Commit 644df335 authored by rocking's avatar rocking
Browse files

Merge branch 'develop' into gemm_layernorm_instance

parents d99640ab 7494c1c6
......@@ -10,7 +10,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
......@@ -95,7 +95,7 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp
using NormalizeFunctor = ck::tensor_operation::element_wise::Normalize;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwise<
using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwiseImpl<
ck::Tuple<EDataType,
R0DataType,
R1DataType,
......
......@@ -10,7 +10,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
......@@ -92,7 +92,7 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp
using NormalizeFunctor = ck::tensor_operation::element_wise::Normalize;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwise<
using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwiseImpl<
ck::Tuple<EDataType,
R0DataType,
R1DataType,
......
......@@ -56,8 +56,8 @@ class SimpleAppArgs
int option_index = 0;
public:
std::vector<size_t> inLengths = {8, 128, 2048};
std::vector<AccDataType> scales = {2.0f, 2.0f};
std::vector<size_t> inLengths = {8, 128, 2048};
std::vector<double> scales = {2.0, 2.0};
bool do_verification = true;
int init_method = 2;
......@@ -151,8 +151,8 @@ int main(int argc, char* argv[])
auto inStrides = in.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
AccDataType alpha = args.scales[0];
AccDataType beta = args.scales[1];
double alpha = args.scales[0];
double beta = args.scales[1];
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "out: " << out.mDesc << std::endl;
......@@ -221,8 +221,8 @@ int main(int argc, char* argv[])
auto argument_ptr = device_instance.MakeArgumentPointer(i_inLengths,
i_inStrides,
reduceDims,
&alpha,
&beta,
alpha,
beta,
in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer(),
PassThrough{},
......
......@@ -217,8 +217,8 @@ int mean_meansquare_dual_reduce_test(size_t n,
size_t invariant_total_length = n;
size_t reduce_total_length = h * w * c;
const AccDataType alpha = ck::type_convert<AccDataType>(1.0f);
const AccDataType beta = ck::type_convert<AccDataType>(0.0f);
const double alpha = 1.0f;
const double beta = 0.0f;
std::size_t num_thread = 1;
......@@ -267,8 +267,8 @@ int mean_meansquare_dual_reduce_test(size_t n,
i_outLengths,
{i_outStrides, i_outStrides},
reduceDims,
{&alpha, &alpha},
{&beta, &beta},
{alpha, alpha},
{beta, beta},
in_dev.GetDeviceBuffer(),
{mean_dev.GetDeviceBuffer(), meansquare_dev.GetDeviceBuffer()},
ck::make_tuple(InElementwiseOperation_Mean{}, InElementwiseOperation_Meansquare{}),
......
......@@ -10,7 +10,7 @@
#include "ck/utility/sequence.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "batchnorm_common.hpp"
......@@ -46,7 +46,7 @@ int bnorm_infer(
static_assert(NumBatchNormReduceDim < Rank,
"Invalid number of reduced dimensions for batchnorm!");
using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwise<
using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwiseImpl<
ck::Tuple<XDataType, AccDataType, AccDataType, AccDataType, AccDataType>, // x, mean,
// variance,
// scale,
......
......@@ -9,7 +9,8 @@
#include <ctime>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_sparse_embedding3_forward_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_sparse_embeddings_forward_layernorm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
......@@ -18,53 +19,26 @@
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_sparse_embedding3_forward_layernorm.hpp"
// using EmbType = float;
// using IndexType = int64_t;
// using GammaDataType = float;
// using BetaDataType = float;
// using AccDataType = float;
// using OutType = float;
// clang-format off
using EmbType = ck::half_t;
using IndexType = int64_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using AccDataType = float;
using OutType = ck::half_t;
using EmbElementwiseOperation = ck::tensor_operation::element_wise::AddAdd;
// clang-format off
// BlockSize, DimClusterSize, RowClusterSize, DimPerBlock, RowPerBlock, DimThreadSize, RowVectorSize
using DeviceInstance_fp32_e256 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 256, 1, 1>;
using DeviceInstance_fp32_e512 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 512, 1, 1>;
using DeviceInstance_fp32_e768 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 768, 1, 1>;
using DeviceInstance_fp32_e1024 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 1024, 1, 1>;
using DeviceInstance_fp32_e1536 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 1536, 1, 1>;
using DeviceInstance_fp32_e2048 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 2048, 1, 4>;
using DeviceInstance_fp32_e4096 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 4096, 1, 4>;
using DeviceInstance_fp32_e8192 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 8192, 1, 4>;
using DeviceInstance_fp32_e16384 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 16384, 1, 4>;
using DeviceInstance_fp16_e256 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 256, 1, 1>;
using DeviceInstance_fp16_e512 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 512, 1, 2>;
using DeviceInstance_fp16_e768 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 768, 1, 1>;
using DeviceInstance_fp16_e1024 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 1024, 1, 2>;
using DeviceInstance_fp16_e1536 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 1536, 1, 2>;
using DeviceInstance_fp16_e2048 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 2048, 1, 2>;
using DeviceInstance_fp16_e4096 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 4096, 1, 8>;
using DeviceInstance_fp16_e8192 = ck::tensor_operation::device::DeviceSparseEmbedding3ForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, 256, 1, 256, 1, 8192, 1, 8>;
using DeviceInstance_fp16_e256 = ck::tensor_operation::device::DeviceSparseEmbeddingsForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, EmbElementwiseOperation, 256, 1, 256, 1, 256, 1, 1, 3>;
using DeviceInstance_fp16_e512 = ck::tensor_operation::device::DeviceSparseEmbeddingsForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, EmbElementwiseOperation, 256, 1, 256, 1, 512, 1, 2, 3>;
using DeviceInstance_fp16_e768 = ck::tensor_operation::device::DeviceSparseEmbeddingsForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, EmbElementwiseOperation, 256, 1, 256, 1, 768, 1, 1, 3>;
using DeviceInstance_fp16_e1024 = ck::tensor_operation::device::DeviceSparseEmbeddingsForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, EmbElementwiseOperation, 256, 1, 256, 1, 1024, 1, 2, 3>;
using DeviceInstance_fp16_e1536 = ck::tensor_operation::device::DeviceSparseEmbeddingsForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, EmbElementwiseOperation, 256, 1, 256, 1, 1536, 1, 2, 3>;
using DeviceInstance_fp16_e2048 = ck::tensor_operation::device::DeviceSparseEmbeddingsForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, EmbElementwiseOperation, 256, 1, 256, 1, 2048, 1, 2, 3>;
using DeviceInstance_fp16_e4096 = ck::tensor_operation::device::DeviceSparseEmbeddingsForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, EmbElementwiseOperation, 256, 1, 256, 1, 4096, 1, 8, 3>;
using DeviceInstance_fp16_e8192 = ck::tensor_operation::device::DeviceSparseEmbeddingsForwardLayernorm<EmbType, IndexType, GammaDataType, BetaDataType, AccDataType, OutType, EmbElementwiseOperation, 256, 1, 256, 1, 8192, 1, 8, 3>;
template<typename emb_type, ck::index_t dim> struct emb_kernel{};
template<> struct emb_kernel<float, 256> { using kernel_type = DeviceInstance_fp32_e256; };
template<> struct emb_kernel<float, 512> { using kernel_type = DeviceInstance_fp32_e512; };
template<> struct emb_kernel<float, 768> { using kernel_type = DeviceInstance_fp32_e768; };
template<> struct emb_kernel<float, 1024> { using kernel_type = DeviceInstance_fp32_e1024;};
template<> struct emb_kernel<float, 1536> { using kernel_type = DeviceInstance_fp32_e1536;};
template<> struct emb_kernel<float, 2048> { using kernel_type = DeviceInstance_fp32_e2048;};
template<> struct emb_kernel<float, 4096> { using kernel_type = DeviceInstance_fp32_e4096;};
template<> struct emb_kernel<float, 8192> { using kernel_type = DeviceInstance_fp32_e8192;};
template<> struct emb_kernel<float, 16384>{ using kernel_type = DeviceInstance_fp32_e16384;};
template<> struct emb_kernel<ck::half_t, 256> { using kernel_type = DeviceInstance_fp16_e256; };
template<> struct emb_kernel<ck::half_t, 512> { using kernel_type = DeviceInstance_fp16_e512; };
template<> struct emb_kernel<ck::half_t, 768> { using kernel_type = DeviceInstance_fp16_e768; };
......@@ -152,19 +126,20 @@ int main()
beta_dev.ToDevice(beta.mData.data());
auto device_instance = typename emb_kernel<EmbType, current_dim>::kernel_type{};
auto argument_ptr = device_instance.MakeArgumentPointer(out_dev.GetDeviceBuffer(),
emb_a_dev.GetDeviceBuffer(),
emb_b_dev.GetDeviceBuffer(),
emb_c_dev.GetDeviceBuffer(),
index_a_dev.GetDeviceBuffer(),
index_b_dev.GetDeviceBuffer(),
index_c_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
num_rows,
current_dim,
index_length,
epsilon);
auto argument_ptr = device_instance.MakeArgumentPointer(
out_dev.GetDeviceBuffer(),
{ck::type_convert<EmbType*>(emb_a_dev.GetDeviceBuffer()),
ck::type_convert<EmbType*>(emb_b_dev.GetDeviceBuffer()),
ck::type_convert<EmbType*>(emb_c_dev.GetDeviceBuffer())},
{ck::type_convert<IndexType*>(index_a_dev.GetDeviceBuffer()),
ck::type_convert<IndexType*>(index_b_dev.GetDeviceBuffer()),
ck::type_convert<IndexType*>(index_c_dev.GetDeviceBuffer())},
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
current_dim,
index_length,
epsilon,
EmbElementwiseOperation{});
std::cout << "Dim:" << current_dim << ", kernel:" << device_instance.GetTypeString()
<< std::endl
<< std::flush;
......
......@@ -3,7 +3,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
......@@ -19,13 +19,13 @@ using BDataType = F16;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceElementwisePermuteInstance =
ck::tensor_operation::device::DeviceElementwise<ck::Tuple<ADataType>,
ck::Tuple<BDataType>,
PassThrough,
4,
8,
ck::Sequence<8>,
ck::Sequence<1>>;
ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ADataType>,
ck::Tuple<BDataType>,
PassThrough,
4,
8,
ck::Sequence<8>,
ck::Sequence<1>>;
template <typename HostTensorA, typename HostTensorB, typename Functor>
void host_elementwise4D(HostTensorB& B_nhwc, const HostTensorA& A_nchw, Functor functor)
......
......@@ -3,7 +3,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise_2d.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_2d_impl.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
......@@ -17,15 +17,15 @@ using BDataType = F16;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceElementwisePermuteInstance =
ck::tensor_operation::device::DeviceElementwise<ck::Tuple<ADataType>,
ck::Tuple<BDataType>,
PassThrough,
3, // NumDim_M
1, // NumDim_N
8,
8,
ck::Sequence<8>,
ck::Sequence<8>>;
ck::tensor_operation::device::DeviceElementwise2dImpl<ck::Tuple<ADataType>,
ck::Tuple<BDataType>,
PassThrough,
3, // NumDim_M
1, // NumDim_N
8,
8,
ck::Sequence<8>,
ck::Sequence<8>>;
template <typename HostTensorA, typename HostTensorB, typename Functor>
void host_elementwise4D(HostTensorB& B_nhwc,
......
add_example_executable(example_gemm_add_multiply_dl_fp16 gemm_add_multiply_dl_fp16.cpp)
add_example_executable(example_gemm_add_multiply_xdl_fp16 gemm_add_multiply_xdl_fp16.cpp)
# Instructions for ```example_gemm_add_multiply_dl_fp16```
## Run ```example_gemm_add_multiply_dl_fp16```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: time kernel (0=no, 1=yes)
#arg4 to 11: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, StrideE"
./bin/example_gemm_add_multiply_dl_fp16 1 1 1
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {4096, 1}
d0_m_n: dim 2, lengths {3840, 4096}, strides {0, 1}
d1_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
e_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
arg.a_grid_desc_k0_m0_m1_k1_{2048, 3840, 2}
arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2}
arg.e_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {960, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 3.99904 ms, 32.22 TFlops, 31.9913 GB/s, DeviceGemmMultipleD_Dl<256, 128, 128, 16, 2, 4, 4, 1>
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <algorithm>
#include <cstddef>
#include <iostream>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddMultiply = ck::tensor_operation::element_wise::AddMultiply;
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F32 = float;
using I8 = int8_t;
using I32 = int32_t;
struct ProblemSize final
{
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideD0 = 0;
ck::index_t StrideD1 = 4096;
ck::index_t StrideE = 4096;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
};
inline bool
parse_cmd_args(int argc, char* argv[], ProblemSize& problem_size, ExecutionConfig& config)
{
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
}
else if(argc == 12)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
problem_size.M = std::stoi(argv[4]);
problem_size.N = std::stoi(argv[5]);
problem_size.K = std::stoi(argv[6]);
problem_size.StrideA = std::stoi(argv[7]);
problem_size.StrideB = std::stoi(argv[8]);
problem_size.StrideD0 = std::stoi(argv[9]);
problem_size.StrideD1 = std::stoi(argv[10]);
problem_size.StrideE = std::stoi(argv[11]);
}
else
{
std::cerr << "arg1: verification (0=no, 1=yes)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
<< "arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, "
"StrideE"
<< std::endl;
return false;
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_dl.hpp"
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using D0DataType = F16;
using D1DataType = F16;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Row;
using D0Layout = Row;
using D1Layout = Row;
using DsLayout = ck::Tuple<D0Layout, D1Layout>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddMultiply;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNPadding;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::
// ##################| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| DsData| EData| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ##################| | | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ##################| | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ##################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Dl< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 256, 128, 128, 16, 2, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<2, 1, 4, 2>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
#include "run_gemm_add_multiply_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_add_multiply_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using D0DataType = F16;
using D1DataType = F16;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Row;
using D0Layout = Row;
using D1Layout = Row;
using DsLayout = ck::Tuple<D0Layout, D1Layout>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddMultiply;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNPadding;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, DsLayout, Row, F16, F16, F32, F16, DsDataType, F16, PassThrough, PassThrough, CDEElementOp, GemmDefault, 1, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
#include "run_gemm_add_multiply_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_add_multiply_example(argc, argv); }
#pragma once
bool run_gemm_add_multiply(const ProblemSize& problem_size, const ExecutionConfig& config)
{
using namespace ck::literals;
auto& [M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE] = problem_size;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD1, D1Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d0_m_n: " << d0_m_n.mDesc << std::endl;
std::cout << "d1_m_n: " << d1_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(config.init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
d1_m_n.GenerateTensorValue(GeneratorTensor_2<D1DataType>{-1, 1});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{0.0, 1.0});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_device_buf.ToDevice(d0_m_n.mData.data());
d1_device_buf.ToDevice(d1_m_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{d0_device_buf.GetDeviceBuffer(), d1_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
{StrideD0, StrideD1},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
std::cout << "wrong! this device_op instance does not support this problem" << std::endl;
return true;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t flop = 2_uz * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(D0DataType) * N + sizeof(D1DataType) * M * N +
sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< device_op.GetTypeString() << std::endl;
if(config.do_verification)
{
Tensor<AccDataType> c_m_n({M, N});
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d0_m_n(m, n), d1_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
}
return true;
}
bool run_gemm_add_multiply_example(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
return !parse_cmd_args(argc, argv, problem_size, config) ||
run_gemm_add_multiply(problem_size, config);
}
......@@ -18,8 +18,13 @@
#define CK_USE_LAUNCH_BOUNDS 1
#ifdef CK_USE_LAUNCH_BOUNDS
// for most kernels
#define CK_MAX_THREAD_PER_BLOCK 256
#define CK_MIN_BLOCK_PER_CU 2
// for wavelet GEMM kernel
#define CK_WAVELET_MAX_THREAD_PER_BLOCK 512
#define CK_WAVELET_MIN_BLOCK_PER_CU 2
#endif
// check GPU target
......
......@@ -17,7 +17,7 @@ template <typename InDataTypeTuple,
typename OutDataTypeTuple,
typename ElementwiseOperation,
index_t NumDim>
struct DeviceElementwiseBase : public BaseOperator
struct DeviceElementwise : public BaseOperator
{
static constexpr int NumInput = InDataTypeTuple::Size();
static constexpr int NumOutput = OutDataTypeTuple::Size();
......@@ -37,8 +37,8 @@ template <typename InDataTypeTuple,
typename OutDataTypeTuple,
typename ElementwiseOperation,
index_t NumDim>
using DeviceElementwiseBasePtr = std::unique_ptr<
DeviceElementwiseBase<InDataTypeTuple, OutDataTypeTuple, ElementwiseOperation, NumDim>>;
using DeviceElementwisePtr = std::unique_ptr<
DeviceElementwise<InDataTypeTuple, OutDataTypeTuple, ElementwiseOperation, NumDim>>;
} // namespace device
} // namespace tensor_operation
......
......@@ -32,7 +32,7 @@ struct DeviceElementwiseNormalization : public BaseOperator
const std::vector<index_t> betaStrides,
const std::vector<index_t> yStrides,
const std::vector<index_t> reduceDims,
AccDataType epsilon,
double epsilon,
const std::array<const void*, NumInput> in_dev_buffers,
const void* p_gamma,
const void* p_beta,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_waveletmodel_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
template <typename GridwiseGemm,
typename ABDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename EElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_WAVELET_MAX_THREAD_PER_BLOCK, CK_WAVELET_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdl_waveletmodel_cshuffle(
const ABDataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const EElementwiseOperation e_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_e_grid,
p_shared,
a_element_op,
b_element_op,
e_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_e_grid;
ignore = a_element_op;
ignore = b_element_op;
ignore = e_element_op;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = block_2_etile_map;
#endif
}
} // namespace ck
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename GemmAcEDataType,
typename CShuffleDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t TileLoadThreadGroupSize,
index_t TileMathThreadGroupSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock>
struct DeviceGemm_Xdl_WaveletModel_CShuffle : public DeviceGemm<ALayout,
BLayout,
ELayout,
ADataType,
BDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
using DeviceOp = DeviceGemm_Xdl_WaveletModel_CShuffle;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, KPerBlock};
static auto MakeAGridDescriptor_M_K(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(StrideA, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideA));
}
}();
return matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
}
static auto MakeBGridDescriptor_N_K(index_t KRaw, index_t NRaw, index_t StrideB)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
return matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
}
template <typename ELay>
static auto MakeEGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE)
{
const auto e_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELay>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideE, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELay>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideE));
}
}();
return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
}
using AGridDesc_M_K = decltype(MakeAGridDescriptor_M_K(1, 1, 1));
using BGridDesc_N_K = decltype(MakeBGridDescriptor_N_K(1, 1, 1));
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N<ELayout>(1, 1, 1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle<
ADataType, // TODO: distinguish A/B datatype
GemmAcEDataType,
CShuffleDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_M_K,
BGridDesc_N_K,
EGridDesc_M_N,
NumGemmKPrefetchStage,
TileLoadThreadGroupSize,
TileMathThreadGroupSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock>;
using AGridDesc_AK0_M_AK1 = remove_cvref_t<decltype(
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(AGridDesc_M_K{}))>;
using BGridDesc_BK0_N_BK1 = remove_cvref_t<decltype(
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(BGridDesc_N_K{}))>;
using Block2ETileMap = typename GridwiseGemm::DefaultBlock2ETileMap;
// Argument
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid,
EDataType* p_e_grid,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a_grid)},
p_b_grid_{static_cast<const BDataType*>(p_b_grid)},
p_e_grid_{static_cast<EDataType*>(p_e_grid)},
a_grid_desc_m_k_{DeviceOp::MakeAGridDescriptor_M_K(MRaw, KRaw, StrideA)},
b_grid_desc_n_k_{DeviceOp::MakeBGridDescriptor_N_K(KRaw, NRaw, StrideB)},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N<ELayout>(MRaw, NRaw, StrideE)},
a_grid_desc_ak0_m_ak1_{
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_)},
b_grid_desc_bk0_n_bk1_{
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_)},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
if(GridwiseGemm::CheckValidity(
a_grid_desc_m_k_, b_grid_desc_n_k_, e_grid_desc_m_n_, block_2_etile_map_))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
}
}
void Print() const
{
std::cout << "A[M, K]: " << a_grid_desc_m_k_ << std::endl;
std::cout << "B[N, K]: " << b_grid_desc_n_k_ << std::endl;
std::cout << "E[M, N]: " << e_grid_desc_m_n_ << std::endl;
}
// private:
// pointers
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
EDataType* p_e_grid_;
// tensor descriptors for problem definiton
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_N_K b_grid_desc_n_k_;
EGridDesc_M_N e_grid_desc_m_n_;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_;
// block-to-e-tile map
Block2ETileMap block_2_etile_map_;
// element-wise op
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
#if 0
{
std::cout << "arg.a_grid_desc_ak0_m_ak1_{"
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I1) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_bk0_n_bk1_{"
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I0) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I1) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.e_grid_desc_m_n_{ " << arg.e_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.e_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_n_k_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.e_grid_desc_m_n_);
const auto K = arg.a_grid_desc_m_k_.GetLength(I1);
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
const auto kernel = kernel_gemm_xdl_waveletmodel_cshuffle<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2ETileMap,
has_main_loop>;
return launch_and_time_kernel(
stream_config,
kernel,
dim3(grid_size),
dim3(TileLoadThreadGroupSize + TileMathThreadGroupSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_e_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.e_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_etile_map_);
};
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
return launch_kernel(integral_constant<bool, true>{});
}
else
{
return launch_kernel(integral_constant<bool, false>{});
}
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static bool IsSupportedArgument(const Argument& arg)
{
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a"))
{
return false;
}
return GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_n_k_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
EDataType* p_e,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{p_a,
p_b,
p_e,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideE,
a_element_op,
b_element_op,
cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_e,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<EDataType*>(p_e),
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideE,
a_element_op,
b_element_op,
cde_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGemm_Xdl_WaveletModel_CShuffle"
<< "<"
<< TileLoadThreadGroupSize << ", "
<< TileMathThreadGroupSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -32,8 +32,8 @@ struct DeviceMultipleReduce : public BaseOperator
const std::array<index_t, NumOutputDim> outLengths,
const std::array<std::array<index_t, NumOutputDim>, NumReduction> outStrides,
const std::array<int, NumReduceDim> reduceDims,
const std::array<const void*, NumReduction> alphas,
const std::array<const void*, NumReduction> betas,
const std::array<double, NumReduction> alphas,
const std::array<double, NumReduction> betas,
const void* in_dev,
const std::array<void*, NumReduction> out_dev_buffers,
const InElementwiseOperationTuple in_elementwise_op_tuple,
......
......@@ -28,7 +28,7 @@ struct DeviceNormalization : public BaseOperator
const std::vector<index_t> betaStrides,
const std::vector<index_t> yStrides,
const std::vector<index_t> reduceDims,
AccDataType epsilon,
double epsilon,
const void* p_x,
const void* p_gamma,
const void* p_beta,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment