Commit 63824d30 authored by Rosty Geyyer's avatar Rosty Geyyer
Browse files

Add DeviceOp and examples

parent 8ee36118
add_example_executable(example_convnd_bwd_weight_xdl_fp16 convnd_bwd_weight_xdl_fp16.cpp) add_example_executable(example_convnd_bwd_weight_xdl_fp16 convnd_bwd_weight_xdl_fp16.cpp)
add_example_executable(example_convnd_bwd_weight_xdl_bf16 convnd_bwd_weight_xdl_bf16.cpp) add_example_executable(example_convnd_bwd_weight_xdl_bf16 convnd_bwd_weight_xdl_bf16.cpp)
add_example_executable(example_convnd_bwd_weight_dl_fp16 convnd_bwd_weight_dl_fp16.cpp)
add_example_executable(example_convnd_bwd_weight_dl_bf16 convnd_bwd_weight_dl_bf16.cpp)
target_link_libraries(example_convnd_bwd_weight_xdl_fp16 PRIVATE utility) target_link_libraries(example_convnd_bwd_weight_xdl_fp16 PRIVATE utility)
target_link_libraries(example_convnd_bwd_weight_xdl_bf16 PRIVATE utility) target_link_libraries(example_convnd_bwd_weight_xdl_bf16 PRIVATE utility)
target_link_libraries(example_convnd_bwd_weight_dl_fp16 PRIVATE utility)
target_link_libraries(example_convnd_bwd_weight_dl_bf16 PRIVATE utility)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_bwd_weight_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_convnd_bwd_weight_nwc_kxc_nwk_dl.hpp"
using InDataType = ck::bhalf_t;
using WeiDataType = ck::bhalf_t;
using OutDataType = ck::bhalf_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
template <ck::index_t NDimSpatial>
using DeviceConvndBwdWeightInstance =
ck::tensor_operation::device::DeviceConvNdBwdWeightNwcKxcNwk_Dl<
NDimSpatial, InDataType, WeiDataType, OutDataType, AccDataType, InElementOp, WeiElementOp, OutElementOp, ConvBwdWeightDefault, 256, 128, 128, 16, 2, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<1, 1, 8, 2>, S<16, 1, 16, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 8, 1>, S<0, 3, 1, 2>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>;
int main(int argc, char* argv[])
{
namespace ctc = ck::tensor_layout::convolution;
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::utils::conv::ConvParam conv_param{
2, 1, 32, 256, 1024, {3, 3}, {14, 14}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
ck::index_t split_k = 1;
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(num_dim_spatial, 5, argv);
}
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
if(conv_param.num_dim_spatial_ == 1)
{
using InLayout = ctc::GNWC;
using WeiLayout = ctc::GKXC;
using OutLayout = ctc::GNWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_conv_bwd_weight<1,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvndBwdWeightInstance<1>>(do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
else if(conv_param.num_dim_spatial_ == 2)
{
using InLayout = ctc::GNHWC;
using WeiLayout = ctc::GKYXC;
using OutLayout = ctc::GNHWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_conv_bwd_weight<2,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvndBwdWeightInstance<2>>(do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
else if(conv_param.num_dim_spatial_ == 3)
{
using InLayout = ctc::GNDHWC;
using WeiLayout = ctc::GKZYXC;
using OutLayout = ctc::GNDHWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_conv_bwd_weight<3,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvndBwdWeightInstance<3>>(do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_bwd_weight_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_convnd_bwd_weight_nwc_kxc_nwk_dl.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
template <ck::index_t NDimSpatial>
using DeviceConvndBwdWeightInstance =
ck::tensor_operation::device::DeviceConvNdBwdWeightNwcKxcNwk_Dl<
NDimSpatial, InDataType, WeiDataType, OutDataType, AccDataType, InElementOp, WeiElementOp, OutElementOp, ConvBwdWeightDefault, 256, 128, 128, 16, 2, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<1, 1, 8, 2>, S<16, 1, 16, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 8, 1>, S<0, 3, 1, 2>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>;
int main(int argc, char* argv[])
{
namespace ctc = ck::tensor_layout::convolution;
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::utils::conv::ConvParam conv_param{
2, 1, 32, 256, 1024, {3, 3}, {14, 14}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
ck::index_t split_k = 1;
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(num_dim_spatial, 5, argv);
}
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
if(conv_param.num_dim_spatial_ == 1)
{
using InLayout = ctc::GNWC;
using WeiLayout = ctc::GKXC;
using OutLayout = ctc::GNWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_conv_bwd_weight<1,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvndBwdWeightInstance<1>>(do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
else if(conv_param.num_dim_spatial_ == 2)
{
using InLayout = ctc::GNHWC;
using WeiLayout = ctc::GKYXC;
using OutLayout = ctc::GNHWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_conv_bwd_weight<2,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvndBwdWeightInstance<2>>(do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
else if(conv_param.num_dim_spatial_ == 3)
{
using InLayout = ctc::GNDHWC;
using WeiLayout = ctc::GKZYXC;
using OutLayout = ctc::GNDHWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_conv_bwd_weight<3,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvndBwdWeightInstance<3>>(do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ConvolutionBackwardWeightSpecialization ConvBackwardWeightSpecialization,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
index_t M1PerThread,
index_t N1PerThread,
index_t KPerThread,
typename M1N1ThreadClusterM1Xs,
typename M1N1ThreadClusterN1Xs,
typename ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
typename ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
typename ABlockTransferSrcVectorTensorContiguousDimOrder,
typename ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
typename BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
typename BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
typename BBlockTransferSrcVectorTensorContiguousDimOrder,
typename BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector>
struct DeviceConvNdBwdWeightNwcKxcNwk_Dl
: public DeviceConvBwdWeight<
NDimSpatial,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::NDHWC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::KZYXC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::NWK,
ck::tensor_layout::convolution::NHWK,
ck::tensor_layout::convolution::NDHWK>>,
InDataType,
WeiDataType,
OutDataType,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation>
{
using DeviceOp = DeviceConvNdBwdWeightNwcKxcNwk_Dl;
using ADataType = OutDataType;
using BDataType = InDataType;
using CDataType = WeiDataType;
using AElementwiseOperation = OutElementwiseOperation;
using BElementwiseOperation = InElementwiseOperation;
using CElementwiseOperation = WeiElementwiseOperation;
// TODO make A/B datatype different
using ABDataType = InDataType;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto K1Number = Number<K1>{};
static constexpr auto GemmK1Number = K1Number;
// Bytes per 32 lds bank: 32 * 4 bytes
static constexpr auto BankLength = 128;
static constexpr auto ElePerBank = BankLength / sizeof(ADataType);
// M1 & M0
static constexpr auto ABlockLdsM1PerBlock = ElePerBank / K1;
static constexpr auto ABlockLdsM0PerBlock = MPerBlock / ABlockLdsM1PerBlock;
static constexpr auto ABlockLdsM1Padding = 4;
// N1 & N0
static constexpr auto BBlockLdsN1PerBlock = ElePerBank / K1;
static constexpr auto BBlockLdsN0PerBlock = NPerBlock / BBlockLdsN1PerBlock;
static constexpr auto BBlockLdsN1Padding = 4;
template <ck::index_t NDim, typename ck::enable_if<NDim == 1, bool>::type = false>
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
std::vector<ck::index_t> tildes)
{
using namespace ck;
index_t i_xtilde = tildes[0];
const index_t Wi = input_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[0];
const index_t X = filter_spatial_lengths[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
const index_t ConvStrideW = conv_filter_strides[0];
const index_t ConvDilationW = conv_filter_dilations[0];
const auto K0 = K / K1;
const auto in_n_wi_c_grid_desc = make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C));
if constexpr(ConvBackwardWeightSpecialization ==
ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(N * Wo, K)),
make_tuple(make_pass_through_transform(N * Wo),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}));
// B: weight tensor
const auto wei_gemmk0_gemmn_gemmk1_grid_desc =
transform_tensor_descriptor(make_naive_tensor_descriptor_packed(make_tuple(K, C)),
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// C: input tensor
const auto in_n_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(I1, Wo), make_tuple(I1, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_x_wo_c_grid_desc,
make_tuple(make_freeze_transform(I0),
make_merge_transform(make_tuple(N, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}, Sequence<3>{}),
make_tuple(Sequence<>{}, Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
else
{
const auto out_n_wo_k_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Wo, K));
const auto wei_k_x_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, X, C));
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const auto XDot = math::integer_divide_ceil(X, XTilde);
const auto WTilde =
Wo + math::integer_divide_ceil(ConvDilationW * (X - I1), ConvStrideW);
// only work on HTilde and WTilde that contribute to non-padding area of input tensor
const auto IWTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadW - ConvDilationW * (XTilde - I1)), ConvStrideW);
const auto IWTildeSliceEnd = math::min(
WTilde, math::integer_divide_ceil(InLeftPadW + Wi - I1, ConvStrideW) + I1);
const auto WTildeSlice = IWTildeSliceEnd - IWTildeSliceBegin;
// GemmK is different for each GEMM
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
// A: output tensor
const auto out_n_wop_k_grid_desc = transform_tensor_descriptor(
out_n_wo_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wo, I0, I0),
make_pass_through_transform(K)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto out_n_xdot_wtilde_k_grid_desc = transform_tensor_descriptor(
out_n_wop_k_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(XDot, WTilde),
make_tuple(-ConvDilationW / GcdStrideDilationW, I1)),
make_pass_through_transform(K)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto out_n_xdotslice_wtildeslice_k0_k1_grid_desc = transform_tensor_descriptor(
out_n_xdot_wtilde_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_slice_transform(XDot, I0, XDotSlice),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3, 4>{}));
const auto out_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_n_xdotslice_wtildeslice_k0_k1_grid_desc,
make_tuple(make_merge_transform(make_tuple(XDotSlice, K0)),
make_merge_transform(make_tuple(N, WTildeSlice)),
make_pass_through_transform(K1)),
make_tuple(Sequence<1, 3>{}, Sequence<0, 2>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// B weight tensor
const auto wei_k_xdot_xtilde_c_grid_desc = transform_tensor_descriptor(
wei_k_x_c_grid_desc,
make_tuple(make_pass_through_transform(K),
make_embed_transform(make_tuple(XDot, XTilde),
make_tuple(ConvStrideW / GcdStrideDilationW, I1)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto wei_k0_k1_xdotslice_c_grid_desc = transform_tensor_descriptor(
wei_k_xdot_xtilde_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_slice_transform(XDot, I0, XDotSlice),
make_freeze_transform(i_xtilde),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2>{}, Sequence<>{}, Sequence<3>{}));
const auto wei_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
wei_k0_k1_xdotslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(XDotSlice, K0)),
make_pass_through_transform(C),
make_pass_through_transform(K1)),
make_tuple(Sequence<2, 0>{}, Sequence<3>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// C: input tensor
const auto in_n_wip_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_n_xtilde_wtilde_c_grid_desc = transform_tensor_descriptor(
in_n_wip_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(XTilde, WTilde),
make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto in_n_wtildeslice_c_grid_desc = transform_tensor_descriptor(
in_n_xtilde_wtilde_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_freeze_transform(i_xtilde),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_wtildeslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, WTildeSlice)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
} // function end
template <ck::index_t NDim, typename ck::enable_if<NDim == 2, bool>::type = false>
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
std::vector<ck::index_t> tildes)
{
using namespace ck;
index_t i_ytilde = tildes[0];
index_t i_xtilde = tildes[1];
const index_t Hi = input_spatial_lengths[0];
const index_t Wi = input_spatial_lengths[1];
const index_t Ho = output_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[1];
const index_t Y = filter_spatial_lengths[0];
const index_t X = filter_spatial_lengths[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const auto K0 = K / K1;
const auto out_n_ho_wo_k_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Ho, Wo, K));
const auto wei_k_y_x_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Y, X, C));
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
if constexpr(ConvBackwardWeightSpecialization ==
ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K)),
make_tuple(make_pass_through_transform(N * Ho * Wo),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}));
// B: weight tensor
const auto wei_gemmk0_gemmn_gemmk1_grid_desc =
transform_tensor_descriptor(make_naive_tensor_descriptor_packed(make_tuple(K, C)),
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// C: input tensor
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(I1, Ho), make_tuple(I1, ConvStrideH)),
make_embed_transform(make_tuple(I1, Wo), make_tuple(I1, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_freeze_transform(I0),
make_freeze_transform(I0),
make_merge_transform(make_tuple(N, Ho, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<1>{}, Sequence<3>{}, Sequence<0, 2, 4>{}, Sequence<5>{}),
make_tuple(Sequence<>{}, Sequence<>{}, Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
else
{
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto YTilde = ConvStrideH / GcdStrideDilationH;
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const auto YDot = math::integer_divide_ceil(Y, YTilde);
const auto XDot = math::integer_divide_ceil(X, XTilde);
const auto HTilde =
Ho + math::integer_divide_ceil(ConvDilationH * (Y - I1), ConvStrideH);
const auto WTilde =
Wo + math::integer_divide_ceil(ConvDilationW * (X - I1), ConvStrideW);
// only work on HTilde and WTilde that contribute to non-padding area of input tensor
const auto IHTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadH - ConvDilationH * (YTilde - I1)), ConvStrideH);
const auto IWTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadW - ConvDilationW * (XTilde - I1)), ConvStrideW);
const auto IHTildeSliceEnd = math::min(
HTilde, math::integer_divide_ceil(InLeftPadH + Hi - I1, ConvStrideH) + I1);
const auto IWTildeSliceEnd = math::min(
WTilde, math::integer_divide_ceil(InLeftPadW + Wi - I1, ConvStrideW) + I1);
const auto HTildeSlice = IHTildeSliceEnd - IHTildeSliceBegin;
const auto WTildeSlice = IWTildeSliceEnd - IWTildeSliceBegin;
// GemmK is different for each GEMM
const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilde, YTilde);
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
// A: output tensor
const auto out_n_hop_wop_k_grid_desc = transform_tensor_descriptor(
out_n_ho_wo_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Ho, I0, I0),
make_pad_transform(Wo, I0, I0),
make_pass_through_transform(K)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto out_n_ydot_htilde_xdot_wtilde_k_grid_desc = transform_tensor_descriptor(
out_n_hop_wop_k_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(YDot, HTilde),
make_tuple(-ConvDilationH / GcdStrideDilationH, I1)),
make_embed_transform(make_tuple(XDot, WTilde),
make_tuple(-ConvDilationW / GcdStrideDilationW, I1)),
make_pass_through_transform(K)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc =
transform_tensor_descriptor(
out_n_ydot_htilde_xdot_wtilde_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(HTilde, IHTildeSliceBegin, HTildeSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5, 6>{}));
const auto out_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc,
make_tuple(make_merge_transform(make_tuple(YDotSlice, XDotSlice, K0)),
make_merge_transform(make_tuple(N, HTildeSlice, WTildeSlice)),
make_pass_through_transform(K1)),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}, Sequence<6>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// B weight tensor
const auto wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc = transform_tensor_descriptor(
wei_k_y_x_c_grid_desc,
make_tuple(make_pass_through_transform(K),
make_embed_transform(make_tuple(YDot, YTilde),
make_tuple(ConvStrideH / GcdStrideDilationH, I1)),
make_embed_transform(make_tuple(XDot, XTilde),
make_tuple(ConvStrideW / GcdStrideDilationW, I1)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto wei_k0_k1_ydotslice_xdotslice_c_grid_desc =
transform_tensor_descriptor(wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_freeze_transform(i_ytilde),
make_freeze_transform(i_xtilde),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<3>{},
Sequence<2>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<0, 1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<>{},
Sequence<>{},
Sequence<4>{}));
const auto wei_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
wei_k0_k1_ydotslice_xdotslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(YDotSlice, XDotSlice, K0)),
make_pass_through_transform(C),
make_pass_through_transform(K1)),
make_tuple(Sequence<2, 3, 0>{}, Sequence<4>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// C: input tensor
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(YTilde, HTilde),
make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(XTilde, WTilde),
make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_n_htildeslice_wtildeslice_c_grid_desc = transform_tensor_descriptor(
in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_freeze_transform(i_ytilde),
make_slice_transform(HTilde, IHTildeSliceBegin, HTildeSlice),
make_freeze_transform(i_xtilde),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<0>{},
Sequence<>{},
Sequence<1>{},
Sequence<>{},
Sequence<2>{},
Sequence<3>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_htildeslice_wtildeslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, HTildeSlice, WTildeSlice)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
} // function end
template <ck::index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
std::vector<ck::index_t> tildes)
{
using namespace ck;
const index_t i_ztilde = tildes[0];
const index_t i_ytilde = tildes[1];
const index_t i_xtilde = tildes[2];
const index_t Di = input_spatial_lengths[0];
const index_t Hi = input_spatial_lengths[1];
const index_t Wi = input_spatial_lengths[2];
const index_t Do = output_spatial_lengths[0];
const index_t Ho = output_spatial_lengths[1];
const index_t Wo = output_spatial_lengths[2];
const index_t Z = filter_spatial_lengths[0];
const index_t Y = filter_spatial_lengths[1];
const index_t X = filter_spatial_lengths[2];
const index_t InLeftPadD = input_left_pads[0];
const index_t InLeftPadH = input_left_pads[1];
const index_t InLeftPadW = input_left_pads[2];
const index_t InRightPadD = input_right_pads[0];
const index_t InRightPadH = input_right_pads[1];
const index_t InRightPadW = input_right_pads[2];
const index_t ConvStrideD = conv_filter_strides[0];
const index_t ConvStrideH = conv_filter_strides[1];
const index_t ConvStrideW = conv_filter_strides[2];
const index_t ConvDilationD = conv_filter_dilations[0];
const index_t ConvDilationH = conv_filter_dilations[1];
const index_t ConvDilationW = conv_filter_dilations[2];
const auto K0 = K / K1;
const auto out_n_do_ho_wo_k_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Do, Ho, Wo, K));
const auto wei_k_z_y_x_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Z, Y, X, C));
const auto in_n_di_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Di, Hi, Wi, C));
if constexpr(ConvBackwardWeightSpecialization ==
ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(N * Do * Ho * Wo, K)),
make_tuple(make_pass_through_transform(N * Do * Ho * Wo),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}));
// B: weight tensor
const auto wei_gemmk0_gemmn_gemmk1_grid_desc =
transform_tensor_descriptor(make_naive_tensor_descriptor_packed(make_tuple(K, C)),
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// C: input tensor
const auto in_n_z_do_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(I1, Do), make_tuple(I1, ConvStrideD)),
make_embed_transform(make_tuple(I1, Ho), make_tuple(I1, ConvStrideH)),
make_embed_transform(make_tuple(I1, Wo), make_tuple(I1, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_z_do_y_ho_x_wo_c_grid_desc,
make_tuple(make_freeze_transform(I0),
make_freeze_transform(I0),
make_freeze_transform(I0),
make_merge_transform(make_tuple(N, Do, Ho, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<1>{},
Sequence<3>{},
Sequence<5>{},
Sequence<0, 2, 4, 6>{},
Sequence<7>{}),
make_tuple(Sequence<>{}, Sequence<>{}, Sequence<>{}, Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
else
{
const auto GcdStrideDilationD = math::gcd(ConvStrideD, ConvDilationD);
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto ZTilde = ConvStrideD / GcdStrideDilationD;
const auto YTilde = ConvStrideH / GcdStrideDilationH;
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const auto ZDot = math::integer_divide_ceil(Z, ZTilde);
const auto YDot = math::integer_divide_ceil(Y, YTilde);
const auto XDot = math::integer_divide_ceil(X, XTilde);
const auto DTilde =
Do + math::integer_divide_ceil(ConvDilationD * (Z - I1), ConvStrideD);
const auto HTilde =
Ho + math::integer_divide_ceil(ConvDilationH * (Y - I1), ConvStrideH);
const auto WTilde =
Wo + math::integer_divide_ceil(ConvDilationW * (X - I1), ConvStrideW);
// only work on HTilde and WTilde that contribute to non-padding area of input tensor
const auto IDTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadD - ConvDilationD * (ZTilde - I1)), ConvStrideD);
const auto IHTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadH - ConvDilationH * (YTilde - I1)), ConvStrideH);
const auto IWTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadW - ConvDilationW * (XTilde - I1)), ConvStrideW);
const auto IDTildeSliceEnd = math::min(
DTilde, math::integer_divide_ceil(InLeftPadD + Di - I1, ConvStrideD) + I1);
const auto IHTildeSliceEnd = math::min(
HTilde, math::integer_divide_ceil(InLeftPadH + Hi - I1, ConvStrideH) + I1);
const auto IWTildeSliceEnd = math::min(
WTilde, math::integer_divide_ceil(InLeftPadW + Wi - I1, ConvStrideW) + I1);
const auto DTildeSlice = IDTildeSliceEnd - IDTildeSliceBegin;
const auto HTildeSlice = IHTildeSliceEnd - IHTildeSliceBegin;
const auto WTildeSlice = IWTildeSliceEnd - IWTildeSliceBegin;
// GemmK is different for each GEMM
const auto ZDotSlice = math::integer_divide_ceil(Z - i_ztilde, ZTilde);
const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilde, YTilde);
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
// A: output tensor
const auto out_n_dop_hop_wop_k_grid_desc = transform_tensor_descriptor(
out_n_do_ho_wo_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Do, I0, I0),
make_pad_transform(Ho, I0, I0),
make_pad_transform(Wo, I0, I0),
make_pass_through_transform(K)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto out_n_zdot_dtilde_ydot_htilde_xdot_wtilde_k_grid_desc =
transform_tensor_descriptor(
out_n_dop_hop_wop_k_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(ZDot, DTilde),
make_tuple(-ConvDilationD / GcdStrideDilationD, I1)),
make_embed_transform(make_tuple(YDot, HTilde),
make_tuple(-ConvDilationH / GcdStrideDilationH, I1)),
make_embed_transform(make_tuple(XDot, WTilde),
make_tuple(-ConvDilationW / GcdStrideDilationW, I1)),
make_pass_through_transform(K)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto
out_n_zdotslice_dtildeslice_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc =
transform_tensor_descriptor(
out_n_zdot_dtilde_ydot_htilde_xdot_wtilde_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_slice_transform(ZDot, I0, ZDotSlice),
make_slice_transform(DTilde, IDTildeSliceBegin, DTildeSlice),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(HTilde, IHTildeSliceBegin, HTildeSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{},
Sequence<6>{},
Sequence<7>{}),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{},
Sequence<6>{},
Sequence<7, 8>{}));
const auto out_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_n_zdotslice_dtildeslice_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc,
make_tuple(
make_merge_transform(make_tuple(ZDotSlice, YDotSlice, XDotSlice, K0)),
make_merge_transform(make_tuple(N, DTildeSlice, HTildeSlice, WTildeSlice)),
make_pass_through_transform(K1)),
make_tuple(Sequence<1, 3, 5, 7>{}, Sequence<0, 2, 4, 6>{}, Sequence<8>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// B weight tensor
const auto wei_k_zdot_ztilde_ydot_ytilde_xdot_xtilde_c_grid_desc =
transform_tensor_descriptor(
wei_k_z_y_x_c_grid_desc,
make_tuple(
make_pass_through_transform(K),
make_embed_transform(make_tuple(ZDot, ZTilde),
make_tuple(ConvStrideD / GcdStrideDilationD, I1)),
make_embed_transform(make_tuple(YDot, YTilde),
make_tuple(ConvStrideH / GcdStrideDilationH, I1)),
make_embed_transform(make_tuple(XDot, XTilde),
make_tuple(ConvStrideW / GcdStrideDilationW, I1)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto wei_k0_k1_zdotslice_ydotslice_xdotslice_c_grid_desc =
transform_tensor_descriptor(wei_k_zdot_ztilde_ydot_ytilde_xdot_xtilde_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_slice_transform(ZDot, I0, ZDotSlice),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_freeze_transform(i_ztilde),
make_freeze_transform(i_ytilde),
make_freeze_transform(i_xtilde),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<3>{},
Sequence<5>{},
Sequence<2>{},
Sequence<4>{},
Sequence<6>{},
Sequence<7>{}),
make_tuple(Sequence<0, 1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<>{},
Sequence<>{},
Sequence<>{},
Sequence<5>{}));
const auto wei_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
wei_k0_k1_zdotslice_ydotslice_xdotslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(ZDotSlice, YDotSlice, XDotSlice, K0)),
make_pass_through_transform(C),
make_pass_through_transform(K1)),
make_tuple(Sequence<2, 3, 4, 0>{}, Sequence<5>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// C: input tensor
const auto in_n_dip_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Di, InLeftPadD, InRightPadD),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_n_ztilde_dtilde_ytilde_htilde_xtilde_wtilde_c_grid_desc =
transform_tensor_descriptor(
in_n_dip_hip_wip_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(ZTilde, DTilde),
make_tuple(ConvDilationD, ConvStrideD)),
make_embed_transform(make_tuple(YTilde, HTilde),
make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(XTilde, WTilde),
make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto in_n_dtildeslice_htildeslice_wtildeslice_c_grid_desc =
transform_tensor_descriptor(
in_n_ztilde_dtilde_ytilde_htilde_xtilde_wtilde_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_freeze_transform(i_ztilde),
make_slice_transform(DTilde, IDTildeSliceBegin, DTildeSlice),
make_freeze_transform(i_ytilde),
make_slice_transform(HTilde, IHTildeSliceBegin, HTildeSlice),
make_freeze_transform(i_xtilde),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{},
Sequence<6>{},
Sequence<7>{}),
make_tuple(Sequence<0>{},
Sequence<>{},
Sequence<1>{},
Sequence<>{},
Sequence<2>{},
Sequence<>{},
Sequence<3>{},
Sequence<4>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_dtildeslice_htildeslice_wtildeslice_c_grid_desc,
make_tuple(
make_merge_transform(make_tuple(N, DTildeSlice, HTildeSlice, WTildeSlice)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1, 2, 3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
} // function end
template <ck::index_t NDim, typename ck::enable_if<NDim == 1, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<1>(
1, 1, 1, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {0});
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 2, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<2>(
1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {0, 0});
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<3>(1,
1,
1,
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{0, 0, 0});
}
using ABCGridDescs = decltype(GetABCGridDesc<NDimSpatial>());
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
using GridwiseGemm =
GridwiseGemmDl_km_kn_mn_v1r3<BlockSize,
ADataType,
AccDataType,
CDataType,
InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
MPerBlock,
NPerBlock,
K0PerBlock,
K1,
M1PerThread,
N1PerThread,
KPerThread,
M1N1ThreadClusterM1Xs,
M1N1ThreadClusterN1Xs,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
ABlockTransferSrcVectorTensorContiguousDimOrder,
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
BBlockTransferSrcVectorTensorContiguousDimOrder,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
// Argument
using AGridDesc_K0_M0_M1_K1 =
decltype(GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(AGridDesc_K0_M_K1{}));
using BGridDesc_K0_N0_N1_K1 =
decltype(GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(BGridDesc_K0_N_K1{}));
using CGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(CGridDesc_M_N{}));
using DefaultBlock2CTileMap =
decltype(GridwiseGemm::MakeDefaultBlock2CTileMap(CGridDesc_M_N{}));
struct Argument : public BaseArgument
{
Argument(const InDataType* p_in_grid,
WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
: p_a_grid_{p_out_grid},
p_b_grid_{p_in_grid},
p_c_grid_{p_wei_grid},
a_element_op_{out_element_op},
b_element_op_{wei_element_op},
c_element_op_{in_element_op},
Conv_N_{N},
Conv_K_{K},
Conv_C_{C},
input_spatial_lengths_{input_spatial_lengths},
filter_spatial_lengths_{filter_spatial_lengths},
output_spatial_lengths_{output_spatial_lengths},
conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
CreateABCDesc<NDimSpatial>();
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 1, bool>::type = false>
void CreateABCDesc()
{
const index_t ConvStrideW = conv_filter_strides_[0];
const index_t ConvDilationW = conv_filter_dilations_[0];
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const index_t X = filter_spatial_lengths_[0];
for(index_t i_xtilde = 0; i_xtilde < XTilde; ++i_xtilde)
{
// check slice is valid
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
if(XDotSlice <= 0)
{
continue;
}
const auto descs =
DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<NDimSpatial>(
Conv_N_,
Conv_K_,
Conv_C_,
input_spatial_lengths_,
filter_spatial_lengths_,
output_spatial_lengths_,
conv_filter_strides_,
conv_filter_dilations_,
input_left_pads_,
input_right_pads_,
{i_xtilde});
a_grid_desc_k0_m_k1_container_.push_back(descs[I0]);
b_grid_desc_k0_n_k1_container_.push_back(descs[I1]);
c_grid_desc_m_n_container_.push_back(descs[I2]);
if(GridwiseGemm::CheckValidity(descs[I0], descs[I1], descs[I2]))
{
a_grid_desc_k0_m0_m1_k1_container_.push_back(
GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(descs[I0]));
b_grid_desc_k0_n0_n1_k1_container_.push_back(
GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(descs[I1]));
c_grid_desc_m0_m10_m11_n0_n10_n11_container_.push_back(
GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(descs[I2]));
block_2_ctile_map_container_.push_back(
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2]));
}
}
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 2, bool>::type = false>
void CreateABCDesc()
{
const index_t ConvStrideH = conv_filter_strides_[0];
const index_t ConvStrideW = conv_filter_strides_[1];
const index_t ConvDilationH = conv_filter_dilations_[0];
const index_t ConvDilationW = conv_filter_dilations_[1];
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto YTilde = ConvStrideH / GcdStrideDilationH;
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const index_t Y = filter_spatial_lengths_[0];
const index_t X = filter_spatial_lengths_[1];
for(index_t i_ytilde = 0; i_ytilde < YTilde; ++i_ytilde)
{
for(index_t i_xtilde = 0; i_xtilde < XTilde; ++i_xtilde)
{
// check slice is valid
const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilde, YTilde);
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
if(YDotSlice * XDotSlice <= 0)
{
continue;
}
const auto descs =
DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<NDimSpatial>(
Conv_N_,
Conv_K_,
Conv_C_,
input_spatial_lengths_,
filter_spatial_lengths_,
output_spatial_lengths_,
conv_filter_strides_,
conv_filter_dilations_,
input_left_pads_,
input_right_pads_,
{i_ytilde, i_xtilde});
a_grid_desc_k0_m_k1_container_.push_back(descs[I0]);
b_grid_desc_k0_n_k1_container_.push_back(descs[I1]);
c_grid_desc_m_n_container_.push_back(descs[I2]);
if(GridwiseGemm::CheckValidity(descs[I0], descs[I1], descs[I2]))
{
a_grid_desc_k0_m0_m1_k1_container_.push_back(
GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(descs[I0]));
b_grid_desc_k0_n0_n1_k1_container_.push_back(
GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(descs[I1]));
c_grid_desc_m0_m10_m11_n0_n10_n11_container_.push_back(
GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(descs[I2]));
block_2_ctile_map_container_.push_back(
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2]));
}
}
}
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
void CreateABCDesc()
{
const index_t ConvStrideD = conv_filter_strides_[0];
const index_t ConvStrideH = conv_filter_strides_[1];
const index_t ConvStrideW = conv_filter_strides_[2];
const index_t ConvDilationD = conv_filter_dilations_[0];
const index_t ConvDilationH = conv_filter_dilations_[1];
const index_t ConvDilationW = conv_filter_dilations_[2];
const auto GcdStrideDilationD = math::gcd(ConvStrideD, ConvDilationD);
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto ZTilde = ConvStrideD / GcdStrideDilationD;
const auto YTilde = ConvStrideH / GcdStrideDilationH;
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const index_t Z = filter_spatial_lengths_[0];
const index_t Y = filter_spatial_lengths_[1];
const index_t X = filter_spatial_lengths_[2];
for(index_t i_ztilde = 0; i_ztilde < ZTilde; ++i_ztilde)
{
for(index_t i_ytilde = 0; i_ytilde < YTilde; ++i_ytilde)
{
for(index_t i_xtilde = 0; i_xtilde < XTilde; ++i_xtilde)
{
// check slice is valid
const auto ZDotSlice = math::integer_divide_ceil(Z - i_ztilde, ZTilde);
const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilde, YTilde);
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
if(ZDotSlice * YDotSlice * XDotSlice <= 0)
{
continue;
}
const auto descs =
DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<NDimSpatial>(
Conv_N_,
Conv_K_,
Conv_C_,
input_spatial_lengths_,
filter_spatial_lengths_,
output_spatial_lengths_,
conv_filter_strides_,
conv_filter_dilations_,
input_left_pads_,
input_right_pads_,
{i_ztilde, i_ytilde, i_xtilde});
a_grid_desc_k0_m_k1_container_.push_back(descs[I0]);
b_grid_desc_k0_n_k1_container_.push_back(descs[I1]);
c_grid_desc_m_n_container_.push_back(descs[I2]);
if(GridwiseGemm::CheckValidity(descs[I0], descs[I1], descs[I2]))
{
a_grid_desc_k0_m0_m1_k1_container_.push_back(
GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(descs[I0]));
b_grid_desc_k0_n0_n1_k1_container_.push_back(
GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(descs[I1]));
c_grid_desc_m0_m10_m11_n0_n10_n11_container_.push_back(
GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(descs[I2]));
block_2_ctile_map_container_.push_back(
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2]));
}
}
}
}
}
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
std::vector<AGridDesc_K0_M_K1> a_grid_desc_k0_m_k1_container_;
std::vector<BGridDesc_K0_N_K1> b_grid_desc_k0_n_k1_container_;
std::vector<CGridDesc_M_N> c_grid_desc_m_n_container_;
std::vector<AGridDesc_K0_M0_M1_K1> a_grid_desc_k0_m0_m1_k1_container_;
std::vector<BGridDesc_K0_N0_N1_K1> b_grid_desc_k0_n0_n1_k1_container_;
std::vector<CGridDesc_M0_M10_M11_N0_N10_N11> c_grid_desc_m0_m10_m11_n0_n10_n11_container_;
std::vector<DefaultBlock2CTileMap> block_2_ctile_map_container_;
// element-wise op
OutElementwiseOperation a_element_op_;
WeiElementwiseOperation b_element_op_;
InElementwiseOperation c_element_op_;
// for checking IsSupportedArgument()
index_t Conv_N_;
index_t Conv_K_;
index_t Conv_C_;
std::vector<ck::index_t> input_spatial_lengths_;
std::vector<ck::index_t> filter_spatial_lengths_;
std::vector<ck::index_t> output_spatial_lengths_;
std::vector<ck::index_t> conv_filter_strides_;
std::vector<ck::index_t> conv_filter_dilations_;
std::vector<ck::index_t> input_left_pads_;
std::vector<ck::index_t> input_right_pads_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
float ave_time = 0;
for(size_t i = 0; i < arg.a_grid_desc_k0_m_k1_container_.size(); i++)
{
{
std::cout << "arg.a_grid_desc_k0_m_k1_container_{"
<< arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I0) << ", "
<< arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I2) << "}"
<< std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_container_{"
<< arg.b_grid_desc_k0_n_k1_container_[i].GetLength(I0) << ", "
<< arg.b_grid_desc_k0_n_k1_container_[i].GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_container_[i].GetLength(I2) << "}"
<< std::endl;
std::cout << "arg.c_grid_desc_m_n_container_{ "
<< arg.c_grid_desc_m_n_container_[i].GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_container_[i].GetLength(I1) << "}"
<< std::endl;
std::cout << "arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_( "
<< arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_[i].GetLength(I0)
<< ", "
<< arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_[i].GetLength(I1)
<< ", "
<< arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_[i].GetLength(I2)
<< ", "
<< arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_[i].GetLength(I3)
<< ", "
<< arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_[i].GetLength(I4)
<< ", "
<< arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_[i].GetLength(I5)
<< " ) " << std::endl;
}
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i],
arg.c_grid_desc_m_n_container_[i]))
{
throw std::runtime_error(
"wrong! GridwiseGemm has invalid setting");
}
const index_t grid_size = arg.block_2_ctile_map_container_[i].CalculateGridSize(
arg.c_grid_desc_m_n_container_[i]);
auto launch_kernel = [&](auto has_main_k_block_loop,
auto has_double_tail_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
constexpr bool has_double_loop = has_double_tail_k_block_loop;
const auto kernel = kernel_gemm_dl_v1r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M0_M1_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N0_N1_K1>,
remove_reference_t<DeviceOp::CGridDesc_M0_M10_M11_N0_N10_N11>,
remove_reference_t<DeviceOp::DefaultBlock2CTileMap>,
has_main_loop,
has_double_loop>;
ave_time +=
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_k0_m0_m1_k1_container_[i],
arg.b_grid_desc_k0_n0_n1_k1_container_[i],
arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_[i],
arg.block_2_ctile_map_container_[i]);
};
const auto K0 = arg.a_grid_desc_k0_m0_m1_k1_container_[i].GetLength(I0);
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K0);
const bool has_double_tail_k_block_loop =
GridwiseGemm::CalculateHasDoubleTailKBlockLoop(K0);
if(has_main_k_block_loop && has_double_tail_k_block_loop)
{
launch_kernel(integral_constant<bool, true>{}, integral_constant<bool, true>{});
}
else if(has_main_k_block_loop && !has_double_tail_k_block_loop)
{
launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, false>{});
}
else if(!has_main_k_block_loop && has_double_tail_k_block_loop)
{
launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, true>{});
}
else
{
launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, false>{});
}
}
return ave_time;
}
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
// check device
if(!(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx1030"))
{
return false;
}
if constexpr(ConvBackwardWeightSpecialization ==
ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// check if it's 1x1, stride=1 pad = 0 conv
for(int i = 0; i < NDimSpatial; i++)
{
if(!(arg.filter_spatial_lengths_[i] == 1 && arg.conv_filter_strides_[i] == 1 &&
arg.input_left_pads_[i] == 0 && arg.input_right_pads_[i] == 0))
{
return false;
}
}
}
// // vector load A/B matrix from global memory
// if(!(ABlockTransferSrcVectorDim == 2 && BBlockTransferSrcVectorDim == 2 &&
// arg.Conv_K_ % ABlockTransferSrcScalarPerVector == 0 &&
// arg.Conv_C_ % BBlockTransferSrcScalarPerVector == 0))
// {
// return false;
// }
// // vector store C matrix into global memory
// if(!(arg.Conv_C_ % CBlockTransferScalarPerVector_NWaveNPerXdl == 0))
// {
// return false;
// }
// // Gridwise GEMM size
// return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
// arg.b_grid_desc_kbatch_k0_n_k1_,
// arg.c_grid_desc_m_n_,
// arg.block_2_ctile_map_);
// matrix A
{
auto srcVectorLengths = ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1{};
if(srcVectorLengths[I1] != 1 || srcVectorLengths[I2] != 1)
{
return false;
}
if(K1 % srcVectorLengths[I3] != 0 || K0PerBlock % srcVectorLengths[I0] != 0)
{
return false;
}
const index_t K = arg.Conv_K_;
if(K % (srcVectorLengths[I0] * srcVectorLengths[I3]) != 0)
{
return false;
}
}
// matrix B
{
auto srcLoadLenghts = BBlockTransferThreadSliceLengths_K0_N0_N1_K1{};
auto srcVectorLengths = BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1{};
if(srcVectorLengths[I0] != 1 || srcVectorLengths[I3] != 1)
{
return false;
}
if(srcLoadLenghts[I1] % srcVectorLengths[I1] != 0 ||
srcLoadLenghts[I2] % srcVectorLengths[I2] != 0)
{
return false;
}
const index_t C = arg.Conv_K_;
if(C % (srcVectorLengths[I1] * srcVectorLengths[I2]) != 0)
{
return false;
}
}
// vector store C matrix into global memory
if(!(arg.Conv_C_ % CThreadTransferDstScalarPerVector == 0))
{
std::cout << "Not surpport,because: arg.Conv_C_ % CThreadTransferDstScalarPerVector = "
<< arg.Conv_C_ % CThreadTransferDstScalarPerVector << std::endl;
return false;
}
// Gridwise GEMM size
for(std::size_t i = 0; i < arg.a_grid_desc_k0_m_k1_container_.size(); i++)
{
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i],
arg.c_grid_desc_m_n_container_[i]))
{
return false;
}
}
return true;
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const InDataType* p_in_grid,
WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
ck::index_t split_k)
{
return Argument{p_in_grid,
p_wei_grid,
p_out_grid,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in_grid,
void* p_wei_grid,
const void* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
ck::index_t split_k) override
{
return std::make_unique<Argument>(static_cast<const InDataType*>(p_in_grid),
static_cast<WeiDataType*>(p_wei_grid),
static_cast<const OutDataType*>(p_out_grid),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceConvNdBwdWeightNwcKxcNwk_Dl"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< getConvBackwardWeightSpecializationString(ConvBackwardWeightSpecialization)
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment