Commit 644df335 authored by rocking's avatar rocking
Browse files

Merge branch 'develop' into gemm_layernorm_instance

parents d99640ab 7494c1c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <stdexcept>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/tensor_operation_instance/gpu/batchnorm_infer.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_infer.hpp"
namespace ck {
namespace profiler {
template <typename XDataType,
typename YDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
index_t Rank,
index_t NumBatchNormReduceDim>
bool profile_batchnorm_infer_impl(int do_verification,
int init_method,
bool do_dumpout,
bool time_kernel,
const std::vector<size_t> inOutLengths,
const std::vector<int> reduceDims,
double epsilon)
{
if(inOutLengths.size() != Rank || reduceDims.size() != NumBatchNormReduceDim)
{
throw std::runtime_error("Invalid tensor lengths or number of reduce dimensions!");
};
std::vector<size_t> scaleBiasMeanVarLengths;
std::vector<int> invariantDims;
// used for calculating the effective transferred bytes by each operation
size_t total_length;
size_t invariant_length = 1;
total_length =
std::accumulate(inOutLengths.begin(), inOutLengths.end(), 1, std::multiplies<size_t>{});
if(std::any_of(reduceDims.begin(), reduceDims.end(), [](int d) { return d < 0 || d >= Rank; }))
throw std::runtime_error("Invalid reduce dimensions!");
for(int dim = 0; dim < Rank; dim++)
{
if(std::none_of(reduceDims.begin(), reduceDims.end(), [&](int d) { return dim == d; }))
{
invariantDims.push_back(dim);
scaleBiasMeanVarLengths.push_back(inOutLengths[dim]);
invariant_length *= inOutLengths[dim];
};
}
// input data of the batchnorm infer algorithm
Tensor<XDataType> x(inOutLengths);
Tensor<ScaleDataType> scale(scaleBiasMeanVarLengths);
Tensor<BiasDataType> bias(scaleBiasMeanVarLengths);
Tensor<MeanVarDataType> estimatedMean(scaleBiasMeanVarLengths);
Tensor<MeanVarDataType> estimatedVariance(scaleBiasMeanVarLengths);
// output data of the batchnorm infer algorithm
Tensor<YDataType> y_ref(inOutLengths);
Tensor<YDataType> y(inOutLengths);
auto inOutStrides = x.mDesc.GetStrides();
auto scaleBiasMeanVarStrides = scale.mDesc.GetStrides();
std::size_t num_thread = std::thread::hardware_concurrency();
const float x_mean = 0.0f;
const float x_stddev = 1.0f;
const float noise_stddev = 0.04f;
// input data in normal distribution
x.GenerateTensorValue(GeneratorTensor_4<XDataType>{x_mean, x_stddev}, num_thread);
// initialize the estimatedMean to be values with tiny variation to the mean of the x
// values
estimatedMean.GenerateTensorValue(GeneratorTensor_4<MeanVarDataType>{x_mean, noise_stddev},
num_thread);
// initialize the estimatedVariance to be values with tiny variation to the variance of
// the x values
estimatedVariance.GenerateTensorValue(
GeneratorTensor_4<MeanVarDataType>{x_stddev * x_stddev, noise_stddev}, num_thread);
if(do_verification)
{
switch(init_method)
{
case 0:
scale.GenerateTensorValue(GeneratorTensor_0<ScaleDataType>{}, num_thread);
bias.GenerateTensorValue(GeneratorTensor_0<BiasDataType>{}, num_thread);
break;
case 1:
scale.GenerateTensorValue(GeneratorTensor_1<ScaleDataType>{1}, num_thread);
bias.GenerateTensorValue(GeneratorTensor_1<BiasDataType>{0}, num_thread);
break;
case 2:
scale.GenerateTensorValue(GeneratorTensor_2<ScaleDataType>{-5, 5}, num_thread);
bias.GenerateTensorValue(GeneratorTensor_2<BiasDataType>{-5, 5}, num_thread);
break;
default:
scale.GenerateTensorValue(GeneratorTensor_3<ScaleDataType>{-1.0f, 1.0f}, num_thread);
bias.GenerateTensorValue(GeneratorTensor_3<BiasDataType>{-1.0f, 1.0f}, num_thread);
}
};
// these buffers are usually provided by the user application
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem y_dev(sizeof(XDataType) * y.mDesc.GetElementSpaceSize());
DeviceMem scale_dev(sizeof(ScaleDataType) * scale.mDesc.GetElementSpaceSize());
DeviceMem bias_dev(sizeof(BiasDataType) * bias.mDesc.GetElementSpaceSize());
// estimatedMean_dev
DeviceMem estimatedMean_dev(sizeof(MeanVarDataType) *
estimatedMean.mDesc.GetElementSpaceSize());
// estimatedVariance_dev
DeviceMem estimatedVariance_dev(sizeof(MeanVarDataType) *
estimatedVariance.mDesc.GetElementSpaceSize());
x_dev.ToDevice(x.mData.data());
scale_dev.ToDevice(scale.mData.data());
bias_dev.ToDevice(bias.mData.data());
estimatedMean_dev.ToDevice(estimatedMean.mData.data());
estimatedVariance_dev.ToDevice(estimatedVariance.mData.data());
std::array<index_t, Rank> arrInOutLengths;
std::array<index_t, Rank> arrInOutStrides;
std::array<index_t, Rank - NumBatchNormReduceDim> arrScaleBiasMeanVarLengths;
std::array<index_t, Rank - NumBatchNormReduceDim> arrScaleBiasMeanVarStrides;
std::array<int, NumBatchNormReduceDim> arrReduceDims;
std::copy(inOutLengths.begin(), inOutLengths.end(), arrInOutLengths.begin());
std::copy(inOutStrides.begin(), inOutStrides.end(), arrInOutStrides.begin());
std::copy(scaleBiasMeanVarLengths.begin(),
scaleBiasMeanVarLengths.end(),
arrScaleBiasMeanVarLengths.begin());
std::copy(scaleBiasMeanVarStrides.begin(),
scaleBiasMeanVarStrides.end(),
arrScaleBiasMeanVarStrides.begin());
std::copy(reduceDims.begin(), reduceDims.end(), arrReduceDims.begin());
std::array<index_t, Rank> aligned_scaleBiasMeanVarStrides{0};
int i = 0;
for(auto dim : invariantDims)
{
assert(inOutLengths[dim] == scaleBiasMeanVarLengths[i]);
aligned_scaleBiasMeanVarStrides[dim] = scaleBiasMeanVarStrides[i];
i++;
};
using Normalize = ck::tensor_operation::element_wise::NormalizeInInfer;
// add device batchnorm-infer instances
using DeviceOp = ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<XDataType, MeanVarDataType, MeanVarDataType, ScaleDataType, BiasDataType>,
ck::Tuple<YDataType>,
Normalize,
Rank>;
// get device op instances
const auto instance_ptrs =
ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
std::string best_instance_name;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
if(do_verification)
{
using PassThroughOp = ck::tensor_operation::element_wise::PassThrough;
using ReferenceBatchNormInferInstance =
ck::tensor_operation::host::ReferenceBatchNormInfer<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
PassThroughOp,
Rank,
NumBatchNormReduceDim>;
auto batchNormInfer_ref = ReferenceBatchNormInferInstance{};
auto argument_ptr_ref =
batchNormInfer_ref.MakeArgumentPointer(arrInOutLengths,
arrInOutStrides,
arrInOutStrides,
arrReduceDims,
arrScaleBiasMeanVarLengths,
arrScaleBiasMeanVarStrides,
arrScaleBiasMeanVarStrides,
arrScaleBiasMeanVarStrides,
x.mData.data(),
scale.mData.data(),
bias.mData.data(),
epsilon,
PassThroughOp{},
estimatedMean.mData.data(),
estimatedVariance.mData.data(),
y_ref.mData.data());
if(!batchNormInfer_ref.IsSupportedArgument(argument_ptr_ref.get()))
{
std::cout << "The runtime parameters not supported by the reference instance, exiting!"
<< std::endl;
return (false);
};
auto invoker_ptr_ref = batchNormInfer_ref.MakeInvokerPointer();
(void)invoker_ptr_ref->Run(argument_ptr_ref.get());
}
int num_kernel = 0;
bool pass = true;
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(arrInOutLengths,
{arrInOutStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides},
{arrInOutStrides},
{x_dev.GetDeviceBuffer(),
estimatedMean_dev.GetDeviceBuffer(),
estimatedVariance_dev.GetDeviceBuffer(),
scale_dev.GetDeviceBuffer(),
bias_dev.GetDeviceBuffer()},
{y_dev.GetDeviceBuffer()},
Normalize{epsilon});
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
num_kernel++;
}
else
{
if(time_kernel)
{
std::cout << inst_ptr->GetTypeString()
<< " skipped due to unsupported argument: " << std::endl;
}
continue;
};
auto invoker_ptr = inst_ptr->MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
size_t num_bytes = 0;
// inputing of x, scale, bias, outputing of y
num_bytes += total_length * (sizeof(XDataType) + sizeof(YDataType)) +
invariant_length *
(sizeof(ScaleDataType) + sizeof(BiasDataType) + sizeof(MeanVarDataType));
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< inst_ptr->GetTypeString() << std::endl;
if(avg_time < best_avg_time)
{
best_instance_name = inst_ptr->GetTypeString();
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
using ck::utils::check_err;
bool single_pass;
y_dev.FromDevice(y.mData.data());
if constexpr(ck::is_same_v<YDataType, ck::bhalf_t>)
single_pass = check_err(y.mData, y_ref.mData, "y results", 1e-2, 1e-2);
else
single_pass = check_err(y.mData, y_ref.mData, "y results", 4e-3, 4e-3);
pass = pass && single_pass;
};
if(do_dumpout)
{
using ck::host_common::dumpBufferToFile;
// clang-format off
dumpBufferToFile("dump_x.bin", x.mData.data(), x.mDesc.GetElementSize());
dumpBufferToFile("dump_y.bin", y.mData.data(), y.mDesc.GetElementSize());
dumpBufferToFile("dump_y_ref.bin", y_ref.mData.data(), y_ref.mDesc.GetElementSize());
// clang-format off
};
}
if(time_kernel)
{
std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_instance_name << std::endl;
}
if(num_kernel == 0)
{
std::cout << "Error: No kernel is applicable" << std::endl;
return false;
}
return pass;
}
} // namespace profiler
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_multiply.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename D0DataType,
typename D1DataType,
typename EDataType,
typename ALayout,
typename BLayout,
typename D0Layout,
typename D1Layout,
typename ELayout>
bool profile_gemm_add_multiply_impl(int do_verification,
int init_method,
bool /*do_log*/,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideD0,
int StrideD1,
int StrideE)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD1, D1Layout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d0_m_n: " << d0_m_n.mDesc << std::endl;
std::cout << "d1_m_n: " << d1_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_device_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
d1_m_n.GenerateTensorValue(GeneratorTensor_2<D1DataType>{-1, 1});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{0.0, 1.0});
}
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddMultiply = ck::tensor_operation::element_wise::AddMultiply;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddMultiply;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
using DeviceOp =
ck::tensor_operation::device::DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<D0Layout, D1Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
PassThrough,
PassThrough,
CDEElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// run reference
if(do_verification)
{
Tensor<AccDataType> c_m_n({M, N});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d0_m_n(m, n), d1_m_n(m, n));
}
}
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_m_n_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem d1_m_n_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_m_n_device_buf.ToDevice(d0_m_n.mData.data());
d1_m_n_device_buf.ToDevice(d1_m_n.mData.data());
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
bool pass = true;
// profile device operation instances
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr = op_ptr->MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 2>{d0_m_n_device_buf.GetDeviceBuffer(),
d1_m_n_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 2>{StrideD0, StrideD1},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init E to zero before profiling a kernel
e_device_buf.SetZero();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
pass = pass && ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
...@@ -6,11 +6,11 @@ ...@@ -6,11 +6,11 @@
#include "ck/utility/reduction_enums.hpp" #include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp" #include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance.hpp" #include "ck/library/tensor_operation_instance/gpu/reduce/reduce.hpp"
#include "ck/library/utility/algorithm.hpp" #include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_reduction.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_reduce.hpp"
#include "ck/library/utility/host_common_util.hpp" #include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
...@@ -158,11 +158,6 @@ bool profile_reduce_impl_impl(bool do_verification, ...@@ -158,11 +158,6 @@ bool profile_reduce_impl_impl(bool do_verification,
constexpr bool OutputIndex = (op_support_indices && UseIndex); constexpr bool OutputIndex = (op_support_indices && UseIndex);
constexpr bool out_support_atomic_add = std::is_same<OutDataType, float>::value;
constexpr bool op_support_atomic_add =
!op_support_indices && ReduceOpId != ReduceTensorOp::NORM2;
constexpr bool use_atomic_add = (out_support_atomic_add && op_support_atomic_add);
// 1) If InDataType is half_t, must use half_t as AccDataType for indexable reduction operations // 1) If InDataType is half_t, must use half_t as AccDataType for indexable reduction operations
// 2) If InDataType is half_t, must use float as AccDataType for non-indexable reduction // 2) If InDataType is half_t, must use float as AccDataType for non-indexable reduction
// operations // operations
...@@ -200,7 +195,8 @@ bool profile_reduce_impl_impl(bool do_verification, ...@@ -200,7 +195,8 @@ bool profile_reduce_impl_impl(bool do_verification,
constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3 || constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3 ||
invalid_reduce_4 || invalid_reduce_5 || invalid_reduce_6); invalid_reduce_4 || invalid_reduce_5 || invalid_reduce_6);
bool pass = true; int num_kernel = 0;
bool pass = true;
if constexpr(!invalid_reduce) if constexpr(!invalid_reduce)
{ {
...@@ -286,75 +282,25 @@ bool profile_reduce_impl_impl(bool do_verification, ...@@ -286,75 +282,25 @@ bool profile_reduce_impl_impl(bool do_verification,
reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator( reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
static_cast<int32_t>(reduce_total_length)); static_cast<int32_t>(reduce_total_length));
using DeviceReduceInstPtr = using ReduceOp = ck::tensor_operation::device::DeviceReduce<InDataType,
DeviceReducePtr<Rank, NumReduceDim, InElementwiseOperation, AccElementwiseOperation>; AccDataType,
OutDataType,
std::vector<DeviceReduceInstPtr> reduce_ptrs; Rank,
NumReduceDim,
add_device_reduce_instance_threadwise<InDataType, ReduceOperation,
AccDataType, InElementwiseOperation,
OutDataType, AccElementwiseOperation,
Rank, PropagateNan,
NumReduceDim, OutputIndex>;
ReduceOperation, const auto reduce_ptrs =
InElementwiseOperation, ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
AccElementwiseOperation, ReduceOp>::GetInstances();
PropagateNan,
UseIndex>(reduce_ptrs);
add_device_reduce_instance_blockwise<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
PropagateNan,
UseIndex>(reduce_ptrs);
if constexpr(use_atomic_add)
{
add_device_reduce_instance_multiblock_atomic_add<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
PropagateNan,
UseIndex>(reduce_ptrs);
}
if(reduce_ptrs.empty()) if(reduce_ptrs.empty())
{ {
throw std::runtime_error("Wrong! No device REDUCE instance found"); throw std::runtime_error("Wrong! No device REDUCE instance found");
}; };
if(do_verification)
{
ReductionHost<InDataType,
AccDataType,
OutDataType,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
Rank,
NumReduceDim,
PropagateNan,
OutputIndex>
hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(alpha,
in.mData.data(),
beta,
out_ref.mData.data(),
out_indices_ref.mData.data(),
in_elementwise_op,
acc_elementwise_op);
};
std::array<index_t, Rank> arrInLengths; std::array<index_t, Rank> arrInLengths;
std::array<index_t, Rank> arrInStrides; std::array<index_t, Rank> arrInStrides;
std::array<index_t, NumOutDim> arrOutLengths; std::array<index_t, NumOutDim> arrOutLengths;
...@@ -365,6 +311,49 @@ bool profile_reduce_impl_impl(bool do_verification, ...@@ -365,6 +311,49 @@ bool profile_reduce_impl_impl(bool do_verification,
ck::ranges::copy(outLengths, arrOutLengths.begin()); ck::ranges::copy(outLengths, arrOutLengths.begin());
ck::ranges::copy(outStrides, arrOutStrides.begin()); ck::ranges::copy(outStrides, arrOutStrides.begin());
if(do_verification)
{
using ReferenceReduceInstance =
ck::tensor_operation::host::ReferenceReduce<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
PropagateNan,
OutputIndex>;
auto reduce_ref = ReferenceReduceInstance{};
auto argument_ptr_ref = reduce_ref.MakeArgumentPointer(arrInLengths,
arrInStrides,
arrOutLengths,
arrOutStrides,
reduceDims,
static_cast<double>(alpha),
static_cast<double>(beta),
in.mData.data(),
nullptr,
out_ref.mData.data(),
out_indices_ref.mData.data(),
in_elementwise_op,
acc_elementwise_op);
if(!reduce_ref.IsSupportedArgument(argument_ptr_ref.get()))
{
std::cout
<< "The runtime parameters not supported by the reduce reference, exiting!"
<< std::endl;
return (false);
};
auto invoker_ptr_ref = reduce_ref.MakeInvokerPointer();
(void)invoker_ptr_ref->Run(argument_ptr_ref.get());
};
for(auto& reduce_ptr : reduce_ptrs) for(auto& reduce_ptr : reduce_ptrs)
{ {
auto argument_ptr = reduce_ptr->MakeArgumentPointer(arrInLengths, auto argument_ptr = reduce_ptr->MakeArgumentPointer(arrInLengths,
...@@ -372,8 +361,8 @@ bool profile_reduce_impl_impl(bool do_verification, ...@@ -372,8 +361,8 @@ bool profile_reduce_impl_impl(bool do_verification,
arrOutLengths, arrOutLengths,
arrOutStrides, arrOutStrides,
reduceDims, reduceDims,
alpha, static_cast<double>(alpha),
beta, static_cast<double>(beta),
in_dev.GetDeviceBuffer(), in_dev.GetDeviceBuffer(),
nullptr, nullptr,
out_dev.GetDeviceBuffer(), out_dev.GetDeviceBuffer(),
...@@ -383,6 +372,8 @@ bool profile_reduce_impl_impl(bool do_verification, ...@@ -383,6 +372,8 @@ bool profile_reduce_impl_impl(bool do_verification,
if(!reduce_ptr->IsSupportedArgument(argument_ptr.get())) if(!reduce_ptr->IsSupportedArgument(argument_ptr.get()))
continue; continue;
else
num_kernel++;
std::string reduce_name = reduce_ptr->GetTypeString(); std::string reduce_name = reduce_ptr->GetTypeString();
...@@ -446,14 +437,20 @@ bool profile_reduce_impl_impl(bool do_verification, ...@@ -446,14 +437,20 @@ bool profile_reduce_impl_impl(bool do_verification,
}; };
}; };
if(time_kernel) if(time_kernel && num_kernel > 0)
std::cout << "Best Perf: " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s" std::cout << "Best Perf: " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s"
<< std::endl; << std::endl;
} }
else else
{ {
std::cout << "The requested reduction operation is not supported, please check !!!" throw std::runtime_error(
<< std::endl; "The requested reduction operation is not supported, please check!");
};
if(num_kernel == 0)
{
std::cout << "Error: No kernel is applicable" << std::endl;
return false;
}; };
return pass; return pass;
......
...@@ -48,8 +48,8 @@ bool profile_softmax_impl(int do_verification, ...@@ -48,8 +48,8 @@ bool profile_softmax_impl(int do_verification,
std::vector<index_t> in_length, std::vector<index_t> in_length,
std::vector<index_t> in_strides, std::vector<index_t> in_strides,
std::vector<index_t> reduce_dims, std::vector<index_t> reduce_dims,
AccDataType alpha, double alpha,
AccDataType beta) double beta)
{ {
if(Rank != in_length.size()) if(Rank != in_length.size())
{ {
...@@ -122,8 +122,8 @@ bool profile_softmax_impl(int do_verification, ...@@ -122,8 +122,8 @@ bool profile_softmax_impl(int do_verification,
auto argument_ptr = inst_ptr->MakeArgumentPointer(in_tensor_lengths, auto argument_ptr = inst_ptr->MakeArgumentPointer(in_tensor_lengths,
in_tensor_strides, in_tensor_strides,
reduce_dims, reduce_dims,
&alpha, alpha,
&beta, beta,
in_dev.GetDeviceBuffer(), in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer(), out_dev.GetDeviceBuffer(),
PassThrough{}, PassThrough{},
......
...@@ -6,6 +6,7 @@ set(PROFILER_SOURCES ...@@ -6,6 +6,7 @@ set(PROFILER_SOURCES
profile_gemm_bilinear.cpp profile_gemm_bilinear.cpp
profile_gemm_bias_add_reduce.cpp profile_gemm_bias_add_reduce.cpp
profile_gemm_add_add_fastgelu.cpp profile_gemm_add_add_fastgelu.cpp
profile_gemm_add_multiply.cpp
profile_gemm_add_fastgelu.cpp profile_gemm_add_fastgelu.cpp
profile_gemm_add_relu_add_layernorm.cpp profile_gemm_add_relu_add_layernorm.cpp
profile_gemm_fastgelu.cpp profile_gemm_fastgelu.cpp
...@@ -27,6 +28,7 @@ set(PROFILER_SOURCES ...@@ -27,6 +28,7 @@ set(PROFILER_SOURCES
profile_softmax.cpp profile_softmax.cpp
profile_batchnorm_fwd.cpp profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp profile_batchnorm_bwd.cpp
profile_batchnorm_infer.cpp
) )
set(PROFILER_EXECUTABLE ckProfiler) set(PROFILER_EXECUTABLE ckProfiler)
...@@ -39,6 +41,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance) ...@@ -39,6 +41,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <getopt.h>
#include "ck/library/utility/host_common_util.hpp"
#include "profiler/profile_batchnorm_infer_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
using namespace std;
static const struct option long_options[] = {{"inOutLengths", required_argument, nullptr, 'D'},
{"reduceDims", required_argument, nullptr, 'R'},
{"dumpout", required_argument, nullptr, 'o'},
{"verify", required_argument, nullptr, 'v'},
{"help", no_argument, nullptr, '?'},
{nullptr, 0, nullptr, 0}};
class BatchnormInferArgParser
{
private:
int option_index = 0;
public:
std::vector<size_t> inLengths;
std::vector<int> reduceDims;
bool do_verification = false;
bool do_dumpout = false;
bool updateMovingAverage;
bool saveMeanAndInvVariance;
int data_type = 0;
int init_method = 2;
bool time_kernel = false;
BatchnormInferArgParser() = default;
~BatchnormInferArgParser() = default;
void show_usage(const char* cmd)
{
// clang-format off
std::cout << "Usage of " << cmd << std::endl;
std::cout << "--inOutLengths or -D, comma separated list of input tensor dimension lengths, must have 4 integers for nhwc" << std::endl;
std::cout << "--reduceDims or -R, comma separated list of dimensions to reduce on" << std::endl;
std::cout << "--verify or -v, 1/0 to indicate whether to verify the result by comparing with the host-based batch-normalization" << std::endl;
std::cout << "Arg1: data type (0: fp16, 1: fp32, 5: bp16, 6: fp64)" << std::endl;
std::cout << "Arg2: init method used for bnScale and bnBias (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)" << std::endl;
std::cout << "Arg3: time kernel (0=no, 1=yes)" << std::endl;
// clang-format on
};
int operator()(int argc, char* argv[])
{
using ck::host_common::getTypeValuesFromString;
int ch;
optind++; // to skip the module name
while(1)
{
ch = getopt_long(argc, argv, "D:R:v:o:", long_options, &option_index);
if(ch == -1)
break;
switch(ch)
{
case 'D':
if(!optarg)
throw std::runtime_error("Invalid option format!");
inLengths = getTypeValuesFromString<size_t>(optarg);
break;
case 'R':
if(!optarg)
throw std::runtime_error("Invalid option format!");
reduceDims = getTypeValuesFromString<int>(optarg);
break;
case 'v':
if(!optarg)
throw std::runtime_error("Invalid option format!");
do_verification = static_cast<bool>(std::atoi(optarg));
break;
case 'o':
if(!optarg)
throw std::runtime_error("Invalid option format!");
do_dumpout = static_cast<bool>(std::atoi(optarg));
break;
case '?':
if(std::string(long_options[option_index].name) == "help")
{
show_usage(argv[0]);
return -1;
};
break;
default:
show_usage(argv[0]);
std::cerr << "Invalid cmd-line options!" << std::endl;
return -1;
};
};
if(optind + 3 > argc)
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
data_type = std::atoi(argv[optind++]);
init_method = std::atoi(argv[optind++]);
time_kernel = static_cast<bool>(std::atoi(argv[optind++]));
if(data_type != 0 && data_type != 1 && data_type != 5 && data_type != 6)
return -1;
return 0;
};
}; // end of class AppArgs
static const double epsilon = std::numeric_limits<float>::epsilon();
int profile_batchnorm_infer(int argc, char* argv[])
{
using ck::profiler::profile_batchnorm_infer_impl;
BatchnormInferArgParser arg_parser;
if(arg_parser(argc, argv) != 0)
return -1;
using F16 = ck::half_t;
using F32 = float;
using BF16 = ck::bhalf_t;
using F64 = double;
if(arg_parser.data_type == 0)
{
if(arg_parser.inLengths.size() == 4 && arg_parser.reduceDims.size() == 3)
{
profile_batchnorm_infer_impl<F16, F16, F32, F16, F16, F32, 4, 3>(
arg_parser.do_verification,
arg_parser.init_method,
arg_parser.do_dumpout,
arg_parser.time_kernel,
arg_parser.inLengths,
arg_parser.reduceDims,
epsilon);
};
}
else if(arg_parser.data_type == 1)
{
if(arg_parser.inLengths.size() == 4 && arg_parser.reduceDims.size() == 3)
{
profile_batchnorm_infer_impl<F32, F32, F32, F32, F32, F32, 4, 3>(
arg_parser.do_verification,
arg_parser.init_method,
arg_parser.do_dumpout,
arg_parser.time_kernel,
arg_parser.inLengths,
arg_parser.reduceDims,
epsilon);
};
}
else if(arg_parser.data_type == 5)
{
if(arg_parser.inLengths.size() == 4 && arg_parser.reduceDims.size() == 3)
{
profile_batchnorm_infer_impl<BF16, BF16, F32, BF16, BF16, F32, 4, 3>(
arg_parser.do_verification,
arg_parser.init_method,
arg_parser.do_dumpout,
arg_parser.time_kernel,
arg_parser.inLengths,
arg_parser.reduceDims,
epsilon);
};
}
else if(arg_parser.data_type == 6)
{
if(arg_parser.inLengths.size() == 4 && arg_parser.reduceDims.size() == 3)
{
profile_batchnorm_infer_impl<F64, F64, F64, F64, F64, F64, 4, 3>(
arg_parser.do_verification,
arg_parser.init_method,
arg_parser.do_dumpout,
arg_parser.time_kernel,
arg_parser.inLengths,
arg_parser.reduceDims,
epsilon);
};
}
return 0;
}
REGISTER_PROFILER_OPERATION("bnorm_infer", "Batchnorm inference", profile_batchnorm_infer);
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_add_multiply_impl.hpp"
#include "profiler_operation_registry.hpp"
#define OP_NAME "gemm_add_multiply"
#define OP_DESC "GEMM+Add+MULTIPLY"
int profile_gemm_add_multiply(int argc, char* argv[])
{
enum struct MatrixLayout
{
MK_KN_MN_MN_MN, // 0
MK_NK_MN_MN_MN, // 1
KM_KN_MN_MN_MN, // 2
KM_NK_MN_MN_MN, // 3
};
enum struct MatrixDataType
{
F32_F32_F32_F32_F32, // 0
F16_F16_F16_F16_F16, // 1
BF16_BF16_BF16_BF16_BF16, // 2
INT8_INT8_INT8_INT8_INT8, // 3
};
if(argc != 16)
{
// clang-format off
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n");
printf("arg3: matrix layout (0: E[m, n] = AddMultiply((A[m, k] * B[k, n] + D0[m, n]) x D1[m, n]);\n");
printf(" 1: E[m, n] = AddMultiply((A[m, k] * B[k, n] + D0[m, n]) x D1[m, n]);\n");
printf(" 2: E[m, n] = AddMultiply((A[m, k] * B[k, n] + D0[m, n]) x D1[m, n]);\n");
printf(" 3: E[m, n] = AddMultiply((A[m, k] * B[k, n] + D0[m, n]) x D1[m, n]))\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg6: print tensor value (0: no; 1: yes)\n");
printf("arg7: time kernel (0=no, 1=yes)\n");
printf("arg8 to 15: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE\n");
// clang-format on
exit(1);
}
const auto data_type = static_cast<MatrixDataType>(std::stoi(argv[2]));
const auto layout = static_cast<MatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const int M = std::stoi(argv[8]);
const int N = std::stoi(argv[9]);
const int K = std::stoi(argv[10]);
const int StrideA = std::stoi(argv[11]);
const int StrideB = std::stoi(argv[12]);
const int StrideD0 = std::stoi(argv[13]);
const int StrideD1 = std::stoi(argv[14]);
const int StrideE = std::stoi(argv[15]);
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
auto profile = [&](auto a_type,
auto b_type,
auto acc_type,
auto d0_type,
auto d1_type,
auto e_type,
auto a_layout,
auto b_layout,
auto d0_layout,
auto d1_layout,
auto e_layout) {
using ADataType = decltype(a_type);
using BDataType = decltype(b_type);
using AccDataType = decltype(acc_type);
using D0DataType = decltype(d0_type);
using D1DataType = decltype(d1_type);
using EDataType = decltype(e_type);
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using D0Layout = decltype(d0_layout);
using D1Layout = decltype(d1_layout);
using ELayout = decltype(e_layout);
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB = ck::is_same_v<BLayout, Row> ? N : K;
const int DefaultStrideD0 = ck::is_same_v<D0Layout, Row> ? N : M;
const int DefaultStrideD1 = ck::is_same_v<D1Layout, Row> ? N : M;
const int DefaultStrideE = ck::is_same_v<ELayout, Row> ? N : M;
bool pass = ck::profiler::profile_gemm_add_multiply_impl<ADataType,
BDataType,
AccDataType,
D0DataType,
D1DataType,
EDataType,
ALayout,
BLayout,
D0Layout,
D1Layout,
ELayout>(
do_verification,
init_method,
do_log,
time_kernel,
M,
N,
K,
(StrideA < 0) ? DefaultStrideA : StrideA,
(StrideB < 0) ? DefaultStrideB : StrideB,
(StrideD0 < 0) ? DefaultStrideD0 : StrideD0,
(StrideD1 < 0) ? DefaultStrideD1 : StrideD1,
(StrideE < 0) ? DefaultStrideE : StrideE);
return pass ? 0 : 1;
};
if(data_type == MatrixDataType::F16_F16_F16_F16_F16 && layout == MatrixLayout::MK_KN_MN_MN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, F16{}, Row{}, Row{}, Row{}, Row{}, Row{});
}
else if(data_type == MatrixDataType::F16_F16_F16_F16_F16 &&
layout == MatrixLayout::MK_NK_MN_MN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, F16{}, Row{}, Col{}, Row{}, Row{}, Row{});
}
else if(data_type == MatrixDataType::F16_F16_F16_F16_F16 &&
layout == MatrixLayout::KM_KN_MN_MN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, F16{}, Col{}, Row{}, Row{}, Row{}, Row{});
}
else if(data_type == MatrixDataType::F16_F16_F16_F16_F16 &&
layout == MatrixLayout::KM_NK_MN_MN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, F16{}, Col{}, Col{}, Row{}, Row{}, Row{});
}
else
{
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
}
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_gemm_add_multiply);
...@@ -99,8 +99,8 @@ int profile_softmax(int argc, char* argv[]) ...@@ -99,8 +99,8 @@ int profile_softmax(int argc, char* argv[])
length, length,
stride, stride,
reduce, reduce,
float(alpha), double(alpha),
float(beta)); double(beta));
} }
else if(data_type == SoftmaxDataType::F32_F32) else if(data_type == SoftmaxDataType::F32_F32)
{ {
...@@ -111,8 +111,8 @@ int profile_softmax(int argc, char* argv[]) ...@@ -111,8 +111,8 @@ int profile_softmax(int argc, char* argv[])
length, length,
stride, stride,
reduce, reduce,
float(alpha), double(alpha),
float(beta)); double(beta));
} }
else else
{ {
...@@ -131,8 +131,8 @@ int profile_softmax(int argc, char* argv[]) ...@@ -131,8 +131,8 @@ int profile_softmax(int argc, char* argv[])
length, length,
stride, stride,
reduce, reduce,
float(alpha), double(alpha),
float(beta)); double(beta));
} }
else if(data_type == SoftmaxDataType::F32_F32) else if(data_type == SoftmaxDataType::F32_F32)
{ {
...@@ -143,8 +143,8 @@ int profile_softmax(int argc, char* argv[]) ...@@ -143,8 +143,8 @@ int profile_softmax(int argc, char* argv[])
length, length,
stride, stride,
reduce, reduce,
float(alpha), double(alpha),
float(beta)); double(beta));
} }
else else
{ {
......
add_gtest_executable(test_batchnorm_fwd_rank_4 batchnorm_fwd_rank_4.cpp) add_gtest_executable(test_batchnorm_fwd_rank_4 batchnorm_fwd_rank_4.cpp)
add_gtest_executable(test_batchnorm_bwd_rank_4 batchnorm_bwd_rank_4.cpp) add_gtest_executable(test_batchnorm_bwd_rank_4 batchnorm_bwd_rank_4.cpp)
add_gtest_executable(test_batchnorm_infer_rank_4 batchnorm_infer_rank_4.cpp)
target_link_libraries(test_batchnorm_fwd_rank_4 PRIVATE utility device_batchnorm_instance) target_link_libraries(test_batchnorm_fwd_rank_4 PRIVATE utility device_batchnorm_instance)
target_link_libraries(test_batchnorm_bwd_rank_4 PRIVATE utility device_batchnorm_instance) target_link_libraries(test_batchnorm_bwd_rank_4 PRIVATE utility device_batchnorm_instance)
target_link_libraries(test_batchnorm_infer_rank_4 PRIVATE utility device_batchnorm_instance)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <vector>
#include <tuple>
#include <gtest/gtest.h>
#include "profiler/profile_batchnorm_infer_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
using BF16 = ck::bhalf_t;
using F64 = double;
template <typename Tuple>
class TestBatchNormInferRank4 : public ::testing::Test
{
private:
const double epsilon = std::numeric_limits<float>::epsilon();
protected:
using XDataType = std::tuple_element_t<0, Tuple>;
using YDataType = std::tuple_element_t<1, Tuple>;
using AccDataType = std::tuple_element_t<2, Tuple>;
using ScaleDataType = std::tuple_element_t<3, Tuple>;
using BiasDataType = std::tuple_element_t<4, Tuple>;
using MeanVarDataType = std::tuple_element_t<5, Tuple>;
std::vector<std::vector<size_t>> list_of_lengths = {
{128, 16, 3, 1024}, {128, 16, 6, 512}, {4, 4, 4, 4}, {32, 32, 32, 32}};
std::vector<int> reduceDims;
template <int NumReduceDim>
void Run()
{
for(auto& inOutLengths : list_of_lengths)
{
bool pass = true;
EXPECT_FALSE(reduceDims.size() != NumReduceDim);
pass = pass && ck::profiler::profile_batchnorm_infer_impl<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
4,
NumReduceDim>(
true, 3, false, false, inOutLengths, reduceDims, epsilon);
pass = pass && ck::profiler::profile_batchnorm_infer_impl<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
4,
NumReduceDim>(
true, 3, false, false, inOutLengths, reduceDims, epsilon);
EXPECT_TRUE(pass);
}
}
};
using KernelTypes = ::testing::Types<std::tuple<F16, F16, F32, F16, F16, F32>,
std::tuple<F32, F32, F32, F32, F32, F32>,
std::tuple<BF16, BF16, F32, BF16, BF16, F32>,
std::tuple<F64, F64, F64, F64, F64, F64>>;
TYPED_TEST_SUITE(TestBatchNormInferRank4, KernelTypes);
// nhwc
TYPED_TEST(TestBatchNormInferRank4, nhwc)
{
this->reduceDims = {0, 1, 2};
this->template Run<3>();
}
// nchw
TYPED_TEST(TestBatchNormInferRank4, nchw)
{
this->reduceDims = {0, 2, 3};
this->template Run<3>();
}
...@@ -18,6 +18,7 @@ add_library(gemm_standalone_xdl_fp16_instances STATIC ...@@ -18,6 +18,7 @@ add_library(gemm_standalone_xdl_fp16_instances STATIC
instance/gemm_f16_nn_instance.cpp instance/gemm_f16_nn_instance.cpp
instance/gemm_f16_nt_instance.cpp instance/gemm_f16_nt_instance.cpp
instance/gemm_f16_tn_instance.cpp instance/gemm_f16_tn_instance.cpp
instance/gemm_wavelet_f16_tn_instance.cpp
instance/gemm_f16_tt_instance.cpp instance/gemm_f16_tt_instance.cpp
) )
add_test_executable(test_gemm_standalone_xdl_fp16 gemm_standalone_xdl_fp16.cpp) add_test_executable(test_gemm_standalone_xdl_fp16 gemm_standalone_xdl_fp16.cpp)
......
...@@ -10,6 +10,7 @@ ...@@ -10,6 +10,7 @@
#include "gemm_f16_nt_instance.hpp" #include "gemm_f16_nt_instance.hpp"
#include "gemm_f16_tn_instance.hpp" #include "gemm_f16_tn_instance.hpp"
#include "gemm_f16_tt_instance.hpp" #include "gemm_f16_tt_instance.hpp"
#include "gemm_wavelet_f16_tn_instance.hpp"
using Row = ck::tensor_layout::gemm::RowMajor; using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor; using Col = ck::tensor_layout::gemm::ColumnMajor;
...@@ -74,6 +75,10 @@ int main(int argc, char* argv[]) ...@@ -74,6 +75,10 @@ int main(int argc, char* argv[])
{GemmParams{2048, 1664, 4096}, LayoutConfig{true, false, true}, add_gemm_f16_tn_256x128}, {GemmParams{2048, 1664, 4096}, LayoutConfig{true, false, true}, add_gemm_f16_tn_256x128},
{GemmParams{1024, 1664, 4096}, LayoutConfig{true, false, true}, add_gemm_f16_tn_128x128}, {GemmParams{1024, 1664, 4096}, LayoutConfig{true, false, true}, add_gemm_f16_tn_128x128},
{GemmParams{1024, 832, 4096}, LayoutConfig{true, false, true}, add_gemm_f16_tn_128x64}, {GemmParams{1024, 832, 4096}, LayoutConfig{true, false, true}, add_gemm_f16_tn_128x64},
{GemmParams{2048, 3328, 4096}, LayoutConfig{true, false, true}, add_gemm_wavelet_f16_tn_256x256},
{GemmParams{2048, 1664, 4096}, LayoutConfig{true, false, true}, add_gemm_wavelet_f16_tn_256x128},
{GemmParams{1024, 1664, 4096}, LayoutConfig{true, false, true}, add_gemm_wavelet_f16_tn_128x128},
{GemmParams{1024, 832, 4096}, LayoutConfig{true, false, true}, add_gemm_wavelet_f16_tn_128x64},
{GemmParams{2048, 3328, 4096}, LayoutConfig{true, true, true}, add_gemm_f16_tt_256x256}, {GemmParams{2048, 3328, 4096}, LayoutConfig{true, true, true}, add_gemm_f16_tt_256x256},
{GemmParams{2048, 1664, 4096}, LayoutConfig{true, true, true}, add_gemm_f16_tt_256x128}, {GemmParams{2048, 1664, 4096}, LayoutConfig{true, true, true}, add_gemm_f16_tt_256x128},
{GemmParams{1024, 1664, 4096}, LayoutConfig{true, true, true}, add_gemm_f16_tt_128x128}, {GemmParams{1024, 1664, 4096}, LayoutConfig{true, true, true}, add_gemm_f16_tt_128x128},
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_waveletmodel_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "gemm_wavelet_f16_tn_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using gemm_f16_tn_256x256 = std::tuple<
// clang-format off
//##################### | ALayout| BLayout| CLayout| AData| BData| AccData| CShuffle| CData| A| B| C| GEMM| NumGemmK| ABBlockTransfer| BlockGemm| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##################### | | | | Type| Type| Type| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| ThreadGroupSize| ThreadGroupSize| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##################### | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##################### | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_WaveletModel_CShuffle< Row, Col, Row, F16, F16, F32, F16, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 256, 256, 32, 8, 8, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
using gemm_f16_tn_256x128 = std::tuple<
// clang-format off
//##################### | ALayout| BLayout| CLayout| AData| BData| AccData| CShuffle| CData| A| B| C| GEMM| NumGemmK| ABBlockTransfer| BlockGemm| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##################### | | | | Type| Type| Type| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| ThreadGroupSize| ThreadGroupSize| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##################### | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##################### | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_WaveletModel_CShuffle< Row, Col, Row, F16, F16, F32, F16, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
using gemm_f16_tn_128x128 = std::tuple<
// clang-format off
//##################### | ALayout| BLayout| CLayout| AData| BData| AccData| CShuffle| CData| A| B| C| GEMM| NumGemmK| ABBlockTransfer| BlockGemm| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##################### | | | | Type| Type| Type| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| ThreadGroupSize| ThreadGroupSize| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##################### | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##################### | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_WaveletModel_CShuffle< Row, Col, Row, F16, F16, F32, F16, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
using gemm_f16_tn_128x64 = std::tuple<
// clang-format off
//##################### | ALayout| BLayout| CLayout| AData| BData| AccData| CShuffle| CData| A| B| C| GEMM| NumGemmK| ABBlockTransfer| BlockGemm| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##################### | | | | Type| Type| Type| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| ThreadGroupSize| ThreadGroupSize| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##################### | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##################### | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_WaveletModel_CShuffle< Row, Col, Row, F16, F16, F32, F16, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
void add_gemm_wavelet_f16_tn_256x256(std::vector<std::unique_ptr<BaseOperator>>& instances)
{
add_device_operation_instances(instances, gemm_f16_tn_256x256{});
}
void add_gemm_wavelet_f16_tn_256x128(std::vector<std::unique_ptr<BaseOperator>>& instances)
{
add_device_operation_instances(instances, gemm_f16_tn_256x128{});
}
void add_gemm_wavelet_f16_tn_128x128(std::vector<std::unique_ptr<BaseOperator>>& instances)
{
add_device_operation_instances(instances, gemm_f16_tn_128x128{});
}
void add_gemm_wavelet_f16_tn_128x64(std::vector<std::unique_ptr<BaseOperator>>& instances)
{
add_device_operation_instances(instances, gemm_f16_tn_128x64{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <memory>
#include <vector>
#include "include/ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_gemm_wavelet_f16_tn_256x256(std::vector<std::unique_ptr<BaseOperator>>& instances);
void add_gemm_wavelet_f16_tn_256x128(std::vector<std::unique_ptr<BaseOperator>>& instances);
void add_gemm_wavelet_f16_tn_128x128(std::vector<std::unique_ptr<BaseOperator>>& instances);
void add_gemm_wavelet_f16_tn_128x64(std::vector<std::unique_ptr<BaseOperator>>& instances);
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment