
b_threadwise_copy
.
Run
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_grid_buf
,
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
b_thread_buf_0
);
// Move
a_threadwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_thread_slice_copy_step
);
b_threadwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_thread_slice_copy_step
);
// Read
a_threadwise_copy
.
Run
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_grid_buf
,
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
a_thread_buf_1
);
b_threadwise_copy
.
Run
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_grid_buf
,
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
b_thread_buf_1
);
// Move
a_threadwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_thread_slice_copy_step
);
b_threadwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_thread_slice_copy_step
);
// Read
a_threadwise_copy
.
Run
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_grid_buf
,
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
a_thread_buf_2
);
b_threadwise_copy
.
Run
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_grid_buf
,
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
b_thread_buf_2
);
// Move
a_threadwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_thread_slice_copy_step
);
b_threadwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_thread_slice_copy_step
);
// Initialize C
c_thread_buf
.
Clear
();
// a data write to lds
// main body
if
constexpr
(
HasMainK0BlockLoop
)
{
index_t
K0BlockMainLoop
=
__builtin_amdgcn_readfirstlane
(
K0
/
(
MultiK0
*
K0PerBlock
));
index_t
i
=
0
;
do
{
static_for
<
0
,
MultiK0
,
4
>
{}([
&
](
auto
)
{
b_threadwise_copy
.
Run
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_grid_buf
,
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
b_thread_buf_3
);
a_threadwise_copy
.
Run
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_grid_buf
,
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
a_thread_buf_3
);
blockwise_gemm
.
Run
(
a_thread_buf_0
,
b_thread_buf_0
,
c_thread_buf
);
b_threadwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_thread_slice_copy_step
);
a_threadwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_thread_slice_copy_step
);
b_threadwise_copy
.
Run
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_grid_buf
,
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
b_thread_buf_0
);
a_threadwise_copy
.
Run
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_grid_buf
,
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
a_thread_buf_0
);
blockwise_gemm
.
Run
(
a_thread_buf_1
,
b_thread_buf_1
,
c_thread_buf
);
b_threadwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_thread_slice_copy_step
);
a_threadwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_thread_slice_copy_step
);
b_threadwise_copy
.
Run
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_grid_buf
,
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
b_thread_buf_1
);
a_threadwise_copy
.
Run
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_grid_buf
,
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
a_thread_buf_1
);
blockwise_gemm
.
Run
(
a_thread_buf_2
,
b_thread_buf_2
,
c_thread_buf
);
b_threadwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_thread_slice_copy_step
);
a_threadwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_thread_slice_copy_step
);
b_threadwise_copy
.
Run
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_grid_buf
,
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
b_thread_buf_2
);
a_threadwise_copy
.
Run
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_grid_buf
,
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
a_thread_buf_2
);
blockwise_gemm
.
Run
(
a_thread_buf_3
,
b_thread_buf_3
,
c_thread_buf
);
b_threadwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_thread_slice_copy_step
);
a_threadwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_thread_slice_copy_step
);
});
i
+=
1
;
}
while
(
i
<
(
K0BlockMainLoop
-
1
));
}
// tail
{
static_for
<
0
,
MultiK0
,
4
>
{}([
&
](
auto
i
)
{
b_threadwise_copy
.
Run
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_grid_buf
,
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
b_thread_buf_3
);
a_threadwise_copy
.
Run
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_grid_buf
,
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
a_thread_buf_3
);
blockwise_gemm
.
Run
(
a_thread_buf_0
,
b_thread_buf_0
,
c_thread_buf
);
if
constexpr
(
i
<
MultiK0
-
4
)
{
// only move b windows
b_threadwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_thread_slice_copy_step
);
a_threadwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_thread_slice_copy_step
);
b_threadwise_copy
.
Run
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_grid_buf
,
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
b_thread_buf_0
);
a_threadwise_copy
.
Run
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_grid_buf
,
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
a_thread_buf_0
);
}
blockwise_gemm
.
Run
(
a_thread_buf_1
,
b_thread_buf_1
,
c_thread_buf
);
if
constexpr
(
i
<
MultiK0
-
4
)
{
b_threadwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_thread_slice_copy_step
);
a_threadwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_thread_slice_copy_step
);
b_threadwise_copy
.
Run
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_grid_buf
,
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
b_thread_buf_1
);
a_threadwise_copy
.
Run
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_grid_buf
,
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
a_thread_buf_1
);
}
blockwise_gemm
.
Run
(
a_thread_buf_2
,
b_thread_buf_2
,
c_thread_buf
);
if
constexpr
(
i
<
MultiK0
-
4
)
{
b_threadwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_thread_slice_copy_step
);
a_threadwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_thread_slice_copy_step
);
b_threadwise_copy
.
Run
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_grid_buf
,
b_thread_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
b_thread_buf_2
);
a_threadwise_copy
.
Run
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_grid_buf
,
a_thread_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
a_thread_buf_2
);
}
blockwise_gemm
.
Run
(
a_thread_buf_3
,
b_thread_buf_3
,
c_thread_buf
);
if
constexpr
(
i
<
MultiK0
-
4
)
{
b_threadwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3
,
b_thread_slice_copy_step
);
a_threadwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_k1_k2_m0_m1_m2_m3_k3
,
a_thread_slice_copy_step
);
}
});
}
}
// output: register to global memory
{
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
.
GetLength
(
I7
);
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_grid
=
m_block_data_idx_on_grid
+
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_grid
=
n_block_data_idx_on_grid
+
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_grid_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_grid_idx
=
m_thread_data_on_grid_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_grid
));
const
auto
n_thread_data_on_grid_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_grid_idx
=
n_thread_data_on_grid_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_grid
));
auto
c_thread_copy
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatAcc
,
FloatC
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
CElementwiseOperation
,
Sequence
<
M0
,
N0
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
CThreadTransferSrcDstAccessOrder
,
CThreadTransferSrcDstVectorDim
,
CThreadTransferDstScalarPerVector
,
CGlobalMemoryDataOperation
,
1
,
true
>
{
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
m_thread_data_on_grid_idx
[
I0
],
n_thread_data_on_grid_idx
[
I0
],
m_thread_data_on_grid_idx
[
I1
],
n_thread_data_on_grid_idx
[
I1
],
m_thread_data_on_grid_idx
[
I2
],
m_thread_data_on_grid_idx
[
I3
],
m_thread_data_on_grid_idx
[
I4
],
n_thread_data_on_grid_idx
[
I2
]),
c_element_op
};
c_thread_copy
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
c_thread_buf
,
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_grid_buf
);
}
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_skip_b_lds_v1.hpp
View file @
64fbf5a2
#ifndef CK_GRIDWISE_GEMM_XDLOPS_SKIP_B_LDS_V1_HPP
#pragma once
#define CK_GRIDWISE_GEMM_XDLOPS_SKIP_B_LDS_V1_HPP
#include "common_header.hpp"
#include "common_header.hpp"
#include "multi_index_transform_helper.hpp"
#include "multi_index_transform_helper.hpp"
...
@@ -707,4 +706,3 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_skip_b_lds_v1
...
@@ -707,4 +706,3 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_skip_b_lds_v1
};
};
}
// namespace ck
}
// namespace ck
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment