Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
61a1c170
Commit
61a1c170
authored
Mar 10, 2021
by
root
Browse files
init for v5r1
parent
4f31669f
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
2168 additions
and
3 deletions
+2168
-3
composable_kernel/include/driver/driver_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw.hpp
...convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw.hpp
+689
-0
composable_kernel/include/tensor_operation/blockwise_gemm_v3.hpp
...ble_kernel/include/tensor_operation/blockwise_gemm_v3.hpp
+370
-0
composable_kernel/include/tensor_operation/gridwise_dynamic_gemm_v2.hpp
...nel/include/tensor_operation/gridwise_dynamic_gemm_v2.hpp
+508
-0
composable_kernel/include/tensor_operation/threadwise_gemm_v3.hpp
...le_kernel/include/tensor_operation/threadwise_gemm_v3.hpp
+184
-0
driver/include/device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw.hpp
...convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw.hpp
+399
-0
driver/src/conv_driver.cpp
driver/src/conv_driver.cpp
+18
-3
No files found.
composable_kernel/include/driver/driver_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw.hpp
0 → 100644
View file @
61a1c170
#ifndef CK_DRIVER_DYNAMIC_CONVOLUTION_FORWARD_IMPLICIT_GEMM_V5R1_NCHW_KCYX_NKHW_HPP
#define CK_DRIVER_DYNAMIC_CONVOLUTION_FORWARD_IMPLICIT_GEMM_V5R1_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp"
#include "dynamic_tensor_descriptor.hpp"
#include "dynamic_tensor_descriptor_helper.hpp"
#include "gridwise_dynamic_gemm_v2.hpp"
#include "gridwise_operation_wrapper.hpp"
namespace
ck
{
// GemmM = K
// GemmN = N * Ho * Wo
// GemmK = C * Y * X
template
<
index_t
BlockSize
,
typename
Float
,
typename
AccFloat
,
index_t
GemmMPerBlock
,
index_t
GemmNPerBlock
,
index_t
GemmKPerBlock
,
index_t
GemmMPerThread
,
index_t
GemmNPerThread
,
index_t
GemmKPerThread
,
index_t
GemmMLevel0Cluster
,
index_t
GemmNLevel0Cluster
,
index_t
GemmMLevel1Cluster
,
index_t
GemmNLevel1Cluster
,
typename
GemmABlockTransferThreadSliceLengths_GemmK_GemmM
,
typename
GemmABlockTransferThreadClusterLengths_GemmK_GemmM
,
index_t
GemmABlockTransferSrcScalarPerVector_GemmK
,
index_t
GemmABlockTransferDstScalarPerVector_GemmM
,
typename
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN
,
typename
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN
,
index_t
GemmBBlockTransferSrcScalarPerVector_GemmN
,
index_t
GemmBBlockTransferDstScalarPerVector_GemmN
,
index_t
GemmCThreadTransferDstScalarPerVector_GemmN1
>
struct
DriverDynamicConvolutionForwardImplicitGemm_v5r1_nchw_kcyx_nkhw_pad
{
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
>
__host__
void
Run
(
const
DynamicTensorDescriptor
<
Wei
...
>&
wei_k_c_y_x_global_desc
,
const
DynamicTensorDescriptor
<
In
...
>&
in_n_c_hi_wi_global_desc
,
const
DynamicTensorDescriptor
<
Out
...
>&
out_n_k_ho_wo_global_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
const
Float
*
__restrict__
p_wei_global
,
const
Float
*
__restrict__
p_in_global
,
Float
*
__restrict__
p_out_global
)
const
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
const
auto
N
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I1
);
const
auto
K
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I1
);
const
auto
Hi
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I2
);
const
auto
Wi
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I3
);
const
auto
Ho
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I2
);
const
auto
Wo
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I3
);
const
auto
Y
=
wei_k_c_y_x_global_desc
.
GetLength
(
I2
);
const
auto
X
=
wei_k_c_y_x_global_desc
.
GetLength
(
I3
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
// weight tensor
const
auto
wei_gemmk_gemmm_global_desc
=
transform_dynamic_tensor_descriptor
(
make_dynamic_naive_tensor_descriptor_packed_v2
(
make_tuple
(
K
,
C
*
Y
*
X
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
*
Y
*
X
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
// input tensor
const
auto
in_n_c_hip_wip_global_desc
=
transform_dynamic_tensor_descriptor
(
in_n_c_hi_wi_global_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_c_y_ho_x_wo_global_desc
=
transform_dynamic_tensor_descriptor
(
in_n_c_hip_wip_global_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
,
5
>
{}));
const
auto
in_gemmk_gemmn_global_desc
=
transform_dynamic_tensor_descriptor
(
in_n_c_y_ho_x_wo_global_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
C
,
Y
,
X
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
2
,
4
>
{},
Sequence
<
0
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// output tensor
const
auto
out_gemmm_gemmn_global_desc
=
transform_dynamic_tensor_descriptor
(
make_dynamic_naive_tensor_descriptor_packed_v2
(
make_tuple
(
N
,
K
,
Ho
*
Wo
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_merge_transform
(
make_tuple
(
N
,
Ho
*
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
GemmM
=
out_gemmm_gemmn_global_desc
.
GetLength
(
I0
);
const
auto
GemmN
=
out_gemmm_gemmn_global_desc
.
GetLength
(
I1
);
const
auto
GemmK
=
wei_gemmk_gemmm_global_desc
.
GetLength
(
I0
);
if
(
!
(
GemmM
%
GemmMPerBlock
==
0
&&
GemmN
%
GemmNPerBlock
==
0
&&
GemmK
%
GemmKPerBlock
==
0
))
{
throw
std
::
runtime_error
(
"wrong! GEMM size no divisible"
);
}
constexpr
auto
GemmM1
=
Number
<
GemmMPerThread
*
GemmMLevel0Cluster
*
GemmMLevel1Cluster
>
{};
constexpr
auto
GemmN1
=
Number
<
GemmNPerThread
*
GemmNLevel0Cluster
*
GemmNLevel1Cluster
>
{};
const
auto
GemmM0
=
GemmM
/
GemmM1
;
const
auto
GemmN0
=
GemmN
/
GemmN1
;
const
auto
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
=
transform_dynamic_tensor_descriptor
(
out_gemmm_gemmn_global_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmM0
,
GemmM1
)),
make_unmerge_transform
(
make_tuple
(
GemmN0
,
GemmN1
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
// hack to control index calculation when iterating over a_k_m_global tensor
constexpr
auto
a_k_m_global_iterator_hacks
=
make_tuple
(
make_tuple
(
Sequence
<
0
,
0
,
0
>
{},
Sequence
<
0
,
0
,
0
>
{}),
make_tuple
(
Sequence
<
0
,
0
,
0
>
{},
Sequence
<
0
,
0
,
0
>
{}));
constexpr
auto
a_k_m_global_move_slice_window_iterator_hack
=
Sequence
<
0
,
0
,
0
>
{};
// hack to control index calculation when iterating over b_k_n_global tensor
constexpr
auto
b_k_n_global_iterator_hacks
=
make_tuple
(
make_tuple
(
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
>
{},
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
>
{}),
make_tuple
(
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
2
,
0
>
{},
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
2
>
{}));
constexpr
auto
b_k_n_global_move_slice_window_iterator_hack
=
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
2
>
{};
// hack to control index calculation when iterating over c_m0_m1_n0_n1_global tensor
// hack for NKHW format
constexpr
auto
c_m0_m1_n0_n1_global_tensor_iterator_hacks
=
make_tuple
(
make_tuple
(
Sequence
<
0
,
0
,
0
,
0
,
0
>
{},
Sequence
<
0
,
0
,
0
,
0
,
0
>
{},
Sequence
<
0
,
0
,
1
,
0
,
0
>
{},
Sequence
<
0
,
0
,
1
,
0
,
0
>
{}),
make_tuple
(
Sequence
<
0
,
0
,
0
,
0
,
0
>
{},
Sequence
<
0
,
0
,
0
,
0
,
0
>
{},
Sequence
<
0
,
0
,
2
,
0
,
0
>
{},
Sequence
<
0
,
0
,
2
,
0
,
0
>
{}));
// GEMM
using
gridwise_gemm
=
GridwiseDynamicGemm_km_kn_mn_v2
<
BlockSize
,
Float
,
AccFloat
,
InMemoryDataOperation
::
Set
,
decltype
(
wei_gemmk_gemmm_global_desc
),
decltype
(
in_gemmk_gemmn_global_desc
),
decltype
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
),
GemmMPerBlock
,
GemmNPerBlock
,
GemmKPerBlock
,
GemmMPerThread
,
GemmNPerThread
,
GemmKPerThread
,
GemmMLevel0Cluster
,
GemmNLevel0Cluster
,
GemmMLevel1Cluster
,
GemmNLevel1Cluster
,
GemmABlockTransferThreadSliceLengths_GemmK_GemmM
,
GemmABlockTransferThreadClusterLengths_GemmK_GemmM
,
Sequence
<
1
,
0
>
,
Sequence
<
1
,
0
>
,
0
,
GemmABlockTransferSrcScalarPerVector_GemmK
,
GemmABlockTransferDstScalarPerVector_GemmM
,
false
,
// don't move back src coordinate after threadwise copy
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN
,
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN
,
Sequence
<
0
,
1
>
,
Sequence
<
0
,
1
>
,
1
,
GemmBBlockTransferSrcScalarPerVector_GemmN
,
GemmBBlockTransferDstScalarPerVector_GemmN
,
false
,
// don't move back src coordinate after threadwise copy, which will be fused with
// MoveSrcSliceWindow() to save addr computation
Sequence
<
2
,
3
,
0
,
1
>
,
3
,
GemmCThreadTransferDstScalarPerVector_GemmN1
,
decltype
(
a_k_m_global_iterator_hacks
),
decltype
(
b_k_n_global_iterator_hacks
),
decltype
(
c_m0_m1_n0_n1_global_tensor_iterator_hacks
),
decltype
(
a_k_m_global_move_slice_window_iterator_hack
),
decltype
(
b_k_n_global_move_slice_window_iterator_hack
)
>
;
const
auto
GridSize
=
(
GemmM
/
GemmMPerBlock
)
*
(
GemmN
/
GemmNPerBlock
);
const
bool
has_main_k_block_loop
=
(
GemmK
+
GemmKPerBlock
)
/
(
2
*
GemmKPerBlock
)
>
1
;
const
bool
has_double_tail_k_block_loop
=
(
GemmK
/
GemmKPerBlock
)
%
2
==
0
;
#if 1 // pass tensor descriptors by their reference
index_t
nrepeat
=
100
;
for
(
index_t
i
=
0
;
i
<
5
;
++
i
)
{
std
::
cout
<<
"Start running "
<<
nrepeat
<<
" times..."
<<
std
::
endl
;
KernelTimer
timer
;
timer
.
Start
();
for
(
index_t
j
=
0
;
j
<
nrepeat
;
++
j
)
{
if
(
has_main_k_block_loop
&&
has_double_tail_k_block_loop
)
{
const
auto
kernel
=
run_gridwise_operation
<
gridwise_gemm
,
decltype
(
wei_gemmk_gemmm_global_desc
),
const
Float
*
,
decltype
(
in_gemmk_gemmn_global_desc
),
const
Float
*
,
decltype
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
),
Float
*
,
integral_constant
<
bool
,
true
>
,
integral_constant
<
bool
,
true
>>
;
launch_kernel
(
kernel
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
0
,
wei_gemmk_gemmm_global_desc
,
p_wei_global
,
in_gemmk_gemmn_global_desc
,
p_in_global
,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
,
p_out_global
,
integral_constant
<
bool
,
true
>
{},
integral_constant
<
bool
,
true
>
{});
}
else
if
(
has_main_k_block_loop
&&
!
has_double_tail_k_block_loop
)
{
const
auto
kernel
=
run_gridwise_operation
<
gridwise_gemm
,
decltype
(
wei_gemmk_gemmm_global_desc
),
const
Float
*
,
decltype
(
in_gemmk_gemmn_global_desc
),
const
Float
*
,
decltype
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
),
Float
*
,
integral_constant
<
bool
,
true
>
,
integral_constant
<
bool
,
false
>>
;
launch_kernel
(
kernel
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
0
,
wei_gemmk_gemmm_global_desc
,
p_wei_global
,
in_gemmk_gemmn_global_desc
,
p_in_global
,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
,
p_out_global
,
integral_constant
<
bool
,
true
>
{},
integral_constant
<
bool
,
false
>
{});
}
else
if
(
!
has_main_k_block_loop
&&
has_double_tail_k_block_loop
)
{
const
auto
kernel
=
run_gridwise_operation
<
gridwise_gemm
,
decltype
(
wei_gemmk_gemmm_global_desc
),
const
Float
*
,
decltype
(
in_gemmk_gemmn_global_desc
),
const
Float
*
,
decltype
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
),
Float
*
,
integral_constant
<
bool
,
false
>
,
integral_constant
<
bool
,
true
>>
;
launch_kernel
(
kernel
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
0
,
wei_gemmk_gemmm_global_desc
,
p_wei_global
,
in_gemmk_gemmn_global_desc
,
p_in_global
,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
,
p_out_global
,
integral_constant
<
bool
,
false
>
{},
integral_constant
<
bool
,
true
>
{});
}
else
{
const
auto
kernel
=
run_gridwise_operation
<
gridwise_gemm
,
decltype
(
wei_gemmk_gemmm_global_desc
),
const
Float
*
,
decltype
(
in_gemmk_gemmn_global_desc
),
const
Float
*
,
decltype
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
),
Float
*
,
integral_constant
<
bool
,
false
>
,
integral_constant
<
bool
,
false
>>
;
launch_kernel
(
kernel
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
0
,
wei_gemmk_gemmm_global_desc
,
p_wei_global
,
in_gemmk_gemmn_global_desc
,
p_in_global
,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
,
p_out_global
,
integral_constant
<
bool
,
false
>
{},
integral_constant
<
bool
,
false
>
{});
}
}
timer
.
End
();
float
ave_time
=
timer
.
GetElapsedTime
()
/
nrepeat
;
float
perf
=
(
float
)
calculate_convolution_flops
(
in_n_c_hi_wi_global_desc
,
wei_k_c_y_x_global_desc
,
out_n_k_ho_wo_global_desc
)
/
(
std
::
size_t
(
1000
)
*
1000
*
1000
)
/
ave_time
;
std
::
cout
<<
"Average time : "
<<
ave_time
<<
" ms, "
<<
perf
<<
" TFlop/s"
<<
std
::
endl
;
}
#elif 1 // pass tensor descriptors by their pointers
using
ADesc
=
decltype
(
wei_gemmk_gemmm_global_desc
);
using
BDesc
=
decltype
(
in_gemmk_gemmn_global_desc
);
using
CDesc
=
decltype
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
);
DeviceMem
wei_gemmk_gemmm_global_desc_device_buf
(
sizeof
(
ADesc
));
DeviceMem
in_gemmk_gemmn_global_desc_device_buf
(
sizeof
(
BDesc
));
DeviceMem
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
(
sizeof
(
CDesc
));
wei_gemmk_gemmm_global_desc_device_buf
.
ToDevice
(
&
wei_gemmk_gemmm_global_desc
);
in_gemmk_gemmn_global_desc_device_buf
.
ToDevice
(
&
in_gemmk_gemmn_global_desc
);
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.
ToDevice
(
&
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
);
index_t
nrepeat
=
100
;
for
(
index_t
i
=
0
;
i
<
5
;
++
i
)
{
std
::
cout
<<
"Start running "
<<
nrepeat
<<
" times..."
<<
std
::
endl
;
KernelTimer
timer
;
timer
.
Start
();
for
(
index_t
j
=
0
;
j
<
nrepeat
;
++
j
)
{
if
(
has_main_k_block_loop
&&
has_double_tail_k_block_loop
)
{
const
auto
kernel
=
run_gridwise_operation
<
gridwise_gemm
,
decltype
(
wei_gemmk_gemmm_global_desc
)
*
,
const
Float
*
,
decltype
(
in_gemmk_gemmn_global_desc
)
*
,
const
Float
*
,
decltype
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
)
*
,
Float
*
,
integral_constant
<
bool
,
true
>
,
integral_constant
<
bool
,
true
>>
;
launch_kernel
(
kernel
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
0
,
reinterpret_cast
<
const
ADesc
*>
(
wei_gemmk_gemmm_global_desc_device_buf
.
GetDeviceBuffer
()),
p_wei_global
,
reinterpret_cast
<
const
BDesc
*>
(
in_gemmk_gemmn_global_desc_device_buf
.
GetDeviceBuffer
()),
p_in_global
,
reinterpret_cast
<
const
CDesc
*>
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.
GetDeviceBuffer
()),
p_out_global
,
integral_constant
<
bool
,
true
>
{},
integral_constant
<
bool
,
true
>
{});
}
else
if
(
has_main_k_block_loop
&&
!
has_double_tail_k_block_loop
)
{
const
auto
kernel
=
run_gridwise_operation
<
gridwise_gemm
,
decltype
(
wei_gemmk_gemmm_global_desc
)
*
,
const
Float
*
,
decltype
(
in_gemmk_gemmn_global_desc
)
*
,
const
Float
*
,
decltype
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
)
*
,
Float
*
,
integral_constant
<
bool
,
true
>
,
integral_constant
<
bool
,
false
>>
;
launch_kernel
(
kernel
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
0
,
reinterpret_cast
<
const
ADesc
*>
(
wei_gemmk_gemmm_global_desc_device_buf
.
GetDeviceBuffer
()),
p_wei_global
,
reinterpret_cast
<
const
BDesc
*>
(
in_gemmk_gemmn_global_desc_device_buf
.
GetDeviceBuffer
()),
p_in_global
,
reinterpret_cast
<
const
CDesc
*>
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.
GetDeviceBuffer
()),
p_out_global
,
integral_constant
<
bool
,
true
>
{},
integral_constant
<
bool
,
false
>
{});
}
else
if
(
!
has_main_k_block_loop
&&
has_double_tail_k_block_loop
)
{
const
auto
kernel
=
run_gridwise_operation
<
gridwise_gemm
,
decltype
(
wei_gemmk_gemmm_global_desc
)
*
,
const
Float
*
,
decltype
(
in_gemmk_gemmn_global_desc
)
*
,
const
Float
*
,
decltype
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
)
*
,
Float
*
,
integral_constant
<
bool
,
false
>
,
integral_constant
<
bool
,
true
>>
;
launch_kernel
(
kernel
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
0
,
reinterpret_cast
<
const
ADesc
*>
(
wei_gemmk_gemmm_global_desc_device_buf
.
GetDeviceBuffer
()),
p_wei_global
,
reinterpret_cast
<
const
BDesc
*>
(
in_gemmk_gemmn_global_desc_device_buf
.
GetDeviceBuffer
()),
p_in_global
,
reinterpret_cast
<
const
CDesc
*>
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.
GetDeviceBuffer
()),
p_out_global
,
integral_constant
<
bool
,
false
>
{},
integral_constant
<
bool
,
true
>
{});
}
else
{
const
auto
kernel
=
run_gridwise_operation
<
gridwise_gemm
,
decltype
(
wei_gemmk_gemmm_global_desc
)
*
,
const
Float
*
,
decltype
(
in_gemmk_gemmn_global_desc
)
*
,
const
Float
*
,
decltype
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
)
*
,
Float
*
,
integral_constant
<
bool
,
false
>
,
integral_constant
<
bool
,
false
>>
;
launch_kernel
(
kernel
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
0
,
reinterpret_cast
<
const
ADesc
*>
(
wei_gemmk_gemmm_global_desc_device_buf
.
GetDeviceBuffer
()),
p_wei_global
,
reinterpret_cast
<
const
BDesc
*>
(
in_gemmk_gemmn_global_desc_device_buf
.
GetDeviceBuffer
()),
p_in_global
,
reinterpret_cast
<
const
CDesc
*>
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.
GetDeviceBuffer
()),
p_out_global
,
integral_constant
<
bool
,
false
>
{},
integral_constant
<
bool
,
false
>
{});
}
}
timer
.
End
();
float
ave_time
=
timer
.
GetElapsedTime
()
/
nrepeat
;
float
perf
=
(
float
)
calculate_convolution_flops
(
in_n_c_hi_wi_global_desc
,
wei_k_c_y_x_global_desc
,
out_n_k_ho_wo_global_desc
)
/
(
std
::
size_t
(
1000
)
*
1000
*
1000
)
/
ave_time
;
std
::
cout
<<
"Average time : "
<<
ave_time
<<
" ms, "
<<
perf
<<
" TFlop/s"
<<
std
::
endl
;
}
#elif 1 // pass tensor descriptor by void*
using
ADesc
=
decltype
(
wei_gemmk_gemmm_global_desc
);
using
BDesc
=
decltype
(
in_gemmk_gemmn_global_desc
);
using
CDesc
=
decltype
(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
);
DeviceMem
wei_gemmk_gemmm_global_desc_device_buf
(
sizeof
(
ADesc
));
DeviceMem
in_gemmk_gemmn_global_desc_device_buf
(
sizeof
(
BDesc
));
DeviceMem
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
(
sizeof
(
CDesc
));
wei_gemmk_gemmm_global_desc_device_buf
.
ToDevice
(
&
wei_gemmk_gemmm_global_desc
);
in_gemmk_gemmn_global_desc_device_buf
.
ToDevice
(
&
in_gemmk_gemmn_global_desc
);
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.
ToDevice
(
&
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc
);
index_t
nrepeat
=
100
;
for
(
index_t
i
=
0
;
i
<
5
;
++
i
)
{
std
::
cout
<<
"Start running "
<<
nrepeat
<<
" times..."
<<
std
::
endl
;
KernelTimer
timer
;
timer
.
Start
();
for
(
index_t
j
=
0
;
j
<
nrepeat
;
++
j
)
{
if
(
has_main_k_block_loop
&&
has_double_tail_k_block_loop
)
{
const
auto
kernel
=
run_gridwise_operation
<
gridwise_gemm
,
const
void
*
,
const
Float
*
,
const
void
*
,
const
Float
*
,
const
void
*
,
Float
*
,
integral_constant
<
bool
,
true
>
,
integral_constant
<
bool
,
true
>>
;
launch_kernel
(
kernel
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
0
,
wei_gemmk_gemmm_global_desc_device_buf
.
GetDeviceBuffer
(),
p_wei_global
,
in_gemmk_gemmn_global_desc_device_buf
.
GetDeviceBuffer
(),
p_in_global
,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.
GetDeviceBuffer
(),
p_out_global
,
integral_constant
<
bool
,
true
>
{},
integral_constant
<
bool
,
true
>
{});
}
else
if
(
has_main_k_block_loop
&&
!
has_double_tail_k_block_loop
)
{
const
auto
kernel
=
run_gridwise_operation
<
gridwise_gemm
,
const
void
*
,
const
Float
*
,
const
void
*
,
const
Float
*
,
const
void
*
,
Float
*
,
integral_constant
<
bool
,
true
>
,
integral_constant
<
bool
,
false
>>
;
launch_kernel
(
kernel
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
0
,
wei_gemmk_gemmm_global_desc_device_buf
.
GetDeviceBuffer
(),
p_wei_global
,
in_gemmk_gemmn_global_desc_device_buf
.
GetDeviceBuffer
(),
p_in_global
,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.
GetDeviceBuffer
(),
p_out_global
,
integral_constant
<
bool
,
true
>
{},
integral_constant
<
bool
,
false
>
{});
}
else
if
(
!
has_main_k_block_loop
&&
has_double_tail_k_block_loop
)
{
const
auto
kernel
=
run_gridwise_operation
<
gridwise_gemm
,
const
void
*
,
const
Float
*
,
const
void
*
,
const
Float
*
,
const
void
*
,
Float
*
,
integral_constant
<
bool
,
false
>
,
integral_constant
<
bool
,
true
>>
;
launch_kernel
(
kernel
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
0
,
wei_gemmk_gemmm_global_desc_device_buf
.
GetDeviceBuffer
(),
p_wei_global
,
in_gemmk_gemmn_global_desc_device_buf
.
GetDeviceBuffer
(),
p_in_global
,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.
GetDeviceBuffer
(),
p_out_global
,
integral_constant
<
bool
,
false
>
{},
integral_constant
<
bool
,
true
>
{});
}
else
{
const
auto
kernel
=
run_gridwise_operation
<
gridwise_gemm
,
const
void
*
,
const
Float
*
,
const
void
*
,
const
Float
*
,
const
void
*
,
Float
*
,
integral_constant
<
bool
,
false
>
,
integral_constant
<
bool
,
false
>>
;
launch_kernel
(
kernel
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
0
,
wei_gemmk_gemmm_global_desc_device_buf
.
GetDeviceBuffer
(),
p_wei_global
,
in_gemmk_gemmn_global_desc_device_buf
.
GetDeviceBuffer
(),
p_in_global
,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.
GetDeviceBuffer
(),
p_out_global
,
integral_constant
<
bool
,
false
>
{},
integral_constant
<
bool
,
false
>
{});
}
}
timer
.
End
();
float
ave_time
=
timer
.
GetElapsedTime
()
/
nrepeat
;
float
perf
=
(
float
)
calculate_convolution_flops
(
in_n_c_hi_wi_global_desc
,
wei_k_c_y_x_global_desc
,
out_n_k_ho_wo_global_desc
)
/
(
std
::
size_t
(
1000
)
*
1000
*
1000
)
/
ave_time
;
std
::
cout
<<
"Average time : "
<<
ave_time
<<
" ms, "
<<
perf
<<
" TFlop/s"
<<
std
::
endl
;
}
#endif
}
};
}
// namespace ck
#endif
composable_kernel/include/tensor_operation/blockwise_gemm_v3.hpp
0 → 100644
View file @
61a1c170
#ifndef CK_BLOCKWISE_GEMM_V3_HPP
#define CK_BLOCKWISE_GEMM_V3_HPP
#include "common_header.hpp"
#include "threadwise_gemm_v3.hpp"
namespace
ck
{
// blockwise GEMM: C[M, N] += transpose(A[K, M]) * B[K, N]
// A and B are visable to the whole block, C is distributed among each thread
// If following number are power of 2, index calculation shall be greatly reduced:
// MPerThreadSubC, NPerThreadSubC, MLevel0ThreadCluster, NLevel0ThreadCluster,
// MLevel1ThreadCluster, NLevel1ThreadCluster
template
<
index_t
BlockSize
,
typename
BlockMatrixA
,
typename
BlockMatrixB
,
typename
ThreadMatrixC
,
index_t
MPerThreadSubC
,
index_t
NPerThreadSubC
,
index_t
KPerThreadLoop
,
index_t
MLevel0ThreadCluster
,
index_t
NLevel0ThreadCluster
,
index_t
MLevel1ThreadCluster
,
index_t
NLevel1ThreadCluster
,
index_t
ThreadGemmADataPerRead_M
,
index_t
ThreadGemmBDataPerRead_N
>
struct
BlockwiseGemm_km_kn_m0m1n0n1_v3
{
struct
MatrixIndex
{
index_t
row
;
index_t
col
;
};
index_t
mMyThreadOffsetA
;
index_t
mMyThreadOffsetB
;
__device__
BlockwiseGemm_km_kn_m0m1n0n1_v3
()
{
static_assert
(
BlockMatrixA
::
IsKnownAtCompileTime
()
&&
BlockMatrixB
::
IsKnownAtCompileTime
()
&&
ThreadMatrixC
::
IsKnownAtCompileTime
(),
"wrong! Desc should be known at compile-time"
);
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
index_t
ThreadPerLevel1Cluster
=
MLevel0ThreadCluster
*
NLevel0ThreadCluster
*
MLevel1ThreadCluster
*
NLevel1ThreadCluster
;
static_assert
(
BlockSize
==
ThreadPerLevel1Cluster
,
"wrong! wrong blocksize
\n
"
);
static_assert
(
BlockMatrixA
{}.
GetLength
(
I0
)
==
BlockMatrixB
{}.
GetLength
(
I0
),
"wrong! K dimension not consistent
\n
"
);
constexpr
index_t
M
=
BlockMatrixA
{}.
GetLength
(
I1
);
// A is transposed
constexpr
index_t
N
=
BlockMatrixB
{}.
GetLength
(
I1
);
static_assert
(
M
%
(
MPerThreadSubC
*
MLevel0ThreadCluster
*
MLevel1ThreadCluster
)
==
0
&&
N
%
(
NPerThreadSubC
*
NLevel0ThreadCluster
*
NLevel1ThreadCluster
)
==
0
,
"wrong! Cannot evenly divide work among
\n
"
);
static_assert
(
ThreadMatrixC
{}.
GetLength
(
I0
)
==
GetThreadMatrixCLengths
()[
I0
]
&&
ThreadMatrixC
{}.
GetLength
(
I1
)
==
GetThreadMatrixCLengths
()[
I1
],
"wrong! ThreadMatrixC lengths is wrong"
);
auto
c_thread_mtx_index
=
GetBeginOfThreadMatrixC
(
get_thread_local_1d_id
());
mMyThreadOffsetA
=
BlockMatrixA
{}.
CalculateOffset
(
make_tuple
(
0
,
c_thread_mtx_index
.
row
));
mMyThreadOffsetB
=
BlockMatrixB
{}.
CalculateOffset
(
make_tuple
(
0
,
c_thread_mtx_index
.
col
));
}
__device__
static
constexpr
auto
GetThreadMatrixCLengths
()
{
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
index_t
M
=
BlockMatrixA
{}.
GetLength
(
I1
);
// A is transposed
constexpr
index_t
N
=
BlockMatrixB
{}.
GetLength
(
I1
);
constexpr
index_t
MRepeat
=
M
/
(
MPerThreadSubC
*
MLevel0ThreadCluster
*
MLevel1ThreadCluster
);
constexpr
index_t
NRepeat
=
N
/
(
NPerThreadSubC
*
NLevel0ThreadCluster
*
NLevel1ThreadCluster
);
return
Sequence
<
MRepeat
*
MPerThreadSubC
,
NRepeat
*
NPerThreadSubC
>
{};
}
__device__
static
MatrixIndex
GetBeginOfThreadMatrixC
(
index_t
thread_id
)
{
constexpr
index_t
ThreadPerLevel0Cluster
=
MLevel0ThreadCluster
*
NLevel0ThreadCluster
;
index_t
level1_id
=
thread_id
/
ThreadPerLevel0Cluster
;
index_t
level1_m_id
=
level1_id
/
NLevel1ThreadCluster
;
index_t
level1_n_id
=
level1_id
%
NLevel1ThreadCluster
;
index_t
level0_id
=
thread_id
%
ThreadPerLevel0Cluster
;
index_t
level0_m_id
=
level0_id
/
NLevel0ThreadCluster
;
index_t
level0_n_id
=
level0_id
%
NLevel0ThreadCluster
;
constexpr
index_t
MPerLevel0Cluster
=
MPerThreadSubC
*
MLevel0ThreadCluster
;
constexpr
index_t
NPerLevel0Cluster
=
NPerThreadSubC
*
NLevel0ThreadCluster
;
return
MatrixIndex
{
level1_m_id
*
MPerLevel0Cluster
+
level0_m_id
*
MPerThreadSubC
,
level1_n_id
*
NPerLevel0Cluster
+
level0_n_id
*
NPerThreadSubC
};
}
template
<
typename
FloatA
,
typename
FloatB
,
typename
FloatC
>
__device__
void
Run_naive
(
const
FloatA
*
p_a_block
,
const
FloatB
*
p_b_block
,
FloatC
*
p_c_thread
)
const
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
a_block_mtx
=
BlockMatrixA
{};
constexpr
auto
b_block_mtx
=
BlockMatrixB
{};
constexpr
auto
c_thread_mtx
=
ThreadMatrixC
{};
constexpr
auto
K
=
a_block_mtx
.
GetLength
(
I0
);
constexpr
auto
MPerThread
=
c_thread_mtx
.
GetLength
(
I0
);
constexpr
auto
NPerThread
=
c_thread_mtx
.
GetLength
(
I1
);
constexpr
index_t
MPerLevel1Cluster
=
MPerThreadSubC
*
MLevel0ThreadCluster
*
MLevel1ThreadCluster
;
constexpr
index_t
NPerLevel1Cluster
=
NPerThreadSubC
*
NLevel0ThreadCluster
*
NLevel1ThreadCluster
;
constexpr
index_t
MRepeat
=
MPerThread
/
MPerThreadSubC
;
constexpr
index_t
NRepeat
=
NPerThread
/
NPerThreadSubC
;
// thread A, B for GEMM
constexpr
auto
a_thread_mtx
=
make_dynamic_naive_tensor_descriptor_packed_v2
(
Number
<
KPerThreadLoop
>
{},
Number
<
MPerThread
>
{});
constexpr
auto
b_thread_mtx
=
make_dynamic_naive_tensor_descriptor_packed_v2
(
Number
<
KPerThreadLoop
>
{},
Number
<
NPerThread
>
{});
FloatA
p_a_thread
[
a_thread_mtx
.
GetElementSpace
()];
FloatB
p_b_thread
[
b_thread_mtx
.
GetElementSpace
()];
constexpr
auto
a_thread_copy
=
ThreadwiseMatrixSliceCopy_v3
<
BlockMatrixA
,
decltype
(
a_thread_mtx
),
KPerThreadLoop
,
MPerThreadSubC
,
ThreadGemmADataPerRead_M
>
{};
constexpr
auto
b_thread_copy
=
ThreadwiseMatrixSliceCopy_v3
<
BlockMatrixB
,
decltype
(
b_thread_mtx
),
KPerThreadLoop
,
NPerThreadSubC
,
ThreadGemmBDataPerRead_N
>
{};
constexpr
auto
threadwise_gemm
=
ThreadwiseGemm_km_kn_mn_v1
<
decltype
(
a_thread_mtx
),
decltype
(
b_thread_mtx
),
decltype
(
c_thread_mtx
)
>
{};
#pragma unroll
// loop over k
for
(
index_t
k_begin
=
0
;
k_begin
<
K
;
k_begin
+=
KPerThreadLoop
)
{
#pragma unroll
// read A
for
(
index_t
m_repeat
=
0
;
m_repeat
<
MRepeat
;
++
m_repeat
)
{
a_thread_copy
.
Run
(
p_a_block
+
a_block_mtx
.
CalculateOffset
(
make_tuple
(
k_begin
,
m_repeat
*
MPerLevel1Cluster
))
+
mMyThreadOffsetA
,
p_a_thread
+
a_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
m_repeat
*
MPerThreadSubC
)));
}
#pragma unroll
// read B
for
(
index_t
n_repeat
=
0
;
n_repeat
<
NRepeat
;
++
n_repeat
)
{
b_thread_copy
.
Run
(
p_b_block
+
b_block_mtx
.
CalculateOffset
(
make_tuple
(
k_begin
,
n_repeat
*
NPerLevel1Cluster
))
+
mMyThreadOffsetB
,
p_b_thread
+
b_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
n_repeat
*
NPerThreadSubC
)));
}
// C += A * B
threadwise_gemm
.
Run
(
p_a_thread
,
p_b_thread
,
p_c_thread
);
}
}
template
<
typename
FloatA
,
typename
FloatB
,
typename
FloatC
>
__device__
void
Run_pipelined_2x2
(
const
FloatA
*
p_a_block
,
const
FloatB
*
p_b_block
,
FloatC
*
p_c_thread
)
const
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
a_block_mtx
=
BlockMatrixA
{};
constexpr
auto
b_block_mtx
=
BlockMatrixB
{};
constexpr
auto
c_thread_mtx
=
ThreadMatrixC
{};
constexpr
auto
K
=
a_block_mtx
.
GetLength
(
I0
);
constexpr
auto
MPerThread
=
c_thread_mtx
.
GetLength
(
I0
);
constexpr
auto
NPerThread
=
c_thread_mtx
.
GetLength
(
I1
);
constexpr
index_t
MPerLevel1Cluster
=
MPerThreadSubC
*
MLevel0ThreadCluster
*
MLevel1ThreadCluster
;
constexpr
index_t
NPerLevel1Cluster
=
NPerThreadSubC
*
NLevel0ThreadCluster
*
NLevel1ThreadCluster
;
constexpr
index_t
MRepeat
=
MPerThread
/
MPerThreadSubC
;
constexpr
index_t
NRepeat
=
NPerThread
/
NPerThreadSubC
;
static_assert
(
MRepeat
==
2
&&
NRepeat
==
2
,
"wrong! inline asm cannot deal with this GEMM config yet"
);
// thread A, B
constexpr
auto
a_thread_mtx
=
make_dynamic_naive_tensor_descriptor_packed_v2
(
make_tuple
(
Number
<
KPerThreadLoop
>
{},
Number
<
MPerThread
>
{}));
constexpr
auto
b_thread_mtx
=
make_dynamic_naive_tensor_descriptor_packed_v2
(
make_tuple
(
Number
<
KPerThreadLoop
>
{},
Number
<
NPerThread
>
{}));
// thread A-sub, B-sub
constexpr
auto
a_thread_sub_mtx
=
make_dynamic_naive_tensor_descriptor_v2
(
make_tuple
(
Number
<
KPerThreadLoop
>
{},
Number
<
MPerThreadSubC
>
{}),
make_tuple
(
Number
<
MPerThread
>
{},
Number
<
1
>
{}));
constexpr
auto
b_thread_sub_mtx
=
make_dynamic_naive_tensor_descriptor_v2
(
make_tuple
(
Number
<
KPerThreadLoop
>
{},
Number
<
NPerThreadSubC
>
{}),
make_tuple
(
Number
<
NPerThread
>
{},
Number
<
1
>
{}));
constexpr
auto
c_thread_sub_mtx
=
make_dynamic_naive_tensor_descriptor_v2
(
make_tuple
(
Number
<
MPerThreadSubC
>
{},
Number
<
NPerThreadSubC
>
{}),
make_tuple
(
Number
<
NPerThread
>
{},
Number
<
1
>
{}));
FloatA
p_a_thread
[
a_thread_mtx
.
GetElementSpaceSize
()];
FloatB
p_b_thread
[
b_thread_mtx
.
GetElementSpaceSize
()];
constexpr
auto
a_thread_copy
=
ThreadwiseMatrixSliceCopy_v3
<
BlockMatrixA
,
decltype
(
a_thread_mtx
),
KPerThreadLoop
,
MPerThreadSubC
,
ThreadGemmADataPerRead_M
>
{};
constexpr
auto
b_thread_copy
=
ThreadwiseMatrixSliceCopy_v3
<
BlockMatrixB
,
decltype
(
b_thread_mtx
),
KPerThreadLoop
,
NPerThreadSubC
,
ThreadGemmBDataPerRead_N
>
{};
constexpr
auto
threadwise_gemm
=
ThreadwiseGemm_km_kn_mn_v1
<
decltype
(
a_thread_sub_mtx
),
decltype
(
b_thread_sub_mtx
),
decltype
(
c_thread_sub_mtx
)
>
{};
const
FloatA
*
p_a_block_off
=
p_a_block
+
mMyThreadOffsetA
;
const
FloatB
*
p_b_block_off
=
p_b_block
+
mMyThreadOffsetB
;
// read A_sub_0
a_thread_copy
.
Run
(
p_a_block_off
,
p_a_thread
);
// read B_sub_0
b_thread_copy
.
Run
(
p_b_block_off
,
p_b_thread
);
// read B_sub_1
b_thread_copy
.
Run
(
p_b_block_off
+
b_block_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerLevel1Cluster
)),
p_b_thread
+
b_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerThreadSubC
)));
// read A_sub_1
a_thread_copy
.
Run
(
p_a_block_off
+
a_block_mtx
.
CalculateOffset
(
make_tuple
(
0
,
MPerLevel1Cluster
)),
p_a_thread
+
a_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
MPerThreadSubC
)));
// C_sub_00 += transpose(A_sub_0) * B_sub_0
threadwise_gemm
.
Run
(
p_a_thread
,
p_b_thread
,
p_c_thread
);
// C_sub_01 += transpose(A_sub_0) * B_sub_1
threadwise_gemm
.
Run
(
p_a_thread
,
p_b_thread
+
b_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerThreadSubC
)),
p_c_thread
+
c_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerThreadSubC
)));
#pragma unroll
// loop over rest of k
for
(
index_t
k
=
KPerThreadLoop
;
k
<
K
;
k
+=
KPerThreadLoop
)
{
// read A_sub_0
a_thread_copy
.
Run
(
p_a_block_off
+
a_block_mtx
.
CalculateOffset
(
make_tuple
(
k
,
0
)),
p_a_thread
);
// C_sub_10 += transpose(A_sub_1) * B_sub_0
threadwise_gemm
.
Run
(
p_a_thread
+
a_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
MPerThreadSubC
)),
p_b_thread
,
p_c_thread
+
c_thread_mtx
.
CalculateOffset
(
make_tuple
(
MPerThreadSubC
,
0
)));
// read B_sub_0
b_thread_copy
.
Run
(
p_b_block_off
+
b_block_mtx
.
CalculateOffset
(
make_tuple
(
k
,
0
)),
p_b_thread
);
// C_sub_11 += transpose(A_sub_1) * B_sub_1
threadwise_gemm
.
Run
(
p_a_thread
+
a_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
MPerThreadSubC
)),
p_b_thread
+
b_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerThreadSubC
)),
p_c_thread
+
c_thread_mtx
.
CalculateOffset
(
make_tuple
(
MPerThreadSubC
,
NPerThreadSubC
)));
// read B_sub_1
b_thread_copy
.
Run
(
p_b_block_off
+
b_block_mtx
.
CalculateOffset
(
make_tuple
(
k
,
NPerLevel1Cluster
)),
p_b_thread
+
b_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerThreadSubC
)));
// read A_sub_1
a_thread_copy
.
Run
(
p_a_block_off
+
a_block_mtx
.
CalculateOffset
(
make_tuple
(
k
,
MPerLevel1Cluster
)),
p_a_thread
+
a_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
MPerThreadSubC
)));
// C_sub_00 += transpose(A_sub_0) * B_sub_0
threadwise_gemm
.
Run
(
p_a_thread
,
p_b_thread
,
p_c_thread
);
// C_sub_01 += transpose(A_sub_0) * B_sub_1
threadwise_gemm
.
Run
(
p_a_thread
,
p_b_thread
+
b_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerThreadSubC
)),
p_c_thread
+
c_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerThreadSubC
)));
}
// C_sub_10 += transpose(A_sub_1) * B_sub_0
threadwise_gemm
.
Run
(
p_a_thread
+
a_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
MPerThreadSubC
)),
p_b_thread
,
p_c_thread
+
c_thread_mtx
.
CalculateOffset
(
make_tuple
(
MPerThreadSubC
,
0
)));
// C_sub_11 += transpose(A_sub_1) * B_sub_1
threadwise_gemm
.
Run
(
p_a_thread
+
a_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
MPerThreadSubC
)),
p_b_thread
+
b_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerThreadSubC
)),
p_c_thread
+
c_thread_mtx
.
CalculateOffset
(
make_tuple
(
MPerThreadSubC
,
NPerThreadSubC
)));
}
template
<
typename
FloatA
,
typename
FloatB
,
typename
FloatC
>
__device__
void
Run
(
const
FloatA
*
p_a_block
,
const
FloatB
*
p_b_block
,
FloatC
*
p_c_thread
)
const
{
#if CK_EXPERIMENTAL_BLOCKWISE_GEMM_USE_PIPELINE
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
index_t
MPerThread
=
ThreadMatrixC
{}.
GetLength
(
I0
);
constexpr
index_t
NPerThread
=
ThreadMatrixC
{}.
GetLength
(
I1
);
constexpr
index_t
MRepeat
=
MPerThread
/
MPerThreadSubC
;
constexpr
index_t
NRepeat
=
NPerThread
/
NPerThreadSubC
;
if
constexpr
(
MRepeat
==
2
&&
NRepeat
==
2
)
{
Run_pipelined_2x2
(
p_a_block
,
p_b_block
,
p_c_thread
);
}
else
{
Run_naive
(
p_a_block
,
p_b_block
,
p_c_thread
);
}
#else
Run_naive
(
p_a_block
,
p_b_block
,
p_c_thread
);
#endif
}
};
}
// namespace ck
#endif
composable_kernel/include/tensor_operation/gridwise_dynamic_gemm_v2.hpp
0 → 100644
View file @
61a1c170
#ifndef CK_GRIDWISE_DYNAMIC_GEMM_V2_HPP
#define CK_GRIDWISE_DYNAMIC_GEMM_V2_HPP
#include "common_header.hpp"
#include "dynamic_multi_index_transform_helper.hpp"
#include "dynamic_tensor_descriptor.hpp"
#include "dynamic_tensor_descriptor_helper.hpp"
#include "blockwise_dynamic_tensor_slice_transfer.hpp"
#include "threadwise_dynamic_tensor_slice_transfer.hpp"
#include "blockwise_gemm_v3.hpp"
namespace
ck
{
template
<
index_t
BlockSize
,
typename
Float
,
typename
AccFloat
,
InMemoryDataOperation
CGlobalMemoryDataOperation
,
typename
AGlobalDesc
,
typename
BGlobalDesc
,
typename
CGlobalDesc
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
MPerThread
,
index_t
NPerThread
,
index_t
KPerThread
,
index_t
MLevel0Cluster
,
index_t
NLevel0Cluster
,
index_t
MLevel1Cluster
,
index_t
NLevel1Cluster
,
typename
ABlockTransferThreadSliceLengths_K_M
,
typename
ABlockTransferThreadClusterLengths_K_M
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_M
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
typename
BBlockTransferThreadSliceLengths_K_N
,
typename
BBlockTransferThreadClusterLengths_K_N
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_N
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
typename
CThreadTransferSrcDstAccessOrder
,
index_t
CThreadTransferSrcDstVectorDim
,
index_t
CThreadTransferDstScalarPerVector
,
typename
AGlobalIteratorHacks
,
typename
BGlobalIteratorHacks
,
typename
CGlobalIteratorHacks
,
typename
AGlobalMoveSliceWindowIteratorHacks
,
typename
BGlobalMoveSliceWindowIteratorHacks
>
struct
GridwiseDynamicGemm_km_kn_mn_v2
{
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
constexpr
auto
max_lds_align
=
math
::
lcm
(
Number
<
ABlockTransferDstScalarPerVector_M
>
{},
Number
<
BBlockTransferDstScalarPerVector_N
>
{},
Number
<
MPerThread
>
{},
Number
<
NPerThread
>
{});
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr
auto
a_k_m_block_desc
=
make_dynamic_naive_tensor_descriptor_aligned_v2
(
make_tuple
(
Number
<
KPerBlock
>
{},
Number
<
MPerBlock
>
{}),
max_lds_align
);
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr
auto
b_k_n_block_desc
=
make_dynamic_naive_tensor_descriptor_aligned_v2
(
make_tuple
(
Number
<
KPerBlock
>
{},
Number
<
NPerBlock
>
{}),
max_lds_align
);
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size
=
math
::
integer_least_multiple
(
a_k_m_block_desc
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size
=
math
::
integer_least_multiple
(
b_k_n_block_desc
.
GetElementSpaceSize
(),
max_lds_align
);
return
2
*
(
a_block_space_size
+
b_block_space_size
)
*
sizeof
(
Float
);
}
template
<
bool
HasMainKBlockLoop
,
bool
HasDoubleTailKBlockLoop
>
__device__
void
Run
(
const
AGlobalDesc
&
a_k_m_global_desc
,
const
Float
*
__restrict__
p_a_global
,
const
BGlobalDesc
&
b_k_n_global_desc
,
const
Float
*
__restrict__
p_b_global
,
const
CGlobalDesc
&
c_m0_m1_n0_n1_global_desc
,
Float
*
__restrict__
p_c_global
,
Float
*
__restrict__
p_shared_block
,
integral_constant
<
bool
,
HasMainKBlockLoop
>
,
integral_constant
<
bool
,
HasDoubleTailKBlockLoop
>
)
const
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
const
auto
K
=
a_k_m_global_desc
.
GetLength
(
I0
);
const
auto
M
=
a_k_m_global_desc
.
GetLength
(
I1
);
const
auto
N
=
b_k_n_global_desc
.
GetLength
(
I1
);
// divide block work by [M, N]
#if 0
const auto m_block_work_num = M / Number<MPerBlock>{};
const auto n_block_work_num = N / Number<NPerBlock>{};
const index_t m_block_work_id = get_block_1d_id() / n_block_work_num;
const index_t n_block_work_id = get_block_1d_id() - m_block_work_id * n_block_work_num;
#else
// Hack: this force result into SGPR
const
index_t
m_block_work_num
=
__builtin_amdgcn_readfirstlane
(
M
/
MPerBlock
);
const
index_t
n_block_work_num
=
__builtin_amdgcn_readfirstlane
(
N
/
NPerBlock
);
const
index_t
m_block_work_id
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
n_block_work_num
);
const
index_t
n_block_work_id
=
get_block_1d_id
()
-
m_block_work_id
*
n_block_work_num
;
#endif
const
index_t
m_block_data_on_global
=
m_block_work_id
*
MPerBlock
;
const
index_t
n_block_data_on_global
=
n_block_work_id
*
NPerBlock
;
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
Number
<
ABlockTransferDstScalarPerVector_M
>
{},
Number
<
BBlockTransferDstScalarPerVector_N
>
{},
Number
<
MPerThread
>
{},
Number
<
NPerThread
>
{});
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr
auto
a_k_m_block_desc
=
make_dynamic_naive_tensor_descriptor_aligned_v2
(
make_tuple
(
Number
<
KPerBlock
>
{},
Number
<
MPerBlock
>
{}),
max_lds_align
);
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr
auto
b_k_n_block_desc
=
make_dynamic_naive_tensor_descriptor_aligned_v2
(
make_tuple
(
Number
<
KPerBlock
>
{},
Number
<
NPerBlock
>
{}),
max_lds_align
);
// A matrix blockwise copy
auto
a_blockwise_copy
=
BlockwiseDynamicTensorSliceTransfer_v4
<
BlockSize
,
InMemoryDataOperation
::
Set
,
Sequence
<
KPerBlock
,
MPerBlock
>
,
ABlockTransferThreadSliceLengths_K_M
,
ABlockTransferThreadClusterLengths_K_M
,
ABlockTransferThreadClusterArrangeOrder
,
Float
,
Float
,
decltype
(
a_k_m_global_desc
),
decltype
(
a_k_m_block_desc
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
>
,
ABlockTransferSrcVectorDim
,
1
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_M
,
AddressSpace
::
Global
,
AddressSpace
::
Lds
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
a_k_m_global_desc
,
make_multi_index
(
0
,
m_block_data_on_global
),
a_k_m_block_desc
,
make_multi_index
(
0
,
0
));
// B matrix blockwise copy
auto
b_blockwise_copy
=
BlockwiseDynamicTensorSliceTransfer_v4
<
BlockSize
,
InMemoryDataOperation
::
Set
,
Sequence
<
KPerBlock
,
NPerBlock
>
,
BBlockTransferThreadSliceLengths_K_N
,
BBlockTransferThreadClusterLengths_K_N
,
BBlockTransferThreadClusterArrangeOrder
,
Float
,
Float
,
decltype
(
b_k_n_global_desc
),
decltype
(
b_k_n_block_desc
),
BBlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
>
,
BBlockTransferSrcVectorDim
,
1
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_N
,
AddressSpace
::
Global
,
AddressSpace
::
Lds
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
b_k_n_global_desc
,
make_multi_index
(
0
,
n_block_data_on_global
),
b_k_n_block_desc
,
make_multi_index
(
0
,
0
));
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[KPerBlock, MPerBlock] is in LDS
// b_mtx[KPerBlocl, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
static_assert
(
MPerBlock
%
(
MPerThread
*
MLevel0Cluster
*
MLevel1Cluster
)
==
0
&&
NPerBlock
%
(
NPerThread
*
NLevel0Cluster
*
NLevel1Cluster
)
==
0
,
"wrong!"
);
constexpr
index_t
MRepeat
=
MPerBlock
/
(
MPerThread
*
MLevel0Cluster
*
MLevel1Cluster
);
constexpr
index_t
NRepeat
=
NPerBlock
/
(
NPerThread
*
NLevel0Cluster
*
NLevel1Cluster
);
// c_thread_mtx definition: this is a mess
// TODO:: more elegent way of defining c_thread_mtx
constexpr
auto
c_m0m1_n0n1_thread_desc
=
make_dynamic_naive_tensor_descriptor_packed_v2
(
make_tuple
(
Number
<
MRepeat
*
MPerThread
>
{},
Number
<
NRepeat
*
NPerThread
>
{}));
const
auto
blockwise_gemm
=
BlockwiseGemm_km_kn_m0m1n0n1_v3
<
BlockSize
,
decltype
(
a_k_m_block_desc
),
decltype
(
b_k_n_block_desc
),
decltype
(
c_m0m1_n0n1_thread_desc
),
MPerThread
,
NPerThread
,
KPerThread
,
MLevel0Cluster
,
NLevel0Cluster
,
MLevel1Cluster
,
NLevel1Cluster
,
MPerThread
,
NPerThread
>
{};
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size
=
math
::
integer_least_multiple
(
a_k_m_block_desc
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size
=
math
::
integer_least_multiple
(
b_k_n_block_desc
.
GetElementSpaceSize
(),
max_lds_align
);
Float
*
p_a_block_double
=
p_shared_block
;
Float
*
p_b_block_double
=
p_shared_block
+
2
*
a_block_space_size
;
// register allocation for output
AccFloat
p_c_thread
[
c_m0m1_n0n1_thread_desc
.
GetElementSpaceSize
()];
// zero out threadwise output
threadwise_matrix_set_zero_v2
(
c_m0m1_n0n1_thread_desc
,
p_c_thread
);
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
KPerBlock
,
0
);
// hack to control index calculation when iterating over A and B matrix for threadwise copy
constexpr
auto
a_k_m_global_iterator_hacks
=
AGlobalIteratorHacks
{};
constexpr
auto
b_k_n_global_iterator_hacks
=
BGlobalIteratorHacks
{};
// hack to control index calculation when move slice window for A and B matrix for
// threadwise copy
constexpr
auto
a_k_m_global_move_slice_window_iterator_hack
=
AGlobalMoveSliceWindowIteratorHacks
{};
constexpr
auto
b_k_n_global_move_slice_window_iterator_hack
=
BGlobalMoveSliceWindowIteratorHacks
{};
// LDS double buffer: preload data into LDS
{
a_blockwise_copy
.
RunRead
(
a_k_m_global_desc
,
p_a_global
,
a_k_m_global_iterator_hacks
);
b_blockwise_copy
.
RunRead
(
b_k_n_global_desc
,
p_b_global
,
b_k_n_global_iterator_hacks
);
a_blockwise_copy
.
RunWrite
(
a_k_m_block_desc
,
p_a_block_double
);
b_blockwise_copy
.
RunWrite
(
b_k_n_block_desc
,
p_b_block_double
);
}
if
constexpr
(
HasMainKBlockLoop
)
{
Float
*
p_a_block_even
=
p_a_block_double
;
Float
*
p_b_block_even
=
p_b_block_double
;
Float
*
p_a_block_odd
=
p_a_block_double
+
a_block_space_size
;
Float
*
p_b_block_odd
=
p_b_block_double
+
b_block_space_size
;
index_t
k_block_data_begin
=
0
;
// LDS double buffer: main body
// use Do-While loop instead of For loop to simplify control flow
do
{
// even iteration
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_k_m_global_desc
,
a_block_slice_copy_step
,
a_k_m_global_move_slice_window_iterator_hack
);
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_k_n_global_desc
,
b_block_slice_copy_step
,
b_k_n_global_move_slice_window_iterator_hack
);
__syncthreads
();
// LDS doubel buffer: load next data from device mem
a_blockwise_copy
.
RunRead
(
a_k_m_global_desc
,
p_a_global
,
a_k_m_global_iterator_hacks
);
b_blockwise_copy
.
RunRead
(
b_k_n_global_desc
,
p_b_global
,
b_k_n_global_iterator_hacks
);
// LDS double buffer: GEMM on current data
blockwise_gemm
.
Run
(
p_a_block_even
,
p_b_block_even
,
p_c_thread
);
// LDS double buffer: store next data to LDS
a_blockwise_copy
.
RunWrite
(
a_k_m_block_desc
,
p_a_block_odd
);
b_blockwise_copy
.
RunWrite
(
b_k_n_block_desc
,
p_b_block_odd
);
// odd iteration
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_k_m_global_desc
,
a_block_slice_copy_step
,
a_k_m_global_move_slice_window_iterator_hack
);
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_k_n_global_desc
,
b_block_slice_copy_step
,
b_k_n_global_move_slice_window_iterator_hack
);
__syncthreads
();
// LDS doubel buffer: load next data from device mem
a_blockwise_copy
.
RunRead
(
a_k_m_global_desc
,
p_a_global
,
a_k_m_global_iterator_hacks
);
b_blockwise_copy
.
RunRead
(
b_k_n_global_desc
,
p_b_global
,
b_k_n_global_iterator_hacks
);
// LDS double buffer: GEMM on current data
blockwise_gemm
.
Run
(
p_a_block_odd
,
p_b_block_odd
,
p_c_thread
);
// LDS double buffer: store next data to LDS
a_blockwise_copy
.
RunWrite
(
a_k_m_block_desc
,
p_a_block_even
);
b_blockwise_copy
.
RunWrite
(
b_k_n_block_desc
,
p_b_block_even
);
k_block_data_begin
+=
2
*
KPerBlock
;
}
while
(
k_block_data_begin
<
K
-
2
*
KPerBlock
);
}
// LDS double buffer: tail
if
constexpr
(
HasDoubleTailKBlockLoop
)
// if has 2 iteration left
{
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_k_m_global_desc
,
a_block_slice_copy_step
,
a_k_m_global_move_slice_window_iterator_hack
);
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_k_n_global_desc
,
b_block_slice_copy_step
,
b_k_n_global_move_slice_window_iterator_hack
);
__syncthreads
();
// LDS double buffer: load last data from device mem
a_blockwise_copy
.
RunRead
(
a_k_m_global_desc
,
p_a_global
,
a_k_m_global_iterator_hacks
);
b_blockwise_copy
.
RunRead
(
b_k_n_global_desc
,
p_b_global
,
b_k_n_global_iterator_hacks
);
// LDS double buffer: GEMM on 2nd-last data
blockwise_gemm
.
Run
(
p_a_block_double
,
p_b_block_double
,
p_c_thread
);
// LDS double buffer: store last data to LDS
a_blockwise_copy
.
RunWrite
(
a_k_m_block_desc
,
p_a_block_double
+
a_block_space_size
);
b_blockwise_copy
.
RunWrite
(
b_k_n_block_desc
,
p_b_block_double
+
b_block_space_size
);
__syncthreads
();
// LDS double buffer: GEMM on last data
blockwise_gemm
.
Run
(
p_a_block_double
+
a_block_space_size
,
p_b_block_double
+
b_block_space_size
,
p_c_thread
);
}
else
// if has 1 iteration left
{
__syncthreads
();
// LDS double buffer: GEMM on last data
blockwise_gemm
.
Run
(
p_a_block_double
,
p_b_block_double
,
p_c_thread
);
}
// output: register to global memory
{
constexpr
auto
M1
=
Number
<
MPerThread
*
MLevel0Cluster
*
MLevel1Cluster
>
{};
constexpr
auto
N1
=
Number
<
NPerThread
*
NLevel0Cluster
*
NLevel1Cluster
>
{};
// define input tensor descriptor for threadwise copy
// thread input tensor, src of threadwise copy
constexpr
auto
c_m0_m1_n0_n1_thread_desc
=
make_dynamic_naive_tensor_descriptor_packed_v2
(
make_tuple
(
Number
<
MRepeat
>
{},
Number
<
MPerThread
>
{},
Number
<
NRepeat
>
{},
Number
<
NPerThread
>
{}));
// calculate origin of thread input tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
GetBeginOfThreadMatrixC
(
get_thread_local_1d_id
());
const
index_t
m_thread_data_on_global
=
m_block_data_on_global
+
c_thread_mtx_on_block
.
row
;
const
index_t
n_thread_data_on_global
=
n_block_data_on_global
+
c_thread_mtx_on_block
.
col
;
// hack to control index calculation when iterating over c_m0_m1_n0_n1_global tensor
constexpr
auto
c_m0_m1_n0_n1_global_tensor_iterator_hacks
=
CGlobalIteratorHacks
{};
constexpr
auto
tmp
=
make_unmerge_transform
(
make_tuple
(
Number
<
MRepeat
>
{},
Number
<
MPerThread
>
{},
Number
<
NRepeat
>
{},
Number
<
NPerThread
>
{}));
ThreadwiseDynamicTensorSliceTransfer_v1r3
<
AccFloat
,
Float
,
decltype
(
c_m0_m1_n0_n1_thread_desc
),
decltype
(
c_m0_m1_n0_n1_global_desc
),
Sequence
<
MRepeat
,
MPerThread
,
NRepeat
,
NPerThread
>
,
CThreadTransferSrcDstAccessOrder
,
CThreadTransferSrcDstVectorDim
,
CThreadTransferDstScalarPerVector
,
AddressSpace
::
Vgpr
,
AddressSpace
::
Global
,
CGlobalMemoryDataOperation
,
1
,
true
>
(
c_m0_m1_n0_n1_global_desc
,
make_multi_index
(
m_thread_data_on_global
/
M1
,
m_thread_data_on_global
%
M1
,
n_thread_data_on_global
/
N1
,
n_thread_data_on_global
%
N1
))
.
Run
(
c_m0_m1_n0_n1_thread_desc
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
p_c_thread
,
c_m0_m1_n0_n1_global_desc
,
p_c_global
,
c_m0_m1_n0_n1_global_tensor_iterator_hacks
);
}
}
// pass tensor descriptor by reference
template
<
bool
HasMainKBlockLoop
,
bool
HasDoubleTailKBlockLoop
>
__device__
void
Run
(
const
AGlobalDesc
&
a_k_m_global_desc
,
const
Float
*
__restrict__
p_a_global
,
const
BGlobalDesc
&
b_k_n_global_desc
,
const
Float
*
__restrict__
p_b_global
,
const
CGlobalDesc
&
c_m0_m1_n0_n1_global_desc
,
Float
*
__restrict__
p_c_global
,
integral_constant
<
bool
,
HasMainKBlockLoop
>
,
integral_constant
<
bool
,
HasDoubleTailKBlockLoop
>
)
const
{
constexpr
index_t
shared_block_size
=
GetSharedMemoryNumberOfByte
()
/
sizeof
(
Float
);
__shared__
Float
p_shared_block
[
shared_block_size
];
Run
(
a_k_m_global_desc
,
p_a_global
,
b_k_n_global_desc
,
p_b_global
,
c_m0_m1_n0_n1_global_desc
,
p_c_global
,
p_shared_block
,
integral_constant
<
bool
,
HasMainKBlockLoop
>
{},
integral_constant
<
bool
,
HasDoubleTailKBlockLoop
>
{});
}
// pass tensor descriptors by their pointers
template
<
bool
HasMainKBlockLoop
,
bool
HasDoubleTailKBlockLoop
>
__device__
void
Run
(
const
AGlobalDesc
*
p_a_k_m_global_desc
,
const
Float
*
__restrict__
p_a_global
,
const
BGlobalDesc
*
p_b_k_n_global_desc
,
const
Float
*
__restrict__
p_b_global
,
const
CGlobalDesc
*
p_c_m0_m1_n0_n1_global_desc
,
Float
*
__restrict__
p_c_global
,
integral_constant
<
bool
,
HasMainKBlockLoop
>
,
integral_constant
<
bool
,
HasDoubleTailKBlockLoop
>
)
const
{
const
auto
a_k_m_global_desc
=
*
p_a_k_m_global_desc
;
const
auto
b_k_n_global_desc
=
*
p_b_k_n_global_desc
;
const
auto
c_m0_m1_n0_n1_global_desc
=
*
p_c_m0_m1_n0_n1_global_desc
;
Run
(
a_k_m_global_desc
,
p_a_global
,
b_k_n_global_desc
,
p_b_global
,
c_m0_m1_n0_n1_global_desc
,
p_c_global
,
integral_constant
<
bool
,
HasMainKBlockLoop
>
{},
integral_constant
<
bool
,
HasDoubleTailKBlockLoop
>
{});
}
// pass tensor descriptors by void*
template
<
bool
HasMainKBlockLoop
,
bool
HasDoubleTailKBlockLoop
>
__device__
void
Run
(
const
void
*
p_a_k_m_global_desc
,
const
Float
*
__restrict__
p_a_global
,
const
void
*
p_b_k_n_global_desc
,
const
Float
*
__restrict__
p_b_global
,
const
void
*
p_c_m0_m1_n0_n1_global_desc
,
Float
*
__restrict__
p_c_global
,
integral_constant
<
bool
,
HasMainKBlockLoop
>
,
integral_constant
<
bool
,
HasDoubleTailKBlockLoop
>
)
const
{
const
auto
a_k_m_global_desc
=
*
reinterpret_cast
<
const
AGlobalDesc
*>
(
p_a_k_m_global_desc
);
const
auto
b_k_n_global_desc
=
*
reinterpret_cast
<
const
BGlobalDesc
*>
(
p_b_k_n_global_desc
);
const
auto
c_m0_m1_n0_n1_global_desc
=
*
reinterpret_cast
<
const
CGlobalDesc
*>
(
p_c_m0_m1_n0_n1_global_desc
);
Run
(
a_k_m_global_desc
,
p_a_global
,
b_k_n_global_desc
,
p_b_global
,
c_m0_m1_n0_n1_global_desc
,
p_c_global
,
integral_constant
<
bool
,
HasMainKBlockLoop
>
{},
integral_constant
<
bool
,
HasDoubleTailKBlockLoop
>
{});
}
};
}
// namespace ck
#endif
composable_kernel/include/tensor_operation/threadwise_gemm_v3.hpp
0 → 100644
View file @
61a1c170
#ifndef CK_THREADWISE_GEMM_V3_HPP
#define CK_THREADWISE_GEMM_V3_HPP
#include "common_header.hpp"
#include "math.hpp"
namespace
ck
{
template
<
typename
Float
,
typename
Desc
>
__device__
void
threadwise_matrix_set_zero_v3
(
Desc
,
Float
*
__restrict__
p_thread
)
{
static_assert
(
Desc
::
IsKnownAtCompileTime
(),
"wrong! Desc should be known at compile-time"
);
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
desc
=
Desc
{};
constexpr
auto
M
=
desc
.
GetLength
(
I0
);
constexpr
auto
N
=
desc
.
GetLength
(
I1
);
static_for
<
0
,
M
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
N
,
1
>
{}([
&
](
auto
j
)
{
constexpr
auto
offset
=
desc
.
CalculateOffset
(
make_tuple
(
i
,
j
));
p_thread
[
offset
]
=
Float
(
0
);
});
});
}
template
<
typename
SrcDesc
,
typename
DstDesc
,
index_t
NSliceRow
,
index_t
NSliceCol
,
index_t
DataPerAccess
>
struct
ThreadwiseMatrixSliceCopy_v3
{
template
<
typename
Data
>
__device__
static
void
Run
(
const
Data
*
p_src
,
Data
*
p_dst
)
{
static_assert
(
SrcDesc
::
IsKnownAtCompileTime
()
&&
DstDesc
::
IsKnownAtCompileTime
(),
"wrong! Desc should be known at compile-time"
);
using
vector_t
=
typename
vector_type
<
Data
,
DataPerAccess
>::
type
;
static_for
<
0
,
NSliceRow
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
NSliceCol
,
DataPerAccess
>
{}([
&
](
auto
j
)
{
constexpr
auto
src_offset
=
SrcDesc
{}.
CalculateOffset
(
make_tuple
(
i
,
j
));
constexpr
auto
dst_offset
=
DstDesc
{}.
CalculateOffset
(
make_tuple
(
i
,
j
));
*
reinterpret_cast
<
vector_t
*>
(
&
p_dst
[
dst_offset
])
=
*
reinterpret_cast
<
const
vector_t
*>
(
&
p_src
[
src_offset
]);
});
});
}
};
// C[M, N] += transpose(A[K, M]) * B[K, N]
// Element of matrix can be vectorized data
template
<
typename
ADesc
,
typename
BDesc
,
typename
CDesc
,
typename
std
::
enable_if
<
ADesc
::
IsKnownAtCompileTime
()
&&
BDesc
::
IsKnownAtCompileTime
()
&&
CDesc
::
IsKnownAtCompileTime
(),
bool
>
::
type
=
false
>
struct
ThreadwiseGemm_km_kn_mn_v3
{
template
<
typename
FloatA
,
typename
FloatB
,
typename
FloatC
>
__device__
static
void
Run_source
(
const
FloatA
*
p_a
,
const
FloatB
*
p_b
,
FloatC
*
p_c
)
{
static_assert
(
ADesc
::
IsKnownAtCompileTime
()
&&
BDesc
::
IsKnownAtCompileTime
()
&&
CDesc
::
IsKnownAtCompileTime
(),
"wrong! Desc should be known at compile-time"
);
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
M
=
CDesc
{}[
I0
];
constexpr
auto
N
=
CDesc
{}[
I1
];
constexpr
auto
K
=
ADesc
{}[
I0
];
static_for
<
0
,
K
,
1
>
{}([
&
](
auto
k
)
{
static_for
<
0
,
M
,
1
>
{}([
&
](
auto
m
)
{
static_for
<
0
,
N
,
1
>
{}([
&
](
auto
n
)
{
constexpr
auto
a_offset
=
ADesc
{}.
CalculateOffset
(
make_tuple
(
k
,
m
));
constexpr
auto
b_offset
=
BDesc
{}.
CalculateOffset
(
make_tuple
(
k
,
n
));
constexpr
auto
c_offset
=
CDesc
{}.
CalculateOffset
(
make_tuple
(
m
,
n
));
p_c
[
c_offset
]
+=
inner_product_with_conversion
<
FloatC
>
{}(
p_a
[
a_offset
],
p_b
[
b_offset
]);
});
});
});
}
#if CK_THREADWISE_GEMM_USE_AMD_INLINE_ASM
template
<
typename
FloatA
,
typename
FloatB
,
typename
FloatC
>
__device__
static
void
Run_amd_asm
(
const
FloatA
*
p_a
,
const
FloatB
*
p_b
,
FloatC
*
p_c
)
{
static_assert
(
ADesc
::
IsKnownAtCompileTime
()
&&
BDesc
::
IsKnownAtCompileTime
()
&&
CDesc
::
IsKnownAtCompileTime
(),
"wrong! Desc should be known at compile-time"
);
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
M
=
CDesc
{}.
GetLength
(
I0
);
constexpr
auto
N
=
CDesc
{}.
GetLength
(
I1
);
constexpr
auto
K
=
ADesc
{}.
GetLength
(
I0
);
static_assert
(
N
==
4
||
N
==
2
,
"wrong! this config not supported by asm yet"
);
static_for
<
0
,
K
,
1
>
{}([
&
](
auto
k
)
{
static_for
<
0
,
M
,
1
>
{}([
&
](
auto
m
)
{
constexpr
auto
a_offset
=
ADesc
{}.
CalculateOffset
(
make_tuple
(
k
,
m
));
if
constexpr
(
N
==
2
)
{
constexpr
auto
b_offset_0
=
BDesc
{}.
CalculateOffset
(
make_tuple
(
k
,
I0
));
constexpr
auto
b_offset_1
=
BDesc
{}.
CalculateOffset
(
make_tuple
(
k
,
I1
));
constexpr
auto
c_offset_0
=
CDesc
{}.
CalculateOffset
(
make_tuple
(
m
,
I0
));
constexpr
auto
c_offset_1
=
CDesc
{}.
CalculateOffset
(
make_tuple
(
m
,
I1
));
amd_assembly_outer_product_1x2
(
p_a
[
a_offset
],
p_b
[
b_offset_0
],
p_b
[
b_offset_1
],
p_c
[
c_offset_0
],
p_c
[
c_offset_1
]);
}
else
if
constexpr
(
N
==
4
)
{
constexpr
auto
b_offset_0
=
BDesc
{}.
CalculateOffset
(
make_tuple
(
k
,
I0
));
constexpr
auto
b_offset_1
=
BDesc
{}.
CalculateOffset
(
make_tuple
(
k
,
I1
));
constexpr
auto
b_offset_2
=
BDesc
{}.
CalculateOffset
(
make_tuple
(
k
,
I2
));
constexpr
auto
b_offset_3
=
BDesc
{}.
CalculateOffset
(
make_tuple
(
k
,
I3
));
constexpr
auto
c_offset_0
=
CDesc
{}.
CalculateOffset
(
make_tuple
(
m
,
I0
));
constexpr
auto
c_offset_1
=
CDesc
{}.
CalculateOffset
(
make_tuple
(
m
,
I1
));
constexpr
auto
c_offset_2
=
CDesc
{}.
CalculateOffset
(
make_tuple
(
m
,
I2
));
constexpr
auto
c_offset_3
=
CDesc
{}.
CalculateOffset
(
make_tuple
(
m
,
I3
));
amd_assembly_outer_product_1x4
(
p_a
[
a_offset
],
p_b
[
b_offset_0
],
p_b
[
b_offset_1
],
p_b
[
b_offset_2
],
p_b
[
b_offset_3
],
p_c
[
c_offset_0
],
p_c
[
c_offset_1
],
p_c
[
c_offset_2
],
p_c
[
c_offset_3
]);
}
});
});
}
#endif
template
<
typename
FloatA
,
typename
FloatB
,
typename
FloatC
>
__device__
static
void
Run
(
const
FloatA
*
p_a
,
const
FloatB
*
p_b
,
FloatC
*
p_c
)
{
#if CK_THREADWISE_GEMM_USE_AMD_INLINE_ASM
constexpr
bool
has_amd_asm
=
is_same
<
FloatC
,
float
>
{}
&&
((
is_same
<
FloatA
,
float
>
{}
&&
is_same
<
FloatB
,
float
>
{})
||
(
is_same
<
FloatA
,
half2_t
>
{}
&&
is_same
<
FloatB
,
half2_t
>
{})
||
(
is_same
<
FloatA
,
half4_t
>
{}
&&
is_same
<
FloatB
,
half4_t
>
{}));
if
constexpr
(
has_amd_asm
)
{
Run_amd_asm
(
p_a
,
p_b
,
p_c
);
}
else
{
Run_source
(
p_a
,
p_b
,
p_c
);
}
#else
Run_source
(
p_a
,
p_b
,
p_c
);
#endif
}
};
}
// namespace ck
#endif
driver/include/device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw.hpp
0 → 100644
View file @
61a1c170
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "driver_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw.hpp"
template
<
class
T
,
class
InDesc
,
class
WeiDesc
,
class
OutDesc
,
class
ConvStrides
,
class
ConvDilations
,
class
InLeftPads
,
class
InRightPads
>
void
device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw
(
InDesc
,
const
Tensor
<
T
>&
in_nchw
,
WeiDesc
,
const
Tensor
<
T
>&
wei_kcyx
,
OutDesc
,
Tensor
<
T
>&
out_nkhw
,
ConvStrides
,
ConvDilations
,
InLeftPads
,
InRightPads
,
ck
::
index_t
nrepeat
)
{
std
::
cout
<<
"device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw"
<<
std
::
endl
;
using
namespace
ck
;
using
TDevice
=
typename
conditional
<
is_same
<
half_float
::
half
,
T
>::
value
,
half_t
,
T
>::
type
;
std
::
size_t
data_sz
=
sizeof
(
T
);
DeviceMem
in_nchw_device_buf
(
data_sz
*
in_nchw
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_kcyx_device_buf
(
data_sz
*
wei_kcyx
.
mDesc
.
GetElementSpace
());
DeviceMem
out_nkhw_device_buf
(
data_sz
*
out_nkhw
.
mDesc
.
GetElementSpace
());
in_nchw_device_buf
.
ToDevice
(
in_nchw
.
mData
.
data
());
wei_kcyx_device_buf
.
ToDevice
(
wei_kcyx
.
mData
.
data
());
out_nkhw_device_buf
.
ToDevice
(
out_nkhw
.
mData
.
data
());
#if 0
// run-time variables
const auto in_n_c_hi_wi_desc =
make_dynamic_naive_tensor_descriptor_packed_v2(to_multi_index(InDesc::GetLengths()));
const auto wei_k_c_y_x_desc =
make_dynamic_naive_tensor_descriptor_packed_v2(to_multi_index(WeiDesc::GetLengths()));
const auto out_n_k_ho_wo_desc =
make_dynamic_naive_tensor_descriptor_packed_v2(to_multi_index(OutDesc::GetLengths()));
const auto conv_strides = to_multi_index(ConvStrides{});
const auto conv_dilations = to_multi_index(ConvDilations{});
const auto in_left_pads = to_multi_index(InLeftPads{});
const auto in_right_pads = to_multi_index(InRightPads{});
#else
// compile-time variables
const
auto
in_n_c_hi_wi_desc
=
make_dynamic_naive_tensor_descriptor_packed_v2
(
sequence_to_tuple_of_number
(
InDesc
::
GetLengths
()));
const
auto
wei_k_c_y_x_desc
=
make_dynamic_naive_tensor_descriptor_packed_v2
(
sequence_to_tuple_of_number
(
WeiDesc
::
GetLengths
()));
const
auto
out_n_k_ho_wo_desc
=
make_dynamic_naive_tensor_descriptor_packed_v2
(
sequence_to_tuple_of_number
(
OutDesc
::
GetLengths
()));
const
auto
conv_strides
=
sequence_to_tuple_of_number
(
ConvStrides
{});
const
auto
conv_dilations
=
sequence_to_tuple_of_number
(
ConvDilations
{});
const
auto
in_left_pads
=
sequence_to_tuple_of_number
(
InLeftPads
{});
const
auto
in_right_pads
=
sequence_to_tuple_of_number
(
InRightPads
{});
#endif
#if 1
// cdata = 16, BlockSize = 64, 16x64x4
constexpr
index_t
BlockSize
=
64
;
constexpr
index_t
GemmMPerBlock
=
16
;
constexpr
index_t
GemmNPerBlock
=
64
;
constexpr
index_t
GemmKPerBlock
=
4
;
constexpr
index_t
GemmMPerThread
=
2
;
constexpr
index_t
GemmNPerThread
=
2
;
constexpr
index_t
GemmKPerThread
=
1
;
constexpr
index_t
GemmMLevel0Cluster
=
2
;
constexpr
index_t
GemmNLevel0Cluster
=
2
;
constexpr
index_t
GemmMLevel1Cluster
=
2
;
constexpr
index_t
GemmNLevel1Cluster
=
8
;
constexpr
index_t
ThreadGemmDataPerReadM
=
2
;
constexpr
index_t
ThreadGemmDataPerReadN
=
2
;
using
GemmABlockTransferThreadSliceLengths_GemmK_GemmM
=
Sequence
<
1
,
1
>
;
using
GemmABlockTransferThreadClusterLengths_GemmK_GemmM
=
Sequence
<
4
,
16
>
;
constexpr
index_t
GemmABlockTransferSrcScalarPerVector_GemmK
=
1
;
constexpr
index_t
GemmABlockTransferDstScalarPerVector_GemmM
=
1
;
using
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN
=
Sequence
<
4
,
1
>
;
using
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN
=
Sequence
<
1
,
64
>
;
constexpr
index_t
GemmBBlockTransferSrcScalarPerVector_GemmN
=
1
;
constexpr
index_t
GemmBBlockTransferDstScalarPerVector_GemmN
=
1
;
constexpr
index_t
GemmCThreadTransferDstScalarPerVector_GemmN1
=
2
;
#elif 0
// cdata = 16, BlockSize = 64, 16x64x4
// GemmBBlockCopySrcDataPerRead_GemmN = 4
// GemmCThreadCopyDstDataPerWrite_GemmN1 = 2
constexpr
index_t
BlockSize
=
64
;
constexpr
index_t
GemmMPerBlock
=
16
;
constexpr
index_t
GemmNPerBlock
=
64
;
constexpr
index_t
GemmKPerBlock
=
4
;
constexpr
index_t
GemmMPerThread
=
2
;
constexpr
index_t
GemmNPerThread
=
2
;
constexpr
index_t
GemmKPerThread
=
1
;
constexpr
index_t
GemmMLevel0Cluster
=
2
;
constexpr
index_t
GemmNLevel0Cluster
=
2
;
constexpr
index_t
GemmMLevel1Cluster
=
2
;
constexpr
index_t
GemmNLevel1Cluster
=
8
;
constexpr
index_t
ThreadGemmDataPerReadM
=
2
;
constexpr
index_t
ThreadGemmDataPerReadN
=
2
;
using
GemmABlockTransferThreadSliceLengths_GemmK_GemmM
=
Sequence
<
1
,
1
>
;
using
GemmABlockTransferThreadClusterLengths_GemmK_GemmM
=
Sequence
<
4
,
16
>
;
constexpr
index_t
GemmABlockTransferSrcScalarPerVector_GemmK
=
1
;
constexpr
index_t
GemmABlockTransferDstScalarPerVector_GemmM
=
1
;
using
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN
=
Sequence
<
1
,
4
>
;
using
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN
=
Sequence
<
4
,
16
>
;
constexpr
index_t
GemmBBlockTransferSrcScalarPerVector_GemmN
=
4
;
constexpr
index_t
GemmBBlockTransferDstScalarPerVector_GemmN
=
4
;
constexpr
index_t
GemmCThreadTransferDstScalarPerVector_GemmN1
=
2
;
#elif 0
// cdata = 32, BlockSize = 64, 16x128x4
// GemmBBlockCopySrcDataPerRead_GemmN = 4
// GemmCThreadCopyDstDataPerWrite_GemmN1 = 4
constexpr
index_t
BlockSize
=
64
;
constexpr
index_t
GemmMPerBlock
=
16
;
constexpr
index_t
GemmNPerBlock
=
128
;
constexpr
index_t
GemmKPerBlock
=
4
;
constexpr
index_t
GemmMPerThread
=
2
;
constexpr
index_t
GemmNPerThread
=
4
;
constexpr
index_t
GemmKPerThread
=
1
;
constexpr
index_t
GemmMLevel0Cluster
=
2
;
constexpr
index_t
GemmNLevel0Cluster
=
2
;
constexpr
index_t
GemmMLevel1Cluster
=
2
;
constexpr
index_t
GemmNLevel1Cluster
=
8
;
constexpr
index_t
ThreadGemmDataPerReadM
=
2
;
constexpr
index_t
ThreadGemmDataPerReadN
=
4
;
using
GemmABlockTransferThreadSliceLengths_GemmK_GemmM
=
Sequence
<
1
,
1
>
;
using
GemmABlockTransferThreadClusterLengths_GemmK_GemmM
=
Sequence
<
4
,
16
>
;
constexpr
index_t
GemmABlockTransferSrcScalarPerVector_GemmK
=
1
;
constexpr
index_t
GemmABlockTransferDstScalarPerVector_GemmM
=
1
;
using
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN
=
Sequence
<
2
,
4
>
;
using
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN
=
Sequence
<
2
,
32
>
;
constexpr
index_t
GemmBBlockTransferSrcScalarPerVector_GemmN
=
4
;
constexpr
index_t
GemmBBlockTransferDstScalarPerVector_GemmN
=
4
;
constexpr
index_t
GemmCThreadTransferDstScalarPerVector_GemmN1
=
4
;
#elif 0
// cdata = 64, BlockSize = 128, 32x256x8
constexpr
index_t
BlockSize
=
128
;
constexpr
index_t
GemmMPerBlock
=
32
;
constexpr
index_t
GemmNPerBlock
=
256
;
constexpr
index_t
GemmKPerBlock
=
8
;
constexpr
index_t
GemmMPerThread
=
4
;
constexpr
index_t
GemmNPerThread
=
4
;
constexpr
index_t
GemmKPerThread
=
1
;
constexpr
index_t
GemmMLevel0Cluster
=
2
;
constexpr
index_t
GemmNLevel0Cluster
=
2
;
constexpr
index_t
GemmMLevel1Cluster
=
2
;
constexpr
index_t
GemmNLevel1Cluster
=
16
;
constexpr
index_t
ThreadGemmDataPerReadM
=
4
;
constexpr
index_t
ThreadGemmDataPerReadN
=
4
;
using
GemmABlockTransferThreadSliceLengths_GemmK_GemmM
=
Sequence
<
2
,
1
>
;
using
GemmABlockTransferThreadClusterLengths_GemmK_GemmM
=
Sequence
<
4
,
32
>
;
constexpr
index_t
GemmABlockTransferSrcScalarPerVector_GemmK
=
1
;
constexpr
index_t
GemmABlockTransferDstScalarPerVector_GemmM
=
1
;
using
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN
=
Sequence
<
8
,
2
>
;
using
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN
=
Sequence
<
1
,
128
>
;
constexpr
index_t
GemmBBlockTransferSrcScalarPerVector_GemmN
=
1
;
constexpr
index_t
GemmBBlockTransferDstScalarPerVector_GemmN
=
1
;
constexpr
index_t
GemmCThreadTransferDstScalarPerVector_GemmN1
=
1
;
#elif 0
// cdata = 64, BlockSize = 256, 128x128x2
constexpr
index_t
BlockSize
=
256
;
constexpr
index_t
GemmMPerBlock
=
128
;
constexpr
index_t
GemmNPerBlock
=
128
;
constexpr
index_t
GemmKPerBlock
=
2
;
constexpr
index_t
GemmMPerThread
=
4
;
constexpr
index_t
GemmNPerThread
=
4
;
constexpr
index_t
GemmKPerThread
=
1
;
constexpr
index_t
GemmMLevel0Cluster
=
2
;
constexpr
index_t
GemmNLevel0Cluster
=
2
;
constexpr
index_t
GemmMLevel1Cluster
=
8
;
constexpr
index_t
GemmNLevel1Cluster
=
8
;
using
GemmABlockTransferThreadSliceLengths_GemmK_GemmM
=
Sequence
<
1
,
1
>
;
using
GemmABlockTransferThreadClusterLengths_GemmK_GemmM
=
Sequence
<
2
,
128
>
;
constexpr
index_t
GemmABlockTransferSrcScalarPerVector_GemmK
=
1
;
constexpr
index_t
GemmABlockTransferDstScalarPerVector_GemmM
=
1
;
using
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN
=
Sequence
<
1
,
1
>
;
using
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN
=
Sequence
<
2
,
128
>
;
constexpr
index_t
GemmBBlockTransferSrcScalarPerVector_GemmN
=
1
;
constexpr
index_t
GemmBBlockTransferDstScalarPerVector_GemmN
=
1
;
constexpr
index_t
GemmCThreadTransferDstScalarPerVector_GemmN1
=
1
;
#elif 0
// cdata = 64, BlockSize = 256, 128x128x4
constexpr
index_t
BlockSize
=
256
;
constexpr
index_t
GemmMPerBlock
=
128
;
constexpr
index_t
GemmNPerBlock
=
128
;
constexpr
index_t
GemmKPerBlock
=
4
;
constexpr
index_t
GemmMPerThread
=
4
;
constexpr
index_t
GemmNPerThread
=
4
;
constexpr
index_t
GemmKPerThread
=
1
;
constexpr
index_t
GemmMLevel0Cluster
=
2
;
constexpr
index_t
GemmNLevel0Cluster
=
2
;
constexpr
index_t
GemmMLevel1Cluster
=
8
;
constexpr
index_t
GemmNLevel1Cluster
=
8
;
using
GemmABlockTransferThreadSliceLengths_GemmK_GemmM
=
Sequence
<
2
,
1
>
;
using
GemmABlockTransferThreadClusterLengths_GemmK_GemmM
=
Sequence
<
2
,
128
>
;
constexpr
index_t
GemmABlockTransferSrcScalarPerVector_GemmK
=
2
;
constexpr
index_t
GemmABlockTransferDstScalarPerVector_GemmM
=
1
;
using
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN
=
Sequence
<
2
,
1
>
;
using
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN
=
Sequence
<
2
,
128
>
;
constexpr
index_t
GemmBBlockTransferSrcScalarPerVector_GemmN
=
1
;
constexpr
index_t
GemmBBlockTransferDstScalarPerVector_GemmN
=
1
;
constexpr
index_t
GemmCThreadTransferDstScalarPerVector_GemmN1
=
1
;
#elif 1
// cdata = 64, BlockSize = 256, 128x128x8
// b thread copy 4x1
constexpr
index_t
BlockSize
=
256
;
constexpr
index_t
GemmMPerBlock
=
128
;
constexpr
index_t
GemmNPerBlock
=
128
;
constexpr
index_t
GemmKPerBlock
=
8
;
constexpr
index_t
GemmMPerThread
=
4
;
constexpr
index_t
GemmNPerThread
=
4
;
constexpr
index_t
GemmKPerThread
=
1
;
constexpr
index_t
GemmMLevel0Cluster
=
2
;
constexpr
index_t
GemmNLevel0Cluster
=
2
;
constexpr
index_t
GemmMLevel1Cluster
=
8
;
constexpr
index_t
GemmNLevel1Cluster
=
8
;
using
GemmABlockTransferThreadSliceLengths_GemmK_GemmM
=
Sequence
<
4
,
1
>
;
using
GemmABlockTransferThreadClusterLengths_GemmK_GemmM
=
Sequence
<
2
,
128
>
;
constexpr
index_t
GemmABlockTransferSrcScalarPerVector_GemmK
=
4
;
constexpr
index_t
GemmABlockTransferDstScalarPerVector_GemmM
=
1
;
using
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN
=
Sequence
<
4
,
1
>
;
using
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN
=
Sequence
<
2
,
128
>
;
constexpr
index_t
GemmBBlockTransferSrcScalarPerVector_GemmN
=
1
;
constexpr
index_t
GemmBBlockTransferDstScalarPerVector_GemmN
=
1
;
constexpr
index_t
GemmCThreadTransferDstScalarPerVector_GemmN1
=
1
;
#elif 1
// cdata = 64, BlockSize = 256, 128x128x8
// b thread copy 2x2
constexpr
index_t
BlockSize
=
256
;
constexpr
index_t
GemmMPerBlock
=
128
;
constexpr
index_t
GemmNPerBlock
=
128
;
constexpr
index_t
GemmKPerBlock
=
8
;
constexpr
index_t
GemmMPerThread
=
4
;
constexpr
index_t
GemmNPerThread
=
4
;
constexpr
index_t
GemmKPerThread
=
1
;
constexpr
index_t
GemmMLevel0Cluster
=
2
;
constexpr
index_t
GemmNLevel0Cluster
=
2
;
constexpr
index_t
GemmMLevel1Cluster
=
8
;
constexpr
index_t
GemmNLevel1Cluster
=
8
;
using
GemmABlockTransferThreadSliceLengths_GemmK_GemmM
=
Sequence
<
4
,
1
>
;
using
GemmABlockTransferThreadClusterLengths_GemmK_GemmM
=
Sequence
<
2
,
128
>
;
constexpr
index_t
GemmABlockTransferSrcScalarPerVector_GemmK
=
2
;
constexpr
index_t
GemmABlockTransferDstScalarPerVector_GemmM
=
1
;
using
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN
=
Sequence
<
2
,
2
>
;
using
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN
=
Sequence
<
4
,
64
>
;
constexpr
index_t
GemmBBlockTransferSrcScalarPerVector_GemmN
=
1
;
constexpr
index_t
GemmBBlockTransferDstScalarPerVector_GemmN
=
1
;
constexpr
index_t
GemmCThreadTransferDstScalarPerVector_GemmN1
=
1
;
#elif 1
// cdata = 64, BlockSize = 256, 128x128x16
// GemmBBlockCopySrcDataPerRead_GemmN = 4
// GemmCThreadCopyDstDataPerWrite_GemmN1 = 4
constexpr
index_t
BlockSize
=
256
;
constexpr
index_t
GemmMPerBlock
=
128
;
constexpr
index_t
GemmNPerBlock
=
128
;
constexpr
index_t
GemmKPerBlock
=
16
;
constexpr
index_t
GemmMPerThread
=
4
;
constexpr
index_t
GemmNPerThread
=
4
;
constexpr
index_t
GemmKPerThread
=
1
;
constexpr
index_t
GemmMLevel0Cluster
=
4
;
constexpr
index_t
GemmNLevel0Cluster
=
4
;
constexpr
index_t
GemmMLevel1Cluster
=
4
;
constexpr
index_t
GemmNLevel1Cluster
=
4
;
using
GemmABlockTransferThreadSliceLengths_GemmK_GemmM
=
Sequence
<
4
,
2
>
;
using
GemmABlockTransferThreadClusterLengths_GemmK_GemmM
=
Sequence
<
4
,
64
>
;
constexpr
index_t
GemmABlockTransferSrcScalarPerVector_GemmK
=
4
;
constexpr
index_t
GemmABlockTransferDstScalarPerVector_GemmM
=
1
;
using
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN
=
Sequence
<
2
,
4
>
;
using
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN
=
Sequence
<
8
,
32
>
;
constexpr
index_t
GemmBBlockTransferSrcScalarPerVector_GemmN
=
4
;
constexpr
index_t
GemmBBlockTransferDstScalarPerVector_GemmN
=
4
;
constexpr
index_t
GemmCThreadTransferDstScalarPerVector_GemmN1
=
4
;
#endif
constexpr
auto
conv_driver
=
DriverDynamicConvolutionForwardImplicitGemm_v5r1_nchw_kcyx_nkhw_pad
<
BlockSize
,
TDevice
,
TDevice
,
GemmMPerBlock
,
GemmNPerBlock
,
GemmKPerBlock
,
GemmMPerThread
,
GemmNPerThread
,
GemmKPerThread
,
GemmMLevel0Cluster
,
GemmNLevel0Cluster
,
GemmMLevel1Cluster
,
GemmNLevel1Cluster
,
GemmABlockTransferThreadSliceLengths_GemmK_GemmM
,
GemmABlockTransferThreadClusterLengths_GemmK_GemmM
,
GemmABlockTransferSrcScalarPerVector_GemmK
,
GemmABlockTransferDstScalarPerVector_GemmM
,
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN
,
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN
,
GemmBBlockTransferSrcScalarPerVector_GemmN
,
GemmBBlockTransferDstScalarPerVector_GemmN
,
GemmCThreadTransferDstScalarPerVector_GemmN1
>
{};
conv_driver
.
Run
(
wei_k_c_y_x_desc
,
in_n_c_hi_wi_desc
,
out_n_k_ho_wo_desc
,
conv_strides
,
conv_dilations
,
in_left_pads
,
in_right_pads
,
static_cast
<
TDevice
*>
(
wei_kcyx_device_buf
.
GetDeviceBuffer
()),
static_cast
<
TDevice
*>
(
in_nchw_device_buf
.
GetDeviceBuffer
()),
static_cast
<
TDevice
*>
(
out_nkhw_device_buf
.
GetDeviceBuffer
()));
out_nkhw_device_buf
.
FromDevice
(
out_nkhw
.
mData
.
data
());
}
driver/src/conv_driver.cpp
View file @
61a1c170
...
...
@@ -17,6 +17,8 @@
#include "device_dynamic_convolution_forward_implicit_gemm_v4r4_nchw_kcyx_nkhw.hpp"
#include "device_dynamic_convolution_forward_implicit_gemm_v4r4_nhwc_kyxc_nhwk.hpp"
#include "device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw.hpp"
int
main
(
int
argc
,
char
*
argv
[])
{
using
namespace
ck
;
...
...
@@ -47,8 +49,8 @@ int main(int argc, char* argv[])
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
constexpr
index_t
N
=
1
;
constexpr
index_t
C
=
4
;
...
...
@@ -725,7 +727,7 @@ int main(int argc, char* argv[])
LeftPads
{},
RightPads
{},
nrepeat
);
#elif
1
#elif
0
device_dynamic_convolution_forward_implicit_gemm_v4r4_nhwc_kyxc_nhwk
(
in_nchw_desc
,
in_nchw
,
wei_kcyx_desc
,
...
...
@@ -737,6 +739,19 @@ int main(int argc, char* argv[])
LeftPads
{},
RightPads
{},
nrepeat
);
#elif 1
device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw
(
in_nchw_desc
,
in_nchw
,
wei_kcyx_desc
,
wei_kcyx
,
out_nkhw_desc
,
out_nkhw_device
,
ConvStrides
{},
ConvDilations
{},
LeftPads
{},
RightPads
{},
nrepeat
);
#endif
if
(
do_verification
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment