Commit 6434d29d authored by carlushuang's avatar carlushuang
Browse files

Merge remote-tracking branch 'origin/develop' into stream-k-initial-impl

parents 47d649a7 6eef0755
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <random>
#include "profiler/profile_grouped_gemm_impl.hpp"
namespace {
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using CDataType = ck::half_t;
using AccDataType = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <typename ALayout, typename BLayout, typename CLayout>
bool TestGroupedGemm()
{
std::mt19937 gen(19391);
std::uniform_int_distribution<> distrib(1, 10);
int group_count = distrib(gen);
// GEMM shape
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
std::vector<const void*> p_a, p_b;
std::vector<void*> p_c;
std::vector<int> Ms, Ns, Ks, StrideAs, StrideBs, StrideCs;
for(int i = 0; i < group_count; i++)
{
Ms.push_back(256 + 256 * distrib(gen));
Ns.push_back(256 + 256 * distrib(gen));
Ks.push_back(128 + 128 * distrib(gen));
StrideAs.push_back(std::is_same<Row, ALayout>::value ? Ks[i] : Ms[i]);
StrideBs.push_back(std::is_same<Row, BLayout>::value ? Ns[i] : Ks[i]);
StrideCs.push_back(std::is_same<Row, CLayout>::value ? Ns[i] : Ms[i]);
}
return ck::profiler::profile_grouped_gemm_impl<ADataType,
BDataType,
CDataType,
AccDataType,
ALayout,
BLayout,
CLayout>(
true, 1, false, 1, Ms, Ns, Ks, StrideAs, StrideBs, StrideCs);
}
} // anonymous namespace
int main()
{
bool res = true;
res = res && TestGroupedGemm<Row, Row, Row>();
res = res && TestGroupedGemm<Row, Col, Row>();
res = res && TestGroupedGemm<Col, Row, Row>();
res = res && TestGroupedGemm<Col, Col, Row>();
std::cout << "TestGroupedGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res ? 0 : 1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <stdexcept>
#include <vector>
#include "gtest/gtest.h"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "test_grouped_gemm_util.hpp"
class TestGGemmSplitKInterface_MKNKMN : public ::testing::Test
{
protected:
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using ALayout = Row;
using BLayout = Col;
using ELayout = Row;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
template <ck::tensor_operation::device::GemmSpecialization GemmSpec,
ck::index_t KPerBlock,
ck::index_t K1,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t CDEBlockTransferScalarPerVector_NPerBlock>
using GGemmInstance =
ck::test::DeviceGroupedGemmSplitkInstanceWrapper<ALayout,
BLayout,
ELayout,
GemmSpec,
KPerBlock,
K1,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
CDEBlockTransferScalarPerVector_NPerBlock>;
using DefaultGGemmInstance = GGemmInstance<GemmDefault, 32, 8, 4, 8, 8>;
};
TEST_F(TestGGemmSplitKInterface_MKNKMN, TileSize)
{
std::vector<int> Ms{128, 256, 188, 512};
constexpr int N = 256;
constexpr int K = 128;
std::vector<int> Ns(Ms.size(), N);
std::vector<int> Ks(Ms.size(), K);
std::vector<int> StrideAs(Ms.size(), K);
std::vector<int> StrideBs(Ms.size(), K);
std::vector<int> StrideCs(Ms.size(), N);
// M % MPerBlock
EXPECT_FALSE(DefaultGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
Ms = std::vector<int>{256, 128, 128, 512};
Ns = std::vector<int>{256, 177, 128, 512};
// N % NPerBlock
EXPECT_FALSE(DefaultGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
}
TEST_F(TestGGemmSplitKInterface_MKNKMN, VectorLoadWidth)
{
static constexpr auto GemmMNKPadding =
ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using PaddedGGemmInstance = GGemmInstance<GemmMNKPadding, 32, 8, 4, 8, 8>;
std::vector<int> Ms{128, 256, 256, 512};
constexpr int N = 256;
constexpr int K = 512;
std::vector<int> Ns(Ms.size(), N);
std::vector<int> Ks(Ms.size(), K);
std::vector<int> StrideAs(Ms.size(), K);
std::vector<int> StrideBs(Ms.size(), K);
std::vector<int> StrideCs(Ms.size(), N);
// K % ABlockTransferSrcScalarPerVector
Ks = std::vector<int>{256, 177, 128, 512};
EXPECT_FALSE(PaddedGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
Ks = std::vector<int>{256, 164, 128, 512};
// K % BBlockTransferSrcScalarPerVector
EXPECT_FALSE(PaddedGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
Ks = std::vector<int>(4, 128);
Ns = std::vector<int>{256, 127, 128, 512};
// N % CBlockTransferScalarPerVector_NWaveNPerXDL
EXPECT_FALSE(PaddedGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
}
TEST_F(TestGGemmSplitKInterface_MKNKMN, KLoops)
{
std::vector<int> Ms{128, 256, 256, 512};
constexpr int N = 256;
constexpr int K = 128;
constexpr int kbatch = 4;
std::vector<int> Ns(Ms.size(), N);
std::vector<int> Ks(Ms.size(), K);
std::vector<int> StrideAs(Ms.size(), K);
std::vector<int> StrideBs(Ms.size(), K);
std::vector<int> StrideCs(Ms.size(), N);
// kloops % 2
Ks = std::vector<int>{256, 512, 320, 768};
EXPECT_FALSE(
DefaultGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, kbatch));
// Not all gemms have same value for main_k0_block_loop!
Ks = std::vector<int>{256, 512, 512, 512};
EXPECT_THROW(DefaultGGemmInstance{}.Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, kbatch),
std::runtime_error);
}
class TestGGemmSplitKInterface_KMKNNM : public ::testing::Test
{
protected:
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using ALayout = Col;
using BLayout = Row;
using ELayout = Col;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
template <ck::tensor_operation::device::GemmSpecialization GemmSpec,
ck::index_t KPerBlock,
ck::index_t K1,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t CDEBlockTransferScalarPerVector_NPerBlock>
using GGemmInstance =
ck::test::DeviceGroupedGemmSplitkInstanceWrapper<ALayout,
BLayout,
ELayout,
GemmSpec,
KPerBlock,
K1,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
CDEBlockTransferScalarPerVector_NPerBlock>;
using DefaultGGemmInstance = GGemmInstance<GemmDefault, 32, 8, 4, 8, 4>;
};
TEST_F(TestGGemmSplitKInterface_KMKNNM, TileSize)
{
std::vector<int> Ms{128, 256, 188, 512};
constexpr int N = 256;
constexpr int K = 128;
std::vector<int> Ns(Ms.size(), N);
std::vector<int> Ks(Ms.size(), K);
std::vector<int> StrideAs(Ms.size(), K);
std::vector<int> StrideBs(Ms.size(), K);
std::vector<int> StrideCs(Ms.size(), N);
// M % MPerBlock
EXPECT_FALSE(DefaultGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
Ms = std::vector<int>{128, 256, 256, 512};
Ns = std::vector<int>{256, 177, 128, 512};
// N % NPerBlock
EXPECT_FALSE(DefaultGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
}
TEST_F(TestGGemmSplitKInterface_KMKNNM, VectorLoadWidth)
{
static constexpr auto GemmMNKPadding =
ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using PaddedGGemmInstance = GGemmInstance<GemmMNKPadding, 32, 8, 2, 8, 4>;
std::vector<int> Ms{128, 256, 256, 512};
constexpr int N = 256;
constexpr int K = 512;
std::vector<int> Ns(Ms.size(), N);
std::vector<int> Ks(Ms.size(), K);
std::vector<int> StrideAs(Ms.size(), K);
std::vector<int> StrideBs(Ms.size(), K);
std::vector<int> StrideCs(Ms.size(), N);
// M % ABlockTransferSrcScalarPerVector
Ms = std::vector<int>{256, 177, 128, 512};
EXPECT_FALSE(PaddedGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
Ms = std::vector<int>{128, 256, 256, 512};
Ns = std::vector<int>{256, 164, 128, 512};
// N % BBlockTransferSrcScalarPerVector
EXPECT_FALSE(PaddedGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
Ns = std::vector<int>{128, 256, 256, 512};
Ms = std::vector<int>{256, 130, 128, 512};
// M % CBlockTransferScalarPerVector_NWaveNPerXDL
EXPECT_FALSE(PaddedGGemmInstance{}.IsSupported(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs));
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <vector>
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/data_type.hpp"
#include "gtest/gtest.h"
#include "test_grouped_gemm_util.hpp"
using F16 = ck::half_t;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using RRR_F16_F16_F16 = ck::test::TestGroupedGemm<std::tuple<Row, Row, Row, F16, F16, F16>>;
using RCR_F16_F16_F16 = ck::test::TestGroupedGemm<std::tuple<Row, Col, Row, F16, F16, F16>>;
using RRR_F16_F16_F16_LargeK = ck::test::TestGroupedGemm<std::tuple<Row, Row, Row, F16, F16, F16>>;
using RCR_F16_F16_F16_LargeK = ck::test::TestGroupedGemm<std::tuple<Row, Col, Row, F16, F16, F16>>;
const std::vector<int> KBATCH{1, 2, 3, 5, 8};
INSTANTIATE_TEST_SUITE_P(TestGroupedGemm_splitk_MK_KN, RRR_F16_F16_F16, testing::ValuesIn(KBATCH));
INSTANTIATE_TEST_SUITE_P(TestGroupedGemm_splitk_MK_NK, RCR_F16_F16_F16, testing::ValuesIn(KBATCH));
INSTANTIATE_TEST_SUITE_P(TestGroupedGemm_splitk_LargeK_MK_KN,
RRR_F16_F16_F16_LargeK,
testing::Values(32, 64));
INSTANTIATE_TEST_SUITE_P(TestGroupedGemm_splitk_LargeK_MK_NK,
RCR_F16_F16_F16_LargeK,
testing::Values(32, 64));
#include "test_grouped_gemm_ut_cases.inc"
#pragma once
TEST_P(RRR_F16_F16_F16, TinyCases)
{
const std::vector<int> Ms{0, 1};
constexpr int N = 768;
constexpr int K = 544;
const std::vector<int> Ns(Ms.size(), N);
const std::vector<int> Ks(Ms.size(), K);
const std::vector<int> StrideAs(Ms.size(), K);
const std::vector<int> StrideBs(Ms.size(), N);
const std::vector<int> StrideCs(Ms.size(), N);
this->Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, this->GetParam());
}
TEST_P(RRR_F16_F16_F16, SmallCases)
{
const std::vector<int> Ms{2, 1, 3, 4, 5, 0};
constexpr int N = 768;
constexpr int K = 544;
const std::vector<int> Ns(Ms.size(), N);
const std::vector<int> Ks(Ms.size(), K);
const std::vector<int> StrideAs(Ms.size(), K);
const std::vector<int> StrideBs(Ms.size(), N);
const std::vector<int> StrideCs(Ms.size(), N);
this->Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, this->GetParam());
}
TEST_P(RRR_F16_F16_F16, MidCases)
{
const std::vector<int> Ms{167, 183, 177, 153, 139, 204};
constexpr int N = 768;
constexpr int K = 544;
const std::vector<int> Ns(Ms.size(), N);
const std::vector<int> Ks(Ms.size(), K);
const std::vector<int> StrideAs(Ms.size(), K);
const std::vector<int> StrideBs(Ms.size(), N);
const std::vector<int> StrideCs(Ms.size(), N);
this->Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, this->GetParam());
}
TEST_P(RRR_F16_F16_F16, Regular)
{
const std::vector<int> Ms{64, 128, 256};
constexpr int N = 768;
constexpr int K = 320;
const std::vector<int> Ns(Ms.size(), N);
const std::vector<int> Ks(Ms.size(), K);
const std::vector<int> StrideAs(Ms.size(), K);
const std::vector<int> StrideBs(Ms.size(), N);
const std::vector<int> StrideCs(Ms.size(), N);
this->Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, this->GetParam());
}
TEST_P(RRR_F16_F16_F16, MNKPadded)
{
const std::vector<int> Ms{127, 150, 188, 210};
constexpr int N = 136;
constexpr int K = 280;
const std::vector<int> Ns(Ms.size(), N);
const std::vector<int> Ks(Ms.size(), K);
const std::vector<int> StrideAs(Ms.size(), K);
const std::vector<int> StrideBs(Ms.size(), N);
const std::vector<int> StrideCs(Ms.size(), N);
this->Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, this->GetParam());
}
TEST_P(RCR_F16_F16_F16, TinyCases)
{
const std::vector<int> Ms{0, 1};
constexpr int N = 768;
constexpr int K = 544;
const std::vector<int> Ns(Ms.size(), N);
const std::vector<int> Ks(Ms.size(), K);
const std::vector<int> StrideAs(Ms.size(), K);
const std::vector<int> StrideBs(Ms.size(), K);
const std::vector<int> StrideCs(Ms.size(), N);
this->Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, this->GetParam());
}
TEST_P(RCR_F16_F16_F16, SmallCases)
{
const std::vector<int> Ms{2, 1, 3, 4, 5, 0};
constexpr int N = 768;
constexpr int K = 544;
const std::vector<int> Ns(Ms.size(), N);
const std::vector<int> Ks(Ms.size(), K);
const std::vector<int> StrideAs(Ms.size(), K);
const std::vector<int> StrideBs(Ms.size(), K);
const std::vector<int> StrideCs(Ms.size(), N);
this->Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, this->GetParam());
}
TEST_P(RCR_F16_F16_F16, MidCases)
{
const std::vector<int> Ms{167, 183, 177, 153, 139, 204};
constexpr int N = 768;
constexpr int K = 544;
const std::vector<int> Ns(Ms.size(), N);
const std::vector<int> Ks(Ms.size(), K);
const std::vector<int> StrideAs(Ms.size(), K);
const std::vector<int> StrideBs(Ms.size(), K);
const std::vector<int> StrideCs(Ms.size(), N);
this->Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, this->GetParam());
}
TEST_P(RCR_F16_F16_F16, Regular)
{
const std::vector<int> Ms{32, 64, 128, 256};
constexpr int N = 768;
constexpr int K = 320;
const std::vector<int> Ns(Ms.size(), N);
const std::vector<int> Ks(Ms.size(), K);
const std::vector<int> StrideAs(Ms.size(), K);
const std::vector<int> StrideBs(Ms.size(), K);
const std::vector<int> StrideCs(Ms.size(), N);
this->Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, this->GetParam());
}
TEST_P(RCR_F16_F16_F16, MNKPadded)
{
const std::vector<int> Ms{127, 150, 188, 210};
constexpr int N = 136;
constexpr int K = 280;
const std::vector<int> Ns(Ms.size(), N);
const std::vector<int> Ks(Ms.size(), K);
const std::vector<int> StrideAs(Ms.size(), K);
const std::vector<int> StrideBs(Ms.size(), K);
const std::vector<int> StrideCs(Ms.size(), N);
this->Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, this->GetParam());
}
TEST_P(RRR_F16_F16_F16_LargeK, TestLargeKBatch)
{
const std::vector<int> Ms{188, 210};
constexpr int N = 768;
constexpr int K = 4096;
const std::vector<int> Ns(Ms.size(), N);
const std::vector<int> Ks(Ms.size(), K);
const std::vector<int> StrideAs(Ms.size(), K);
const std::vector<int> StrideBs(Ms.size(), N);
const std::vector<int> StrideCs(Ms.size(), N);
this->Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, this->GetParam());
}
TEST_P(RCR_F16_F16_F16_LargeK, TestLargeKBatch)
{
const std::vector<int> Ms{188, 210};
constexpr int N = 768;
constexpr int K = 4096;
const std::vector<int> Ns(Ms.size(), N);
const std::vector<int> Ks(Ms.size(), K);
const std::vector<int> StrideAs(Ms.size(), K);
const std::vector<int> StrideBs(Ms.size(), K);
const std::vector<int> StrideCs(Ms.size(), N);
this->Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, this->GetParam());
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <string>
#include <sstream>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "ck/ck.hpp"
#include "ck/stream_config.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/number.hpp"
#include "profiler/profile_grouped_gemm_impl.hpp"
namespace ck {
namespace test {
template <typename Range>
std::string serialize_range(const Range& range)
{
std::stringstream ss;
for(auto& r : range)
{
ss << r << ", ";
}
std::string str = ss.str();
return std::string(str.begin(), str.end() - 2);
}
template <typename Tuple>
class TestGroupedGemm : public testing::TestWithParam<int>
{
protected:
using ALayout = std::tuple_element_t<0, Tuple>;
using BLayout = std::tuple_element_t<1, Tuple>;
using ELayout = std::tuple_element_t<2, Tuple>;
using ADataType = std::tuple_element_t<3, Tuple>;
using BDataType = std::tuple_element_t<4, Tuple>;
using EDataType = std::tuple_element_t<5, Tuple>;
public:
static constexpr bool verify_ = true;
static constexpr int init_method_ = 1; // decimal value initialization
static constexpr bool log_ = false;
static constexpr bool bench_ = false; // measure kernel performance
void SetUp() override {}
void Run(const std::vector<int>& Ms,
const std::vector<int>& Ns,
const std::vector<int>& Ks,
const std::vector<int>& StrideAs,
const std::vector<int>& StrideBs,
const std::vector<int>& StrideCs,
int kbatch = 1)
{
bool pass = ck::profiler::profile_grouped_gemm_impl<ADataType,
BDataType,
EDataType,
float,
ALayout,
BLayout,
ELayout>(
verify_, init_method_, log_, bench_, Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, kbatch);
EXPECT_TRUE(pass);
}
};
template <typename ALayout,
typename BLayout,
typename ELayout,
tensor_operation::device::GemmSpecialization GemmSpec,
ck::index_t KPerBlock,
ck::index_t K1,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferSrcScalarPerVector,
index_t CDEBlockTransferScalarPerVector_NPerBlock>
struct DeviceGroupedGemmSplitkInstanceWrapper
{
using F16 = half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = tensor_operation::element_wise::PassThrough;
using EmptyTuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
template <ck::index_t N>
using I = ck::Number<N>;
using ABlockTransferThreadClusterArrageOrder =
std::conditional_t<std::is_same_v<ALayout, Row>, S<0, 2, 1, 3>, S<0, 1, 3, 2>>;
using ABlockTransferSrcAccessOrder =
std::conditional_t<std::is_same_v<ALayout, Row>, S<0, 2, 1, 3>, S<0, 1, 3, 2>>;
using ABlockTransferSrcVectorDim = std::conditional_t<std::is_same_v<ALayout, Row>, I<3>, I<2>>;
using ABlockTransferDstScalarPerVector_K1 =
std::conditional_t<std::is_same_v<ALayout, Row>, I<8>, I<2>>;
using ABlockLdsAddExtraM = std::conditional_t<std::is_same_v<ALayout, Row>, I<1>, I<0>>;
using BBlockTransferThreadClusterArrageOrder =
std::conditional_t<std::is_same_v<BLayout, Row>, S<0, 1, 3, 2>, S<0, 2, 1, 3>>;
using BBlockTransferSrcAccessOrder =
std::conditional_t<std::is_same_v<BLayout, Row>, S<0, 1, 3, 2>, S<0, 2, 1, 3>>;
using BBlockTransferSrcVectorDim = std::conditional_t<std::is_same_v<BLayout, Row>, I<2>, I<3>>;
using BBlockTransferDstScalarPerVector_K1 =
std::conditional_t<std::is_same_v<ALayout, Row>, I<2>, I<8>>;
using BBlockLdsAddExtraM = std::conditional_t<std::is_same_v<ALayout, Row>, I<0>, I<1>>;
using DeviceGroupedGemmSplitKInstance =
tensor_operation::device::DeviceGroupedGemmXdlSplitKCShuffle<
ALayout,
BLayout,
EmptyTuple,
ELayout,
F16,
F16,
F32,
F16,
EmptyTuple,
F16,
PassThrough,
PassThrough,
PassThrough,
GemmSpec,
1,
128,
128,
128,
KPerBlock,
K1,
K1,
32,
32,
4,
2,
S<1, 4, 32, 1>,
ABlockTransferThreadClusterArrageOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim::value,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1::value,
ABlockLdsAddExtraM::value,
S<1, 4, 32, 1>,
BBlockTransferThreadClusterArrageOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim::value,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1::value,
BBlockLdsAddExtraM::value,
1,
1,
S<1, 16, 1, 8>,
CDEBlockTransferScalarPerVector_NPerBlock>;
bool IsSupported(const std::vector<int>& Ms,
const std::vector<int>& Ns,
const std::vector<int>& Ks,
const std::vector<int>& StrideAs,
const std::vector<int>& StrideBs,
const std::vector<int>& StrideCs,
int kbatch = 1) const
{
std::size_t n_groups = Ms.size();
EXPECT_TRUE(Ns.size() == n_groups && Ks.size() == n_groups && StrideAs.size() == n_groups &&
StrideBs.size() == n_groups && StrideCs.size() == n_groups)
<< "The number of groups is not consistent!";
std::vector<tensor_operation::device::GemmDesc> gemm_descs;
for(std::size_t i = 0; i < n_groups; ++i)
{
gemm_descs.push_back(tensor_operation::device::GemmDesc{
Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i], {}});
}
std::vector<const void*> p_As(n_groups, nullptr);
std::vector<const void*> p_Bs(n_groups, nullptr);
std::vector<void*> p_Cs(n_groups, nullptr);
auto p_Ds = std::vector<std::array<const void*, 0>>{};
auto ggemm_instance = DeviceGroupedGemmSplitKInstance{};
auto argument = ggemm_instance.MakeArgument(
p_As, p_Bs, p_Ds, p_Cs, gemm_descs, PassThrough{}, PassThrough{}, PassThrough{});
if(kbatch > 1)
{
ggemm_instance.SetKBatchSize(argument, kbatch);
}
return ggemm_instance.IsSupportedArgument(argument);
}
float Run(const std::vector<int>& Ms,
const std::vector<int>& Ns,
const std::vector<int>& Ks,
const std::vector<int>& StrideAs,
const std::vector<int>& StrideBs,
const std::vector<int>& StrideCs,
int kbatch = 1) const
{
std::size_t n_groups = Ms.size();
EXPECT_TRUE(Ns.size() == n_groups && Ks.size() == n_groups && StrideAs.size() == n_groups &&
StrideBs.size() == n_groups && StrideCs.size() == n_groups)
<< "The number of groups is not consistent!";
std::vector<tensor_operation::device::GemmDesc> gemm_descs;
for(std::size_t i = 0; i < n_groups; ++i)
{
gemm_descs.push_back(tensor_operation::device::GemmDesc{
Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i], {}});
}
std::vector<const void*> p_As(n_groups, nullptr);
std::vector<const void*> p_Bs(n_groups, nullptr);
std::vector<void*> p_Cs(n_groups, nullptr);
auto p_Ds = std::vector<std::array<const void*, 0>>{};
auto ggemm_instance = DeviceGroupedGemmSplitKInstance{};
auto argument = ggemm_instance.MakeArgument(
p_As, p_Bs, p_Ds, p_Cs, gemm_descs, PassThrough{}, PassThrough{}, PassThrough{});
if(kbatch > 1)
{
ggemm_instance.SetKBatchSize(argument, kbatch);
}
EXPECT_TRUE(ggemm_instance.IsSupportedArgument(argument));
auto invoker = ggemm_instance.MakeInvoker();
DeviceMem gemm_desc_workspace(ggemm_instance.GetWorkSpaceSize(&argument));
ggemm_instance.SetWorkSpacePointer(&argument, gemm_desc_workspace.GetDeviceBuffer());
return invoker.Run(argument, StreamConfig{nullptr, false});
}
};
} // namespace test
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment