Commit 61a1c170 authored by root's avatar root
Browse files

init for v5r1

parent 4f31669f
#ifndef CK_DRIVER_DYNAMIC_CONVOLUTION_FORWARD_IMPLICIT_GEMM_V5R1_NCHW_KCYX_NKHW_HPP
#define CK_DRIVER_DYNAMIC_CONVOLUTION_FORWARD_IMPLICIT_GEMM_V5R1_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp"
#include "dynamic_tensor_descriptor.hpp"
#include "dynamic_tensor_descriptor_helper.hpp"
#include "gridwise_dynamic_gemm_v2.hpp"
#include "gridwise_operation_wrapper.hpp"
namespace ck {
// GemmM = K
// GemmN = N * Ho * Wo
// GemmK = C * Y * X
template <index_t BlockSize,
typename Float,
typename AccFloat,
index_t GemmMPerBlock,
index_t GemmNPerBlock,
index_t GemmKPerBlock,
index_t GemmMPerThread,
index_t GemmNPerThread,
index_t GemmKPerThread,
index_t GemmMLevel0Cluster,
index_t GemmNLevel0Cluster,
index_t GemmMLevel1Cluster,
index_t GemmNLevel1Cluster,
typename GemmABlockTransferThreadSliceLengths_GemmK_GemmM,
typename GemmABlockTransferThreadClusterLengths_GemmK_GemmM,
index_t GemmABlockTransferSrcScalarPerVector_GemmK,
index_t GemmABlockTransferDstScalarPerVector_GemmM,
typename GemmBBlockTransferThreadSliceLengths_GemmK_GemmN,
typename GemmBBlockTransferThreadClusterLengths_GemmK_GemmN,
index_t GemmBBlockTransferSrcScalarPerVector_GemmN,
index_t GemmBBlockTransferDstScalarPerVector_GemmN,
index_t GemmCThreadTransferDstScalarPerVector_GemmN1>
struct DriverDynamicConvolutionForwardImplicitGemm_v5r1_nchw_kcyx_nkhw_pad
{
template <typename... Wei,
typename... In,
typename... Out,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads>
__host__ void Run(const DynamicTensorDescriptor<Wei...>& wei_k_c_y_x_global_desc,
const DynamicTensorDescriptor<In...>& in_n_c_hi_wi_global_desc,
const DynamicTensorDescriptor<Out...>& out_n_k_ho_wo_global_desc,
const ConvStrides& conv_strides,
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads,
const Float* __restrict__ p_wei_global,
const Float* __restrict__ p_in_global,
Float* __restrict__ p_out_global) const
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
const auto N = in_n_c_hi_wi_global_desc.GetLength(I0);
const auto C = in_n_c_hi_wi_global_desc.GetLength(I1);
const auto K = out_n_k_ho_wo_global_desc.GetLength(I1);
const auto Hi = in_n_c_hi_wi_global_desc.GetLength(I2);
const auto Wi = in_n_c_hi_wi_global_desc.GetLength(I3);
const auto Ho = out_n_k_ho_wo_global_desc.GetLength(I2);
const auto Wo = out_n_k_ho_wo_global_desc.GetLength(I3);
const auto Y = wei_k_c_y_x_global_desc.GetLength(I2);
const auto X = wei_k_c_y_x_global_desc.GetLength(I3);
const auto ConvStrideH = conv_strides[I0];
const auto ConvStrideW = conv_strides[I1];
const auto ConvDilationH = conv_dilations[I0];
const auto ConvDilationW = conv_dilations[I1];
const auto InLeftPadH = in_left_pads[I0];
const auto InLeftPadW = in_left_pads[I1];
const auto InRightPadH = in_right_pads[I0];
const auto InRightPadW = in_right_pads[I1];
// weight tensor
const auto wei_gemmk_gemmm_global_desc = transform_dynamic_tensor_descriptor(
make_dynamic_naive_tensor_descriptor_packed_v2(make_tuple(K, C * Y * X)),
make_tuple(make_pass_through_transform(K), make_pass_through_transform(C * Y * X)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
// input tensor
const auto in_n_c_hip_wip_global_desc = transform_dynamic_tensor_descriptor(
in_n_c_hi_wi_global_desc,
make_tuple(make_pass_through_transform(N),
make_pass_through_transform(C),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_c_y_ho_x_wo_global_desc = transform_dynamic_tensor_descriptor(
in_n_c_hip_wip_global_desc,
make_tuple(
make_pass_through_transform(N),
make_pass_through_transform(C),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4, 5>{}));
const auto in_gemmk_gemmn_global_desc = transform_dynamic_tensor_descriptor(
in_n_c_y_ho_x_wo_global_desc,
make_tuple(make_merge_transform(make_tuple(C, Y, X)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<1, 2, 4>{}, Sequence<0, 3, 5>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// output tensor
const auto out_gemmm_gemmn_global_desc = transform_dynamic_tensor_descriptor(
make_dynamic_naive_tensor_descriptor_packed_v2(make_tuple(N, K, Ho * Wo)),
make_tuple(make_pass_through_transform(K),
make_merge_transform(make_tuple(N, Ho * Wo))),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto GemmM = out_gemmm_gemmn_global_desc.GetLength(I0);
const auto GemmN = out_gemmm_gemmn_global_desc.GetLength(I1);
const auto GemmK = wei_gemmk_gemmm_global_desc.GetLength(I0);
if(!(GemmM % GemmMPerBlock == 0 && GemmN % GemmNPerBlock == 0 &&
GemmK % GemmKPerBlock == 0))
{
throw std::runtime_error("wrong! GEMM size no divisible");
}
constexpr auto GemmM1 = Number<GemmMPerThread * GemmMLevel0Cluster * GemmMLevel1Cluster>{};
constexpr auto GemmN1 = Number<GemmNPerThread * GemmNLevel0Cluster * GemmNLevel1Cluster>{};
const auto GemmM0 = GemmM / GemmM1;
const auto GemmN0 = GemmN / GemmN1;
const auto out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc =
transform_dynamic_tensor_descriptor(
out_gemmm_gemmn_global_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmM0, GemmM1)),
make_unmerge_transform(make_tuple(GemmN0, GemmN1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
// hack to control index calculation when iterating over a_k_m_global tensor
constexpr auto a_k_m_global_iterator_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, Sequence<0, 0, 0>{}),
make_tuple(Sequence<0, 0, 0>{}, Sequence<0, 0, 0>{}));
constexpr auto a_k_m_global_move_slice_window_iterator_hack = Sequence<0, 0, 0>{};
// hack to control index calculation when iterating over b_k_n_global tensor
constexpr auto b_k_n_global_iterator_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1>{}),
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0>{},
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2>{}));
constexpr auto b_k_n_global_move_slice_window_iterator_hack =
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2>{};
// hack to control index calculation when iterating over c_m0_m1_n0_n1_global tensor
// hack for NKHW format
constexpr auto c_m0_m1_n0_n1_global_tensor_iterator_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0>{},
Sequence<0, 0, 1, 0, 0>{},
Sequence<0, 0, 1, 0, 0>{}),
make_tuple(Sequence<0, 0, 0, 0, 0>{},
Sequence<0, 0, 0, 0, 0>{},
Sequence<0, 0, 2, 0, 0>{},
Sequence<0, 0, 2, 0, 0>{}));
// GEMM
using gridwise_gemm = GridwiseDynamicGemm_km_kn_mn_v2<
BlockSize,
Float,
AccFloat,
InMemoryDataOperation::Set,
decltype(wei_gemmk_gemmm_global_desc),
decltype(in_gemmk_gemmn_global_desc),
decltype(out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc),
GemmMPerBlock,
GemmNPerBlock,
GemmKPerBlock,
GemmMPerThread,
GemmNPerThread,
GemmKPerThread,
GemmMLevel0Cluster,
GemmNLevel0Cluster,
GemmMLevel1Cluster,
GemmNLevel1Cluster,
GemmABlockTransferThreadSliceLengths_GemmK_GemmM,
GemmABlockTransferThreadClusterLengths_GemmK_GemmM,
Sequence<1, 0>,
Sequence<1, 0>,
0,
GemmABlockTransferSrcScalarPerVector_GemmK,
GemmABlockTransferDstScalarPerVector_GemmM,
false, // don't move back src coordinate after threadwise copy
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN,
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN,
Sequence<0, 1>,
Sequence<0, 1>,
1,
GemmBBlockTransferSrcScalarPerVector_GemmN,
GemmBBlockTransferDstScalarPerVector_GemmN,
false, // don't move back src coordinate after threadwise copy, which will be fused with
// MoveSrcSliceWindow() to save addr computation
Sequence<2, 3, 0, 1>,
3,
GemmCThreadTransferDstScalarPerVector_GemmN1,
decltype(a_k_m_global_iterator_hacks),
decltype(b_k_n_global_iterator_hacks),
decltype(c_m0_m1_n0_n1_global_tensor_iterator_hacks),
decltype(a_k_m_global_move_slice_window_iterator_hack),
decltype(b_k_n_global_move_slice_window_iterator_hack)>;
const auto GridSize = (GemmM / GemmMPerBlock) * (GemmN / GemmNPerBlock);
const bool has_main_k_block_loop = (GemmK + GemmKPerBlock) / (2 * GemmKPerBlock) > 1;
const bool has_double_tail_k_block_loop = (GemmK / GemmKPerBlock) % 2 == 0;
#if 1 // pass tensor descriptors by their reference
index_t nrepeat = 100;
for(index_t i = 0; i < 5; ++i)
{
std::cout << "Start running " << nrepeat << " times..." << std::endl;
KernelTimer timer;
timer.Start();
for(index_t j = 0; j < nrepeat; ++j)
{
if(has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel =
run_gridwise_operation<gridwise_gemm,
decltype(wei_gemmk_gemmm_global_desc),
const Float*,
decltype(in_gemmk_gemmn_global_desc),
const Float*,
decltype(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc),
Float*,
integral_constant<bool, true>,
integral_constant<bool, true>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
0,
wei_gemmk_gemmm_global_desc,
p_wei_global,
in_gemmk_gemmn_global_desc,
p_in_global,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc,
p_out_global,
integral_constant<bool, true>{},
integral_constant<bool, true>{});
}
else if(has_main_k_block_loop && !has_double_tail_k_block_loop)
{
const auto kernel =
run_gridwise_operation<gridwise_gemm,
decltype(wei_gemmk_gemmm_global_desc),
const Float*,
decltype(in_gemmk_gemmn_global_desc),
const Float*,
decltype(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc),
Float*,
integral_constant<bool, true>,
integral_constant<bool, false>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
0,
wei_gemmk_gemmm_global_desc,
p_wei_global,
in_gemmk_gemmn_global_desc,
p_in_global,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc,
p_out_global,
integral_constant<bool, true>{},
integral_constant<bool, false>{});
}
else if(!has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel =
run_gridwise_operation<gridwise_gemm,
decltype(wei_gemmk_gemmm_global_desc),
const Float*,
decltype(in_gemmk_gemmn_global_desc),
const Float*,
decltype(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc),
Float*,
integral_constant<bool, false>,
integral_constant<bool, true>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
0,
wei_gemmk_gemmm_global_desc,
p_wei_global,
in_gemmk_gemmn_global_desc,
p_in_global,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc,
p_out_global,
integral_constant<bool, false>{},
integral_constant<bool, true>{});
}
else
{
const auto kernel =
run_gridwise_operation<gridwise_gemm,
decltype(wei_gemmk_gemmm_global_desc),
const Float*,
decltype(in_gemmk_gemmn_global_desc),
const Float*,
decltype(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc),
Float*,
integral_constant<bool, false>,
integral_constant<bool, false>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
0,
wei_gemmk_gemmm_global_desc,
p_wei_global,
in_gemmk_gemmn_global_desc,
p_in_global,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc,
p_out_global,
integral_constant<bool, false>{},
integral_constant<bool, false>{});
}
}
timer.End();
float ave_time = timer.GetElapsedTime() / nrepeat;
float perf = (float)calculate_convolution_flops(in_n_c_hi_wi_global_desc,
wei_k_c_y_x_global_desc,
out_n_k_ho_wo_global_desc) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s"
<< std::endl;
}
#elif 1 // pass tensor descriptors by their pointers
using ADesc = decltype(wei_gemmk_gemmm_global_desc);
using BDesc = decltype(in_gemmk_gemmn_global_desc);
using CDesc = decltype(out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc);
DeviceMem wei_gemmk_gemmm_global_desc_device_buf(sizeof(ADesc));
DeviceMem in_gemmk_gemmn_global_desc_device_buf(sizeof(BDesc));
DeviceMem out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf(sizeof(CDesc));
wei_gemmk_gemmm_global_desc_device_buf.ToDevice(&wei_gemmk_gemmm_global_desc);
in_gemmk_gemmn_global_desc_device_buf.ToDevice(&in_gemmk_gemmn_global_desc);
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf.ToDevice(
&out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc);
index_t nrepeat = 100;
for(index_t i = 0; i < 5; ++i)
{
std::cout << "Start running " << nrepeat << " times..." << std::endl;
KernelTimer timer;
timer.Start();
for(index_t j = 0; j < nrepeat; ++j)
{
if(has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel =
run_gridwise_operation<gridwise_gemm,
decltype(wei_gemmk_gemmm_global_desc)*,
const Float*,
decltype(in_gemmk_gemmn_global_desc)*,
const Float*,
decltype(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc)*,
Float*,
integral_constant<bool, true>,
integral_constant<bool, true>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
0,
reinterpret_cast<const ADesc*>(
wei_gemmk_gemmm_global_desc_device_buf.GetDeviceBuffer()),
p_wei_global,
reinterpret_cast<const BDesc*>(
in_gemmk_gemmn_global_desc_device_buf.GetDeviceBuffer()),
p_in_global,
reinterpret_cast<const CDesc*>(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.GetDeviceBuffer()),
p_out_global,
integral_constant<bool, true>{},
integral_constant<bool, true>{});
}
else if(has_main_k_block_loop && !has_double_tail_k_block_loop)
{
const auto kernel =
run_gridwise_operation<gridwise_gemm,
decltype(wei_gemmk_gemmm_global_desc)*,
const Float*,
decltype(in_gemmk_gemmn_global_desc)*,
const Float*,
decltype(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc)*,
Float*,
integral_constant<bool, true>,
integral_constant<bool, false>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
0,
reinterpret_cast<const ADesc*>(
wei_gemmk_gemmm_global_desc_device_buf.GetDeviceBuffer()),
p_wei_global,
reinterpret_cast<const BDesc*>(
in_gemmk_gemmn_global_desc_device_buf.GetDeviceBuffer()),
p_in_global,
reinterpret_cast<const CDesc*>(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.GetDeviceBuffer()),
p_out_global,
integral_constant<bool, true>{},
integral_constant<bool, false>{});
}
else if(!has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel =
run_gridwise_operation<gridwise_gemm,
decltype(wei_gemmk_gemmm_global_desc)*,
const Float*,
decltype(in_gemmk_gemmn_global_desc)*,
const Float*,
decltype(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc)*,
Float*,
integral_constant<bool, false>,
integral_constant<bool, true>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
0,
reinterpret_cast<const ADesc*>(
wei_gemmk_gemmm_global_desc_device_buf.GetDeviceBuffer()),
p_wei_global,
reinterpret_cast<const BDesc*>(
in_gemmk_gemmn_global_desc_device_buf.GetDeviceBuffer()),
p_in_global,
reinterpret_cast<const CDesc*>(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.GetDeviceBuffer()),
p_out_global,
integral_constant<bool, false>{},
integral_constant<bool, true>{});
}
else
{
const auto kernel =
run_gridwise_operation<gridwise_gemm,
decltype(wei_gemmk_gemmm_global_desc)*,
const Float*,
decltype(in_gemmk_gemmn_global_desc)*,
const Float*,
decltype(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc)*,
Float*,
integral_constant<bool, false>,
integral_constant<bool, false>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
0,
reinterpret_cast<const ADesc*>(
wei_gemmk_gemmm_global_desc_device_buf.GetDeviceBuffer()),
p_wei_global,
reinterpret_cast<const BDesc*>(
in_gemmk_gemmn_global_desc_device_buf.GetDeviceBuffer()),
p_in_global,
reinterpret_cast<const CDesc*>(
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.GetDeviceBuffer()),
p_out_global,
integral_constant<bool, false>{},
integral_constant<bool, false>{});
}
}
timer.End();
float ave_time = timer.GetElapsedTime() / nrepeat;
float perf = (float)calculate_convolution_flops(in_n_c_hi_wi_global_desc,
wei_k_c_y_x_global_desc,
out_n_k_ho_wo_global_desc) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s"
<< std::endl;
}
#elif 1 // pass tensor descriptor by void*
using ADesc = decltype(wei_gemmk_gemmm_global_desc);
using BDesc = decltype(in_gemmk_gemmn_global_desc);
using CDesc = decltype(out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc);
DeviceMem wei_gemmk_gemmm_global_desc_device_buf(sizeof(ADesc));
DeviceMem in_gemmk_gemmn_global_desc_device_buf(sizeof(BDesc));
DeviceMem out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf(sizeof(CDesc));
wei_gemmk_gemmm_global_desc_device_buf.ToDevice(&wei_gemmk_gemmm_global_desc);
in_gemmk_gemmn_global_desc_device_buf.ToDevice(&in_gemmk_gemmn_global_desc);
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf.ToDevice(
&out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc);
index_t nrepeat = 100;
for(index_t i = 0; i < 5; ++i)
{
std::cout << "Start running " << nrepeat << " times..." << std::endl;
KernelTimer timer;
timer.Start();
for(index_t j = 0; j < nrepeat; ++j)
{
if(has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel = run_gridwise_operation<gridwise_gemm,
const void*,
const Float*,
const void*,
const Float*,
const void*,
Float*,
integral_constant<bool, true>,
integral_constant<bool, true>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
0,
wei_gemmk_gemmm_global_desc_device_buf.GetDeviceBuffer(),
p_wei_global,
in_gemmk_gemmn_global_desc_device_buf.GetDeviceBuffer(),
p_in_global,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.GetDeviceBuffer(),
p_out_global,
integral_constant<bool, true>{},
integral_constant<bool, true>{});
}
else if(has_main_k_block_loop && !has_double_tail_k_block_loop)
{
const auto kernel = run_gridwise_operation<gridwise_gemm,
const void*,
const Float*,
const void*,
const Float*,
const void*,
Float*,
integral_constant<bool, true>,
integral_constant<bool, false>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
0,
wei_gemmk_gemmm_global_desc_device_buf.GetDeviceBuffer(),
p_wei_global,
in_gemmk_gemmn_global_desc_device_buf.GetDeviceBuffer(),
p_in_global,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.GetDeviceBuffer(),
p_out_global,
integral_constant<bool, true>{},
integral_constant<bool, false>{});
}
else if(!has_main_k_block_loop && has_double_tail_k_block_loop)
{
const auto kernel = run_gridwise_operation<gridwise_gemm,
const void*,
const Float*,
const void*,
const Float*,
const void*,
Float*,
integral_constant<bool, false>,
integral_constant<bool, true>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
0,
wei_gemmk_gemmm_global_desc_device_buf.GetDeviceBuffer(),
p_wei_global,
in_gemmk_gemmn_global_desc_device_buf.GetDeviceBuffer(),
p_in_global,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.GetDeviceBuffer(),
p_out_global,
integral_constant<bool, false>{},
integral_constant<bool, true>{});
}
else
{
const auto kernel = run_gridwise_operation<gridwise_gemm,
const void*,
const Float*,
const void*,
const Float*,
const void*,
Float*,
integral_constant<bool, false>,
integral_constant<bool, false>>;
launch_kernel(kernel,
dim3(GridSize),
dim3(BlockSize),
0,
0,
wei_gemmk_gemmm_global_desc_device_buf.GetDeviceBuffer(),
p_wei_global,
in_gemmk_gemmn_global_desc_device_buf.GetDeviceBuffer(),
p_in_global,
out_gemmm0_gemmm1_gemmn0_gemmn1_global_desc_desc_device_buf
.GetDeviceBuffer(),
p_out_global,
integral_constant<bool, false>{},
integral_constant<bool, false>{});
}
}
timer.End();
float ave_time = timer.GetElapsedTime() / nrepeat;
float perf = (float)calculate_convolution_flops(in_n_c_hi_wi_global_desc,
wei_k_c_y_x_global_desc,
out_n_k_ho_wo_global_desc) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s"
<< std::endl;
}
#endif
}
};
} // namespace ck
#endif
#ifndef CK_BLOCKWISE_GEMM_V3_HPP
#define CK_BLOCKWISE_GEMM_V3_HPP
#include "common_header.hpp"
#include "threadwise_gemm_v3.hpp"
namespace ck {
// blockwise GEMM: C[M, N] += transpose(A[K, M]) * B[K, N]
// A and B are visable to the whole block, C is distributed among each thread
// If following number are power of 2, index calculation shall be greatly reduced:
// MPerThreadSubC, NPerThreadSubC, MLevel0ThreadCluster, NLevel0ThreadCluster,
// MLevel1ThreadCluster, NLevel1ThreadCluster
template <index_t BlockSize,
typename BlockMatrixA,
typename BlockMatrixB,
typename ThreadMatrixC,
index_t MPerThreadSubC,
index_t NPerThreadSubC,
index_t KPerThreadLoop,
index_t MLevel0ThreadCluster,
index_t NLevel0ThreadCluster,
index_t MLevel1ThreadCluster,
index_t NLevel1ThreadCluster,
index_t ThreadGemmADataPerRead_M,
index_t ThreadGemmBDataPerRead_N>
struct BlockwiseGemm_km_kn_m0m1n0n1_v3
{
struct MatrixIndex
{
index_t row;
index_t col;
};
index_t mMyThreadOffsetA;
index_t mMyThreadOffsetB;
__device__ BlockwiseGemm_km_kn_m0m1n0n1_v3()
{
static_assert(BlockMatrixA::IsKnownAtCompileTime() &&
BlockMatrixB::IsKnownAtCompileTime() &&
ThreadMatrixC::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr index_t ThreadPerLevel1Cluster = MLevel0ThreadCluster * NLevel0ThreadCluster *
MLevel1ThreadCluster * NLevel1ThreadCluster;
static_assert(BlockSize == ThreadPerLevel1Cluster, "wrong! wrong blocksize\n");
static_assert(BlockMatrixA{}.GetLength(I0) == BlockMatrixB{}.GetLength(I0),
"wrong! K dimension not consistent\n");
constexpr index_t M = BlockMatrixA{}.GetLength(I1); // A is transposed
constexpr index_t N = BlockMatrixB{}.GetLength(I1);
static_assert(M % (MPerThreadSubC * MLevel0ThreadCluster * MLevel1ThreadCluster) == 0 &&
N % (NPerThreadSubC * NLevel0ThreadCluster * NLevel1ThreadCluster) == 0,
"wrong! Cannot evenly divide work among\n");
static_assert(ThreadMatrixC{}.GetLength(I0) == GetThreadMatrixCLengths()[I0] &&
ThreadMatrixC{}.GetLength(I1) == GetThreadMatrixCLengths()[I1],
"wrong! ThreadMatrixC lengths is wrong");
auto c_thread_mtx_index = GetBeginOfThreadMatrixC(get_thread_local_1d_id());
mMyThreadOffsetA = BlockMatrixA{}.CalculateOffset(make_tuple(0, c_thread_mtx_index.row));
mMyThreadOffsetB = BlockMatrixB{}.CalculateOffset(make_tuple(0, c_thread_mtx_index.col));
}
__device__ static constexpr auto GetThreadMatrixCLengths()
{
constexpr auto I1 = Number<1>{};
constexpr index_t M = BlockMatrixA{}.GetLength(I1); // A is transposed
constexpr index_t N = BlockMatrixB{}.GetLength(I1);
constexpr index_t MRepeat =
M / (MPerThreadSubC * MLevel0ThreadCluster * MLevel1ThreadCluster);
constexpr index_t NRepeat =
N / (NPerThreadSubC * NLevel0ThreadCluster * NLevel1ThreadCluster);
return Sequence<MRepeat * MPerThreadSubC, NRepeat * NPerThreadSubC>{};
}
__device__ static MatrixIndex GetBeginOfThreadMatrixC(index_t thread_id)
{
constexpr index_t ThreadPerLevel0Cluster = MLevel0ThreadCluster * NLevel0ThreadCluster;
index_t level1_id = thread_id / ThreadPerLevel0Cluster;
index_t level1_m_id = level1_id / NLevel1ThreadCluster;
index_t level1_n_id = level1_id % NLevel1ThreadCluster;
index_t level0_id = thread_id % ThreadPerLevel0Cluster;
index_t level0_m_id = level0_id / NLevel0ThreadCluster;
index_t level0_n_id = level0_id % NLevel0ThreadCluster;
constexpr index_t MPerLevel0Cluster = MPerThreadSubC * MLevel0ThreadCluster;
constexpr index_t NPerLevel0Cluster = NPerThreadSubC * NLevel0ThreadCluster;
return MatrixIndex{level1_m_id * MPerLevel0Cluster + level0_m_id * MPerThreadSubC,
level1_n_id * NPerLevel0Cluster + level0_n_id * NPerThreadSubC};
}
template <typename FloatA, typename FloatB, typename FloatC>
__device__ void
Run_naive(const FloatA* p_a_block, const FloatB* p_b_block, FloatC* p_c_thread) const
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto a_block_mtx = BlockMatrixA{};
constexpr auto b_block_mtx = BlockMatrixB{};
constexpr auto c_thread_mtx = ThreadMatrixC{};
constexpr auto K = a_block_mtx.GetLength(I0);
constexpr auto MPerThread = c_thread_mtx.GetLength(I0);
constexpr auto NPerThread = c_thread_mtx.GetLength(I1);
constexpr index_t MPerLevel1Cluster =
MPerThreadSubC * MLevel0ThreadCluster * MLevel1ThreadCluster;
constexpr index_t NPerLevel1Cluster =
NPerThreadSubC * NLevel0ThreadCluster * NLevel1ThreadCluster;
constexpr index_t MRepeat = MPerThread / MPerThreadSubC;
constexpr index_t NRepeat = NPerThread / NPerThreadSubC;
// thread A, B for GEMM
constexpr auto a_thread_mtx = make_dynamic_naive_tensor_descriptor_packed_v2(
Number<KPerThreadLoop>{}, Number<MPerThread>{});
constexpr auto b_thread_mtx = make_dynamic_naive_tensor_descriptor_packed_v2(
Number<KPerThreadLoop>{}, Number<NPerThread>{});
FloatA p_a_thread[a_thread_mtx.GetElementSpace()];
FloatB p_b_thread[b_thread_mtx.GetElementSpace()];
constexpr auto a_thread_copy = ThreadwiseMatrixSliceCopy_v3<BlockMatrixA,
decltype(a_thread_mtx),
KPerThreadLoop,
MPerThreadSubC,
ThreadGemmADataPerRead_M>{};
constexpr auto b_thread_copy = ThreadwiseMatrixSliceCopy_v3<BlockMatrixB,
decltype(b_thread_mtx),
KPerThreadLoop,
NPerThreadSubC,
ThreadGemmBDataPerRead_N>{};
constexpr auto threadwise_gemm = ThreadwiseGemm_km_kn_mn_v1<decltype(a_thread_mtx),
decltype(b_thread_mtx),
decltype(c_thread_mtx)>{};
#pragma unroll
// loop over k
for(index_t k_begin = 0; k_begin < K; k_begin += KPerThreadLoop)
{
#pragma unroll
// read A
for(index_t m_repeat = 0; m_repeat < MRepeat; ++m_repeat)
{
a_thread_copy.Run(p_a_block +
a_block_mtx.CalculateOffset(
make_tuple(k_begin, m_repeat * MPerLevel1Cluster)) +
mMyThreadOffsetA,
p_a_thread + a_thread_mtx.CalculateOffset(
make_tuple(0, m_repeat * MPerThreadSubC)));
}
#pragma unroll
// read B
for(index_t n_repeat = 0; n_repeat < NRepeat; ++n_repeat)
{
b_thread_copy.Run(p_b_block +
b_block_mtx.CalculateOffset(
make_tuple(k_begin, n_repeat * NPerLevel1Cluster)) +
mMyThreadOffsetB,
p_b_thread + b_thread_mtx.CalculateOffset(
make_tuple(0, n_repeat * NPerThreadSubC)));
}
// C += A * B
threadwise_gemm.Run(p_a_thread, p_b_thread, p_c_thread);
}
}
template <typename FloatA, typename FloatB, typename FloatC>
__device__ void
Run_pipelined_2x2(const FloatA* p_a_block, const FloatB* p_b_block, FloatC* p_c_thread) const
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto a_block_mtx = BlockMatrixA{};
constexpr auto b_block_mtx = BlockMatrixB{};
constexpr auto c_thread_mtx = ThreadMatrixC{};
constexpr auto K = a_block_mtx.GetLength(I0);
constexpr auto MPerThread = c_thread_mtx.GetLength(I0);
constexpr auto NPerThread = c_thread_mtx.GetLength(I1);
constexpr index_t MPerLevel1Cluster =
MPerThreadSubC * MLevel0ThreadCluster * MLevel1ThreadCluster;
constexpr index_t NPerLevel1Cluster =
NPerThreadSubC * NLevel0ThreadCluster * NLevel1ThreadCluster;
constexpr index_t MRepeat = MPerThread / MPerThreadSubC;
constexpr index_t NRepeat = NPerThread / NPerThreadSubC;
static_assert(MRepeat == 2 && NRepeat == 2,
"wrong! inline asm cannot deal with this GEMM config yet");
// thread A, B
constexpr auto a_thread_mtx = make_dynamic_naive_tensor_descriptor_packed_v2(
make_tuple(Number<KPerThreadLoop>{}, Number<MPerThread>{}));
constexpr auto b_thread_mtx = make_dynamic_naive_tensor_descriptor_packed_v2(
make_tuple(Number<KPerThreadLoop>{}, Number<NPerThread>{}));
// thread A-sub, B-sub
constexpr auto a_thread_sub_mtx = make_dynamic_naive_tensor_descriptor_v2(
make_tuple(Number<KPerThreadLoop>{}, Number<MPerThreadSubC>{}),
make_tuple(Number<MPerThread>{}, Number<1>{}));
constexpr auto b_thread_sub_mtx = make_dynamic_naive_tensor_descriptor_v2(
make_tuple(Number<KPerThreadLoop>{}, Number<NPerThreadSubC>{}),
make_tuple(Number<NPerThread>{}, Number<1>{}));
constexpr auto c_thread_sub_mtx = make_dynamic_naive_tensor_descriptor_v2(
make_tuple(Number<MPerThreadSubC>{}, Number<NPerThreadSubC>{}),
make_tuple(Number<NPerThread>{}, Number<1>{}));
FloatA p_a_thread[a_thread_mtx.GetElementSpaceSize()];
FloatB p_b_thread[b_thread_mtx.GetElementSpaceSize()];
constexpr auto a_thread_copy = ThreadwiseMatrixSliceCopy_v3<BlockMatrixA,
decltype(a_thread_mtx),
KPerThreadLoop,
MPerThreadSubC,
ThreadGemmADataPerRead_M>{};
constexpr auto b_thread_copy = ThreadwiseMatrixSliceCopy_v3<BlockMatrixB,
decltype(b_thread_mtx),
KPerThreadLoop,
NPerThreadSubC,
ThreadGemmBDataPerRead_N>{};
constexpr auto threadwise_gemm = ThreadwiseGemm_km_kn_mn_v1<decltype(a_thread_sub_mtx),
decltype(b_thread_sub_mtx),
decltype(c_thread_sub_mtx)>{};
const FloatA* p_a_block_off = p_a_block + mMyThreadOffsetA;
const FloatB* p_b_block_off = p_b_block + mMyThreadOffsetB;
// read A_sub_0
a_thread_copy.Run(p_a_block_off, p_a_thread);
// read B_sub_0
b_thread_copy.Run(p_b_block_off, p_b_thread);
// read B_sub_1
b_thread_copy.Run(p_b_block_off +
b_block_mtx.CalculateOffset(make_tuple(0, NPerLevel1Cluster)),
p_b_thread + b_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)));
// read A_sub_1
a_thread_copy.Run(p_a_block_off +
a_block_mtx.CalculateOffset(make_tuple(0, MPerLevel1Cluster)),
p_a_thread + a_thread_mtx.CalculateOffset(make_tuple(0, MPerThreadSubC)));
// C_sub_00 += transpose(A_sub_0) * B_sub_0
threadwise_gemm.Run(p_a_thread, p_b_thread, p_c_thread);
// C_sub_01 += transpose(A_sub_0) * B_sub_1
threadwise_gemm.Run(
p_a_thread,
p_b_thread + b_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)),
p_c_thread + c_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)));
#pragma unroll
// loop over rest of k
for(index_t k = KPerThreadLoop; k < K; k += KPerThreadLoop)
{
// read A_sub_0
a_thread_copy.Run(p_a_block_off + a_block_mtx.CalculateOffset(make_tuple(k, 0)),
p_a_thread);
// C_sub_10 += transpose(A_sub_1) * B_sub_0
threadwise_gemm.Run(
p_a_thread + a_thread_mtx.CalculateOffset(make_tuple(0, MPerThreadSubC)),
p_b_thread,
p_c_thread + c_thread_mtx.CalculateOffset(make_tuple(MPerThreadSubC, 0)));
// read B_sub_0
b_thread_copy.Run(p_b_block_off + b_block_mtx.CalculateOffset(make_tuple(k, 0)),
p_b_thread);
// C_sub_11 += transpose(A_sub_1) * B_sub_1
threadwise_gemm.Run(
p_a_thread + a_thread_mtx.CalculateOffset(make_tuple(0, MPerThreadSubC)),
p_b_thread + b_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)),
p_c_thread +
c_thread_mtx.CalculateOffset(make_tuple(MPerThreadSubC, NPerThreadSubC)));
// read B_sub_1
b_thread_copy.Run(
p_b_block_off + b_block_mtx.CalculateOffset(make_tuple(k, NPerLevel1Cluster)),
p_b_thread + b_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)));
// read A_sub_1
a_thread_copy.Run(
p_a_block_off + a_block_mtx.CalculateOffset(make_tuple(k, MPerLevel1Cluster)),
p_a_thread + a_thread_mtx.CalculateOffset(make_tuple(0, MPerThreadSubC)));
// C_sub_00 += transpose(A_sub_0) * B_sub_0
threadwise_gemm.Run(p_a_thread, p_b_thread, p_c_thread);
// C_sub_01 += transpose(A_sub_0) * B_sub_1
threadwise_gemm.Run(
p_a_thread,
p_b_thread + b_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)),
p_c_thread + c_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)));
}
// C_sub_10 += transpose(A_sub_1) * B_sub_0
threadwise_gemm.Run(
p_a_thread + a_thread_mtx.CalculateOffset(make_tuple(0, MPerThreadSubC)),
p_b_thread,
p_c_thread + c_thread_mtx.CalculateOffset(make_tuple(MPerThreadSubC, 0)));
// C_sub_11 += transpose(A_sub_1) * B_sub_1
threadwise_gemm.Run(
p_a_thread + a_thread_mtx.CalculateOffset(make_tuple(0, MPerThreadSubC)),
p_b_thread + b_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)),
p_c_thread + c_thread_mtx.CalculateOffset(make_tuple(MPerThreadSubC, NPerThreadSubC)));
}
template <typename FloatA, typename FloatB, typename FloatC>
__device__ void Run(const FloatA* p_a_block, const FloatB* p_b_block, FloatC* p_c_thread) const
{
#if CK_EXPERIMENTAL_BLOCKWISE_GEMM_USE_PIPELINE
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr index_t MPerThread = ThreadMatrixC{}.GetLength(I0);
constexpr index_t NPerThread = ThreadMatrixC{}.GetLength(I1);
constexpr index_t MRepeat = MPerThread / MPerThreadSubC;
constexpr index_t NRepeat = NPerThread / NPerThreadSubC;
if constexpr(MRepeat == 2 && NRepeat == 2)
{
Run_pipelined_2x2(p_a_block, p_b_block, p_c_thread);
}
else
{
Run_naive(p_a_block, p_b_block, p_c_thread);
}
#else
Run_naive(p_a_block, p_b_block, p_c_thread);
#endif
}
};
} // namespace ck
#endif
#ifndef CK_GRIDWISE_DYNAMIC_GEMM_V2_HPP
#define CK_GRIDWISE_DYNAMIC_GEMM_V2_HPP
#include "common_header.hpp"
#include "dynamic_multi_index_transform_helper.hpp"
#include "dynamic_tensor_descriptor.hpp"
#include "dynamic_tensor_descriptor_helper.hpp"
#include "blockwise_dynamic_tensor_slice_transfer.hpp"
#include "threadwise_dynamic_tensor_slice_transfer.hpp"
#include "blockwise_gemm_v3.hpp"
namespace ck {
template <index_t BlockSize,
typename Float,
typename AccFloat,
InMemoryDataOperation CGlobalMemoryDataOperation,
typename AGlobalDesc,
typename BGlobalDesc,
typename CGlobalDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerThread,
index_t NPerThread,
index_t KPerThread,
index_t MLevel0Cluster,
index_t NLevel0Cluster,
index_t MLevel1Cluster,
index_t NLevel1Cluster,
typename ABlockTransferThreadSliceLengths_K_M,
typename ABlockTransferThreadClusterLengths_K_M,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_M,
bool AThreadTransferSrcResetCoordinateAfterRun,
typename BBlockTransferThreadSliceLengths_K_N,
typename BBlockTransferThreadClusterLengths_K_N,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_N,
bool BThreadTransferSrcResetCoordinateAfterRun,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
typename AGlobalIteratorHacks,
typename BGlobalIteratorHacks,
typename CGlobalIteratorHacks,
typename AGlobalMoveSliceWindowIteratorHacks,
typename BGlobalMoveSliceWindowIteratorHacks>
struct GridwiseDynamicGemm_km_kn_mn_v2
{
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
constexpr auto max_lds_align = math::lcm(Number<ABlockTransferDstScalarPerVector_M>{},
Number<BBlockTransferDstScalarPerVector_N>{},
Number<MPerThread>{},
Number<NPerThread>{});
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_k_m_block_desc = make_dynamic_naive_tensor_descriptor_aligned_v2(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}), max_lds_align);
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_k_n_block_desc = make_dynamic_naive_tensor_descriptor_aligned_v2(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}), max_lds_align);
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k_m_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size =
math::integer_least_multiple(b_k_n_block_desc.GetElementSpaceSize(), max_lds_align);
return 2 * (a_block_space_size + b_block_space_size) * sizeof(Float);
}
template <bool HasMainKBlockLoop, bool HasDoubleTailKBlockLoop>
__device__ void Run(const AGlobalDesc& a_k_m_global_desc,
const Float* __restrict__ p_a_global,
const BGlobalDesc& b_k_n_global_desc,
const Float* __restrict__ p_b_global,
const CGlobalDesc& c_m0_m1_n0_n1_global_desc,
Float* __restrict__ p_c_global,
Float* __restrict__ p_shared_block,
integral_constant<bool, HasMainKBlockLoop>,
integral_constant<bool, HasDoubleTailKBlockLoop>) const
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
const auto K = a_k_m_global_desc.GetLength(I0);
const auto M = a_k_m_global_desc.GetLength(I1);
const auto N = b_k_n_global_desc.GetLength(I1);
// divide block work by [M, N]
#if 0
const auto m_block_work_num = M / Number<MPerBlock>{};
const auto n_block_work_num = N / Number<NPerBlock>{};
const index_t m_block_work_id = get_block_1d_id() / n_block_work_num;
const index_t n_block_work_id = get_block_1d_id() - m_block_work_id * n_block_work_num;
#else
// Hack: this force result into SGPR
const index_t m_block_work_num = __builtin_amdgcn_readfirstlane(M / MPerBlock);
const index_t n_block_work_num = __builtin_amdgcn_readfirstlane(N / NPerBlock);
const index_t m_block_work_id =
__builtin_amdgcn_readfirstlane(get_block_1d_id() / n_block_work_num);
const index_t n_block_work_id = get_block_1d_id() - m_block_work_id * n_block_work_num;
#endif
const index_t m_block_data_on_global = m_block_work_id * MPerBlock;
const index_t n_block_data_on_global = n_block_work_id * NPerBlock;
// lds max alignment
constexpr auto max_lds_align = math::lcm(Number<ABlockTransferDstScalarPerVector_M>{},
Number<BBlockTransferDstScalarPerVector_N>{},
Number<MPerThread>{},
Number<NPerThread>{});
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_k_m_block_desc = make_dynamic_naive_tensor_descriptor_aligned_v2(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}), max_lds_align);
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_k_n_block_desc = make_dynamic_naive_tensor_descriptor_aligned_v2(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}), max_lds_align);
// A matrix blockwise copy
auto a_blockwise_copy =
BlockwiseDynamicTensorSliceTransfer_v4<BlockSize,
InMemoryDataOperation::Set,
Sequence<KPerBlock, MPerBlock>,
ABlockTransferThreadSliceLengths_K_M,
ABlockTransferThreadClusterLengths_K_M,
ABlockTransferThreadClusterArrangeOrder,
Float,
Float,
decltype(a_k_m_global_desc),
decltype(a_k_m_block_desc),
ABlockTransferSrcAccessOrder,
Sequence<0, 1>,
ABlockTransferSrcVectorDim,
1,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_M,
AddressSpace::Global,
AddressSpace::Lds,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true>(
a_k_m_global_desc,
make_multi_index(0, m_block_data_on_global),
a_k_m_block_desc,
make_multi_index(0, 0));
// B matrix blockwise copy
auto b_blockwise_copy =
BlockwiseDynamicTensorSliceTransfer_v4<BlockSize,
InMemoryDataOperation::Set,
Sequence<KPerBlock, NPerBlock>,
BBlockTransferThreadSliceLengths_K_N,
BBlockTransferThreadClusterLengths_K_N,
BBlockTransferThreadClusterArrangeOrder,
Float,
Float,
decltype(b_k_n_global_desc),
decltype(b_k_n_block_desc),
BBlockTransferSrcAccessOrder,
Sequence<0, 1>,
BBlockTransferSrcVectorDim,
1,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_N,
AddressSpace::Global,
AddressSpace::Lds,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true>(
b_k_n_global_desc,
make_multi_index(0, n_block_data_on_global),
b_k_n_block_desc,
make_multi_index(0, 0));
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[KPerBlock, MPerBlock] is in LDS
// b_mtx[KPerBlocl, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
static_assert(MPerBlock % (MPerThread * MLevel0Cluster * MLevel1Cluster) == 0 &&
NPerBlock % (NPerThread * NLevel0Cluster * NLevel1Cluster) == 0,
"wrong!");
constexpr index_t MRepeat = MPerBlock / (MPerThread * MLevel0Cluster * MLevel1Cluster);
constexpr index_t NRepeat = NPerBlock / (NPerThread * NLevel0Cluster * NLevel1Cluster);
// c_thread_mtx definition: this is a mess
// TODO:: more elegent way of defining c_thread_mtx
constexpr auto c_m0m1_n0n1_thread_desc = make_dynamic_naive_tensor_descriptor_packed_v2(
make_tuple(Number<MRepeat * MPerThread>{}, Number<NRepeat * NPerThread>{}));
const auto blockwise_gemm =
BlockwiseGemm_km_kn_m0m1n0n1_v3<BlockSize,
decltype(a_k_m_block_desc),
decltype(b_k_n_block_desc),
decltype(c_m0m1_n0n1_thread_desc),
MPerThread,
NPerThread,
KPerThread,
MLevel0Cluster,
NLevel0Cluster,
MLevel1Cluster,
NLevel1Cluster,
MPerThread,
NPerThread>{};
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k_m_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size =
math::integer_least_multiple(b_k_n_block_desc.GetElementSpaceSize(), max_lds_align);
Float* p_a_block_double = p_shared_block;
Float* p_b_block_double = p_shared_block + 2 * a_block_space_size;
// register allocation for output
AccFloat p_c_thread[c_m0m1_n0n1_thread_desc.GetElementSpaceSize()];
// zero out threadwise output
threadwise_matrix_set_zero_v2(c_m0m1_n0n1_thread_desc, p_c_thread);
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock, 0);
// hack to control index calculation when iterating over A and B matrix for threadwise copy
constexpr auto a_k_m_global_iterator_hacks = AGlobalIteratorHacks{};
constexpr auto b_k_n_global_iterator_hacks = BGlobalIteratorHacks{};
// hack to control index calculation when move slice window for A and B matrix for
// threadwise copy
constexpr auto a_k_m_global_move_slice_window_iterator_hack =
AGlobalMoveSliceWindowIteratorHacks{};
constexpr auto b_k_n_global_move_slice_window_iterator_hack =
BGlobalMoveSliceWindowIteratorHacks{};
// LDS double buffer: preload data into LDS
{
a_blockwise_copy.RunRead(a_k_m_global_desc, p_a_global, a_k_m_global_iterator_hacks);
b_blockwise_copy.RunRead(b_k_n_global_desc, p_b_global, b_k_n_global_iterator_hacks);
a_blockwise_copy.RunWrite(a_k_m_block_desc, p_a_block_double);
b_blockwise_copy.RunWrite(b_k_n_block_desc, p_b_block_double);
}
if constexpr(HasMainKBlockLoop)
{
Float* p_a_block_even = p_a_block_double;
Float* p_b_block_even = p_b_block_double;
Float* p_a_block_odd = p_a_block_double + a_block_space_size;
Float* p_b_block_odd = p_b_block_double + b_block_space_size;
index_t k_block_data_begin = 0;
// LDS double buffer: main body
// use Do-While loop instead of For loop to simplify control flow
do
{
// even iteration
a_blockwise_copy.MoveSrcSliceWindow(a_k_m_global_desc,
a_block_slice_copy_step,
a_k_m_global_move_slice_window_iterator_hack);
b_blockwise_copy.MoveSrcSliceWindow(b_k_n_global_desc,
b_block_slice_copy_step,
b_k_n_global_move_slice_window_iterator_hack);
__syncthreads();
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(
a_k_m_global_desc, p_a_global, a_k_m_global_iterator_hacks);
b_blockwise_copy.RunRead(
b_k_n_global_desc, p_b_global, b_k_n_global_iterator_hacks);
// LDS double buffer: GEMM on current data
blockwise_gemm.Run(p_a_block_even, p_b_block_even, p_c_thread);
// LDS double buffer: store next data to LDS
a_blockwise_copy.RunWrite(a_k_m_block_desc, p_a_block_odd);
b_blockwise_copy.RunWrite(b_k_n_block_desc, p_b_block_odd);
// odd iteration
a_blockwise_copy.MoveSrcSliceWindow(a_k_m_global_desc,
a_block_slice_copy_step,
a_k_m_global_move_slice_window_iterator_hack);
b_blockwise_copy.MoveSrcSliceWindow(b_k_n_global_desc,
b_block_slice_copy_step,
b_k_n_global_move_slice_window_iterator_hack);
__syncthreads();
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(
a_k_m_global_desc, p_a_global, a_k_m_global_iterator_hacks);
b_blockwise_copy.RunRead(
b_k_n_global_desc, p_b_global, b_k_n_global_iterator_hacks);
// LDS double buffer: GEMM on current data
blockwise_gemm.Run(p_a_block_odd, p_b_block_odd, p_c_thread);
// LDS double buffer: store next data to LDS
a_blockwise_copy.RunWrite(a_k_m_block_desc, p_a_block_even);
b_blockwise_copy.RunWrite(b_k_n_block_desc, p_b_block_even);
k_block_data_begin += 2 * KPerBlock;
} while(k_block_data_begin < K - 2 * KPerBlock);
}
// LDS double buffer: tail
if constexpr(HasDoubleTailKBlockLoop) // if has 2 iteration left
{
a_blockwise_copy.MoveSrcSliceWindow(a_k_m_global_desc,
a_block_slice_copy_step,
a_k_m_global_move_slice_window_iterator_hack);
b_blockwise_copy.MoveSrcSliceWindow(b_k_n_global_desc,
b_block_slice_copy_step,
b_k_n_global_move_slice_window_iterator_hack);
__syncthreads();
// LDS double buffer: load last data from device mem
a_blockwise_copy.RunRead(a_k_m_global_desc, p_a_global, a_k_m_global_iterator_hacks);
b_blockwise_copy.RunRead(b_k_n_global_desc, p_b_global, b_k_n_global_iterator_hacks);
// LDS double buffer: GEMM on 2nd-last data
blockwise_gemm.Run(p_a_block_double, p_b_block_double, p_c_thread);
// LDS double buffer: store last data to LDS
a_blockwise_copy.RunWrite(a_k_m_block_desc, p_a_block_double + a_block_space_size);
b_blockwise_copy.RunWrite(b_k_n_block_desc, p_b_block_double + b_block_space_size);
__syncthreads();
// LDS double buffer: GEMM on last data
blockwise_gemm.Run(p_a_block_double + a_block_space_size,
p_b_block_double + b_block_space_size,
p_c_thread);
}
else // if has 1 iteration left
{
__syncthreads();
// LDS double buffer: GEMM on last data
blockwise_gemm.Run(p_a_block_double, p_b_block_double, p_c_thread);
}
// output: register to global memory
{
constexpr auto M1 = Number<MPerThread * MLevel0Cluster * MLevel1Cluster>{};
constexpr auto N1 = Number<NPerThread * NLevel0Cluster * NLevel1Cluster>{};
// define input tensor descriptor for threadwise copy
// thread input tensor, src of threadwise copy
constexpr auto c_m0_m1_n0_n1_thread_desc =
make_dynamic_naive_tensor_descriptor_packed_v2(make_tuple(Number<MRepeat>{},
Number<MPerThread>{},
Number<NRepeat>{},
Number<NPerThread>{}));
// calculate origin of thread input tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.GetBeginOfThreadMatrixC(get_thread_local_1d_id());
const index_t m_thread_data_on_global =
m_block_data_on_global + c_thread_mtx_on_block.row;
const index_t n_thread_data_on_global =
n_block_data_on_global + c_thread_mtx_on_block.col;
// hack to control index calculation when iterating over c_m0_m1_n0_n1_global tensor
constexpr auto c_m0_m1_n0_n1_global_tensor_iterator_hacks = CGlobalIteratorHacks{};
constexpr auto tmp = make_unmerge_transform(make_tuple(
Number<MRepeat>{}, Number<MPerThread>{}, Number<NRepeat>{}, Number<NPerThread>{}));
ThreadwiseDynamicTensorSliceTransfer_v1r3<
AccFloat,
Float,
decltype(c_m0_m1_n0_n1_thread_desc),
decltype(c_m0_m1_n0_n1_global_desc),
Sequence<MRepeat, MPerThread, NRepeat, NPerThread>,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
AddressSpace::Vgpr,
AddressSpace::Global,
CGlobalMemoryDataOperation,
1,
true>(c_m0_m1_n0_n1_global_desc,
make_multi_index(m_thread_data_on_global / M1,
m_thread_data_on_global % M1,
n_thread_data_on_global / N1,
n_thread_data_on_global % N1))
.Run(c_m0_m1_n0_n1_thread_desc,
make_tuple(I0, I0, I0, I0),
p_c_thread,
c_m0_m1_n0_n1_global_desc,
p_c_global,
c_m0_m1_n0_n1_global_tensor_iterator_hacks);
}
}
// pass tensor descriptor by reference
template <bool HasMainKBlockLoop, bool HasDoubleTailKBlockLoop>
__device__ void Run(const AGlobalDesc& a_k_m_global_desc,
const Float* __restrict__ p_a_global,
const BGlobalDesc& b_k_n_global_desc,
const Float* __restrict__ p_b_global,
const CGlobalDesc& c_m0_m1_n0_n1_global_desc,
Float* __restrict__ p_c_global,
integral_constant<bool, HasMainKBlockLoop>,
integral_constant<bool, HasDoubleTailKBlockLoop>) const
{
constexpr index_t shared_block_size = GetSharedMemoryNumberOfByte() / sizeof(Float);
__shared__ Float p_shared_block[shared_block_size];
Run(a_k_m_global_desc,
p_a_global,
b_k_n_global_desc,
p_b_global,
c_m0_m1_n0_n1_global_desc,
p_c_global,
p_shared_block,
integral_constant<bool, HasMainKBlockLoop>{},
integral_constant<bool, HasDoubleTailKBlockLoop>{});
}
// pass tensor descriptors by their pointers
template <bool HasMainKBlockLoop, bool HasDoubleTailKBlockLoop>
__device__ void Run(const AGlobalDesc* p_a_k_m_global_desc,
const Float* __restrict__ p_a_global,
const BGlobalDesc* p_b_k_n_global_desc,
const Float* __restrict__ p_b_global,
const CGlobalDesc* p_c_m0_m1_n0_n1_global_desc,
Float* __restrict__ p_c_global,
integral_constant<bool, HasMainKBlockLoop>,
integral_constant<bool, HasDoubleTailKBlockLoop>) const
{
const auto a_k_m_global_desc = *p_a_k_m_global_desc;
const auto b_k_n_global_desc = *p_b_k_n_global_desc;
const auto c_m0_m1_n0_n1_global_desc = *p_c_m0_m1_n0_n1_global_desc;
Run(a_k_m_global_desc,
p_a_global,
b_k_n_global_desc,
p_b_global,
c_m0_m1_n0_n1_global_desc,
p_c_global,
integral_constant<bool, HasMainKBlockLoop>{},
integral_constant<bool, HasDoubleTailKBlockLoop>{});
}
// pass tensor descriptors by void*
template <bool HasMainKBlockLoop, bool HasDoubleTailKBlockLoop>
__device__ void Run(const void* p_a_k_m_global_desc,
const Float* __restrict__ p_a_global,
const void* p_b_k_n_global_desc,
const Float* __restrict__ p_b_global,
const void* p_c_m0_m1_n0_n1_global_desc,
Float* __restrict__ p_c_global,
integral_constant<bool, HasMainKBlockLoop>,
integral_constant<bool, HasDoubleTailKBlockLoop>) const
{
const auto a_k_m_global_desc = *reinterpret_cast<const AGlobalDesc*>(p_a_k_m_global_desc);
const auto b_k_n_global_desc = *reinterpret_cast<const BGlobalDesc*>(p_b_k_n_global_desc);
const auto c_m0_m1_n0_n1_global_desc =
*reinterpret_cast<const CGlobalDesc*>(p_c_m0_m1_n0_n1_global_desc);
Run(a_k_m_global_desc,
p_a_global,
b_k_n_global_desc,
p_b_global,
c_m0_m1_n0_n1_global_desc,
p_c_global,
integral_constant<bool, HasMainKBlockLoop>{},
integral_constant<bool, HasDoubleTailKBlockLoop>{});
}
};
} // namespace ck
#endif
#ifndef CK_THREADWISE_GEMM_V3_HPP
#define CK_THREADWISE_GEMM_V3_HPP
#include "common_header.hpp"
#include "math.hpp"
namespace ck {
template <typename Float, typename Desc>
__device__ void threadwise_matrix_set_zero_v3(Desc, Float* __restrict__ p_thread)
{
static_assert(Desc::IsKnownAtCompileTime(), "wrong! Desc should be known at compile-time");
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto desc = Desc{};
constexpr auto M = desc.GetLength(I0);
constexpr auto N = desc.GetLength(I1);
static_for<0, M, 1>{}([&](auto i) {
static_for<0, N, 1>{}([&](auto j) {
constexpr auto offset = desc.CalculateOffset(make_tuple(i, j));
p_thread[offset] = Float(0);
});
});
}
template <typename SrcDesc,
typename DstDesc,
index_t NSliceRow,
index_t NSliceCol,
index_t DataPerAccess>
struct ThreadwiseMatrixSliceCopy_v3
{
template <typename Data>
__device__ static void Run(const Data* p_src, Data* p_dst)
{
static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
using vector_t = typename vector_type<Data, DataPerAccess>::type;
static_for<0, NSliceRow, 1>{}([&](auto i) {
static_for<0, NSliceCol, DataPerAccess>{}([&](auto j) {
constexpr auto src_offset = SrcDesc{}.CalculateOffset(make_tuple(i, j));
constexpr auto dst_offset = DstDesc{}.CalculateOffset(make_tuple(i, j));
*reinterpret_cast<vector_t*>(&p_dst[dst_offset]) =
*reinterpret_cast<const vector_t*>(&p_src[src_offset]);
});
});
}
};
// C[M, N] += transpose(A[K, M]) * B[K, N]
// Element of matrix can be vectorized data
template <typename ADesc,
typename BDesc,
typename CDesc,
typename std::enable_if<ADesc::IsKnownAtCompileTime() && BDesc::IsKnownAtCompileTime() &&
CDesc::IsKnownAtCompileTime(),
bool>::type = false>
struct ThreadwiseGemm_km_kn_mn_v3
{
template <typename FloatA, typename FloatB, typename FloatC>
__device__ static void Run_source(const FloatA* p_a, const FloatB* p_b, FloatC* p_c)
{
static_assert(ADesc::IsKnownAtCompileTime() && BDesc::IsKnownAtCompileTime() &&
CDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto M = CDesc{}[I0];
constexpr auto N = CDesc{}[I1];
constexpr auto K = ADesc{}[I0];
static_for<0, K, 1>{}([&](auto k) {
static_for<0, M, 1>{}([&](auto m) {
static_for<0, N, 1>{}([&](auto n) {
constexpr auto a_offset = ADesc{}.CalculateOffset(make_tuple(k, m));
constexpr auto b_offset = BDesc{}.CalculateOffset(make_tuple(k, n));
constexpr auto c_offset = CDesc{}.CalculateOffset(make_tuple(m, n));
p_c[c_offset] +=
inner_product_with_conversion<FloatC>{}(p_a[a_offset], p_b[b_offset]);
});
});
});
}
#if CK_THREADWISE_GEMM_USE_AMD_INLINE_ASM
template <typename FloatA, typename FloatB, typename FloatC>
__device__ static void Run_amd_asm(const FloatA* p_a, const FloatB* p_b, FloatC* p_c)
{
static_assert(ADesc::IsKnownAtCompileTime() && BDesc::IsKnownAtCompileTime() &&
CDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto M = CDesc{}.GetLength(I0);
constexpr auto N = CDesc{}.GetLength(I1);
constexpr auto K = ADesc{}.GetLength(I0);
static_assert(N == 4 || N == 2, "wrong! this config not supported by asm yet");
static_for<0, K, 1>{}([&](auto k) {
static_for<0, M, 1>{}([&](auto m) {
constexpr auto a_offset = ADesc{}.CalculateOffset(make_tuple(k, m));
if constexpr(N == 2)
{
constexpr auto b_offset_0 = BDesc{}.CalculateOffset(make_tuple(k, I0));
constexpr auto b_offset_1 = BDesc{}.CalculateOffset(make_tuple(k, I1));
constexpr auto c_offset_0 = CDesc{}.CalculateOffset(make_tuple(m, I0));
constexpr auto c_offset_1 = CDesc{}.CalculateOffset(make_tuple(m, I1));
amd_assembly_outer_product_1x2(p_a[a_offset],
p_b[b_offset_0],
p_b[b_offset_1],
p_c[c_offset_0],
p_c[c_offset_1]);
}
else if constexpr(N == 4)
{
constexpr auto b_offset_0 = BDesc{}.CalculateOffset(make_tuple(k, I0));
constexpr auto b_offset_1 = BDesc{}.CalculateOffset(make_tuple(k, I1));
constexpr auto b_offset_2 = BDesc{}.CalculateOffset(make_tuple(k, I2));
constexpr auto b_offset_3 = BDesc{}.CalculateOffset(make_tuple(k, I3));
constexpr auto c_offset_0 = CDesc{}.CalculateOffset(make_tuple(m, I0));
constexpr auto c_offset_1 = CDesc{}.CalculateOffset(make_tuple(m, I1));
constexpr auto c_offset_2 = CDesc{}.CalculateOffset(make_tuple(m, I2));
constexpr auto c_offset_3 = CDesc{}.CalculateOffset(make_tuple(m, I3));
amd_assembly_outer_product_1x4(p_a[a_offset],
p_b[b_offset_0],
p_b[b_offset_1],
p_b[b_offset_2],
p_b[b_offset_3],
p_c[c_offset_0],
p_c[c_offset_1],
p_c[c_offset_2],
p_c[c_offset_3]);
}
});
});
}
#endif
template <typename FloatA, typename FloatB, typename FloatC>
__device__ static void Run(const FloatA* p_a, const FloatB* p_b, FloatC* p_c)
{
#if CK_THREADWISE_GEMM_USE_AMD_INLINE_ASM
constexpr bool has_amd_asm = is_same<FloatC, float>{} &&
((is_same<FloatA, float>{} && is_same<FloatB, float>{}) ||
(is_same<FloatA, half2_t>{} && is_same<FloatB, half2_t>{}) ||
(is_same<FloatA, half4_t>{} && is_same<FloatB, half4_t>{}));
if constexpr(has_amd_asm)
{
Run_amd_asm(p_a, p_b, p_c);
}
else
{
Run_source(p_a, p_b, p_c);
}
#else
Run_source(p_a, p_b, p_c);
#endif
}
};
} // namespace ck
#endif
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "driver_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw.hpp"
template <class T,
class InDesc,
class WeiDesc,
class OutDesc,
class ConvStrides,
class ConvDilations,
class InLeftPads,
class InRightPads>
void device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw(InDesc,
const Tensor<T>& in_nchw,
WeiDesc,
const Tensor<T>& wei_kcyx,
OutDesc,
Tensor<T>& out_nkhw,
ConvStrides,
ConvDilations,
InLeftPads,
InRightPads,
ck::index_t nrepeat)
{
std::cout << "device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw"
<< std::endl;
using namespace ck;
using TDevice = typename conditional<is_same<half_float::half, T>::value, half_t, T>::type;
std::size_t data_sz = sizeof(T);
DeviceMem in_nchw_device_buf(data_sz * in_nchw.mDesc.GetElementSpace());
DeviceMem wei_kcyx_device_buf(data_sz * wei_kcyx.mDesc.GetElementSpace());
DeviceMem out_nkhw_device_buf(data_sz * out_nkhw.mDesc.GetElementSpace());
in_nchw_device_buf.ToDevice(in_nchw.mData.data());
wei_kcyx_device_buf.ToDevice(wei_kcyx.mData.data());
out_nkhw_device_buf.ToDevice(out_nkhw.mData.data());
#if 0
// run-time variables
const auto in_n_c_hi_wi_desc =
make_dynamic_naive_tensor_descriptor_packed_v2(to_multi_index(InDesc::GetLengths()));
const auto wei_k_c_y_x_desc =
make_dynamic_naive_tensor_descriptor_packed_v2(to_multi_index(WeiDesc::GetLengths()));
const auto out_n_k_ho_wo_desc =
make_dynamic_naive_tensor_descriptor_packed_v2(to_multi_index(OutDesc::GetLengths()));
const auto conv_strides = to_multi_index(ConvStrides{});
const auto conv_dilations = to_multi_index(ConvDilations{});
const auto in_left_pads = to_multi_index(InLeftPads{});
const auto in_right_pads = to_multi_index(InRightPads{});
#else
// compile-time variables
const auto in_n_c_hi_wi_desc = make_dynamic_naive_tensor_descriptor_packed_v2(
sequence_to_tuple_of_number(InDesc::GetLengths()));
const auto wei_k_c_y_x_desc = make_dynamic_naive_tensor_descriptor_packed_v2(
sequence_to_tuple_of_number(WeiDesc::GetLengths()));
const auto out_n_k_ho_wo_desc = make_dynamic_naive_tensor_descriptor_packed_v2(
sequence_to_tuple_of_number(OutDesc::GetLengths()));
const auto conv_strides = sequence_to_tuple_of_number(ConvStrides{});
const auto conv_dilations = sequence_to_tuple_of_number(ConvDilations{});
const auto in_left_pads = sequence_to_tuple_of_number(InLeftPads{});
const auto in_right_pads = sequence_to_tuple_of_number(InRightPads{});
#endif
#if 1
// cdata = 16, BlockSize = 64, 16x64x4
constexpr index_t BlockSize = 64;
constexpr index_t GemmMPerBlock = 16;
constexpr index_t GemmNPerBlock = 64;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerThread = 2;
constexpr index_t GemmNPerThread = 2;
constexpr index_t GemmKPerThread = 1;
constexpr index_t GemmMLevel0Cluster = 2;
constexpr index_t GemmNLevel0Cluster = 2;
constexpr index_t GemmMLevel1Cluster = 2;
constexpr index_t GemmNLevel1Cluster = 8;
constexpr index_t ThreadGemmDataPerReadM = 2;
constexpr index_t ThreadGemmDataPerReadN = 2;
using GemmABlockTransferThreadSliceLengths_GemmK_GemmM = Sequence<1, 1>;
using GemmABlockTransferThreadClusterLengths_GemmK_GemmM = Sequence<4, 16>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK = 1;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmM = 1;
using GemmBBlockTransferThreadSliceLengths_GemmK_GemmN = Sequence<4, 1>;
using GemmBBlockTransferThreadClusterLengths_GemmK_GemmN = Sequence<1, 64>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 1;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmN = 1;
constexpr index_t GemmCThreadTransferDstScalarPerVector_GemmN1 = 2;
#elif 0
// cdata = 16, BlockSize = 64, 16x64x4
// GemmBBlockCopySrcDataPerRead_GemmN = 4
// GemmCThreadCopyDstDataPerWrite_GemmN1 = 2
constexpr index_t BlockSize = 64;
constexpr index_t GemmMPerBlock = 16;
constexpr index_t GemmNPerBlock = 64;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerThread = 2;
constexpr index_t GemmNPerThread = 2;
constexpr index_t GemmKPerThread = 1;
constexpr index_t GemmMLevel0Cluster = 2;
constexpr index_t GemmNLevel0Cluster = 2;
constexpr index_t GemmMLevel1Cluster = 2;
constexpr index_t GemmNLevel1Cluster = 8;
constexpr index_t ThreadGemmDataPerReadM = 2;
constexpr index_t ThreadGemmDataPerReadN = 2;
using GemmABlockTransferThreadSliceLengths_GemmK_GemmM = Sequence<1, 1>;
using GemmABlockTransferThreadClusterLengths_GemmK_GemmM = Sequence<4, 16>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK = 1;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmM = 1;
using GemmBBlockTransferThreadSliceLengths_GemmK_GemmN = Sequence<1, 4>;
using GemmBBlockTransferThreadClusterLengths_GemmK_GemmN = Sequence<4, 16>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 4;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmN = 4;
constexpr index_t GemmCThreadTransferDstScalarPerVector_GemmN1 = 2;
#elif 0
// cdata = 32, BlockSize = 64, 16x128x4
// GemmBBlockCopySrcDataPerRead_GemmN = 4
// GemmCThreadCopyDstDataPerWrite_GemmN1 = 4
constexpr index_t BlockSize = 64;
constexpr index_t GemmMPerBlock = 16;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerThread = 2;
constexpr index_t GemmNPerThread = 4;
constexpr index_t GemmKPerThread = 1;
constexpr index_t GemmMLevel0Cluster = 2;
constexpr index_t GemmNLevel0Cluster = 2;
constexpr index_t GemmMLevel1Cluster = 2;
constexpr index_t GemmNLevel1Cluster = 8;
constexpr index_t ThreadGemmDataPerReadM = 2;
constexpr index_t ThreadGemmDataPerReadN = 4;
using GemmABlockTransferThreadSliceLengths_GemmK_GemmM = Sequence<1, 1>;
using GemmABlockTransferThreadClusterLengths_GemmK_GemmM = Sequence<4, 16>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK = 1;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmM = 1;
using GemmBBlockTransferThreadSliceLengths_GemmK_GemmN = Sequence<2, 4>;
using GemmBBlockTransferThreadClusterLengths_GemmK_GemmN = Sequence<2, 32>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 4;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmN = 4;
constexpr index_t GemmCThreadTransferDstScalarPerVector_GemmN1 = 4;
#elif 0
// cdata = 64, BlockSize = 128, 32x256x8
constexpr index_t BlockSize = 128;
constexpr index_t GemmMPerBlock = 32;
constexpr index_t GemmNPerBlock = 256;
constexpr index_t GemmKPerBlock = 8;
constexpr index_t GemmMPerThread = 4;
constexpr index_t GemmNPerThread = 4;
constexpr index_t GemmKPerThread = 1;
constexpr index_t GemmMLevel0Cluster = 2;
constexpr index_t GemmNLevel0Cluster = 2;
constexpr index_t GemmMLevel1Cluster = 2;
constexpr index_t GemmNLevel1Cluster = 16;
constexpr index_t ThreadGemmDataPerReadM = 4;
constexpr index_t ThreadGemmDataPerReadN = 4;
using GemmABlockTransferThreadSliceLengths_GemmK_GemmM = Sequence<2, 1>;
using GemmABlockTransferThreadClusterLengths_GemmK_GemmM = Sequence<4, 32>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK = 1;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmM = 1;
using GemmBBlockTransferThreadSliceLengths_GemmK_GemmN = Sequence<8, 2>;
using GemmBBlockTransferThreadClusterLengths_GemmK_GemmN = Sequence<1, 128>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 1;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmN = 1;
constexpr index_t GemmCThreadTransferDstScalarPerVector_GemmN1 = 1;
#elif 0
// cdata = 64, BlockSize = 256, 128x128x2
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 2;
constexpr index_t GemmMPerThread = 4;
constexpr index_t GemmNPerThread = 4;
constexpr index_t GemmKPerThread = 1;
constexpr index_t GemmMLevel0Cluster = 2;
constexpr index_t GemmNLevel0Cluster = 2;
constexpr index_t GemmMLevel1Cluster = 8;
constexpr index_t GemmNLevel1Cluster = 8;
using GemmABlockTransferThreadSliceLengths_GemmK_GemmM = Sequence<1, 1>;
using GemmABlockTransferThreadClusterLengths_GemmK_GemmM = Sequence<2, 128>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK = 1;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmM = 1;
using GemmBBlockTransferThreadSliceLengths_GemmK_GemmN = Sequence<1, 1>;
using GemmBBlockTransferThreadClusterLengths_GemmK_GemmN = Sequence<2, 128>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 1;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmN = 1;
constexpr index_t GemmCThreadTransferDstScalarPerVector_GemmN1 = 1;
#elif 0
// cdata = 64, BlockSize = 256, 128x128x4
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerThread = 4;
constexpr index_t GemmNPerThread = 4;
constexpr index_t GemmKPerThread = 1;
constexpr index_t GemmMLevel0Cluster = 2;
constexpr index_t GemmNLevel0Cluster = 2;
constexpr index_t GemmMLevel1Cluster = 8;
constexpr index_t GemmNLevel1Cluster = 8;
using GemmABlockTransferThreadSliceLengths_GemmK_GemmM = Sequence<2, 1>;
using GemmABlockTransferThreadClusterLengths_GemmK_GemmM = Sequence<2, 128>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK = 2;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmM = 1;
using GemmBBlockTransferThreadSliceLengths_GemmK_GemmN = Sequence<2, 1>;
using GemmBBlockTransferThreadClusterLengths_GemmK_GemmN = Sequence<2, 128>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 1;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmN = 1;
constexpr index_t GemmCThreadTransferDstScalarPerVector_GemmN1 = 1;
#elif 1
// cdata = 64, BlockSize = 256, 128x128x8
// b thread copy 4x1
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 8;
constexpr index_t GemmMPerThread = 4;
constexpr index_t GemmNPerThread = 4;
constexpr index_t GemmKPerThread = 1;
constexpr index_t GemmMLevel0Cluster = 2;
constexpr index_t GemmNLevel0Cluster = 2;
constexpr index_t GemmMLevel1Cluster = 8;
constexpr index_t GemmNLevel1Cluster = 8;
using GemmABlockTransferThreadSliceLengths_GemmK_GemmM = Sequence<4, 1>;
using GemmABlockTransferThreadClusterLengths_GemmK_GemmM = Sequence<2, 128>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK = 4;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmM = 1;
using GemmBBlockTransferThreadSliceLengths_GemmK_GemmN = Sequence<4, 1>;
using GemmBBlockTransferThreadClusterLengths_GemmK_GemmN = Sequence<2, 128>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 1;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmN = 1;
constexpr index_t GemmCThreadTransferDstScalarPerVector_GemmN1 = 1;
#elif 1
// cdata = 64, BlockSize = 256, 128x128x8
// b thread copy 2x2
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 8;
constexpr index_t GemmMPerThread = 4;
constexpr index_t GemmNPerThread = 4;
constexpr index_t GemmKPerThread = 1;
constexpr index_t GemmMLevel0Cluster = 2;
constexpr index_t GemmNLevel0Cluster = 2;
constexpr index_t GemmMLevel1Cluster = 8;
constexpr index_t GemmNLevel1Cluster = 8;
using GemmABlockTransferThreadSliceLengths_GemmK_GemmM = Sequence<4, 1>;
using GemmABlockTransferThreadClusterLengths_GemmK_GemmM = Sequence<2, 128>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK = 2;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmM = 1;
using GemmBBlockTransferThreadSliceLengths_GemmK_GemmN = Sequence<2, 2>;
using GemmBBlockTransferThreadClusterLengths_GemmK_GemmN = Sequence<4, 64>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 1;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmN = 1;
constexpr index_t GemmCThreadTransferDstScalarPerVector_GemmN1 = 1;
#elif 1
// cdata = 64, BlockSize = 256, 128x128x16
// GemmBBlockCopySrcDataPerRead_GemmN = 4
// GemmCThreadCopyDstDataPerWrite_GemmN1 = 4
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 16;
constexpr index_t GemmMPerThread = 4;
constexpr index_t GemmNPerThread = 4;
constexpr index_t GemmKPerThread = 1;
constexpr index_t GemmMLevel0Cluster = 4;
constexpr index_t GemmNLevel0Cluster = 4;
constexpr index_t GemmMLevel1Cluster = 4;
constexpr index_t GemmNLevel1Cluster = 4;
using GemmABlockTransferThreadSliceLengths_GemmK_GemmM = Sequence<4, 2>;
using GemmABlockTransferThreadClusterLengths_GemmK_GemmM = Sequence<4, 64>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK = 4;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmM = 1;
using GemmBBlockTransferThreadSliceLengths_GemmK_GemmN = Sequence<2, 4>;
using GemmBBlockTransferThreadClusterLengths_GemmK_GemmN = Sequence<8, 32>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 4;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmN = 4;
constexpr index_t GemmCThreadTransferDstScalarPerVector_GemmN1 = 4;
#endif
constexpr auto conv_driver =
DriverDynamicConvolutionForwardImplicitGemm_v5r1_nchw_kcyx_nkhw_pad<
BlockSize,
TDevice,
TDevice,
GemmMPerBlock,
GemmNPerBlock,
GemmKPerBlock,
GemmMPerThread,
GemmNPerThread,
GemmKPerThread,
GemmMLevel0Cluster,
GemmNLevel0Cluster,
GemmMLevel1Cluster,
GemmNLevel1Cluster,
GemmABlockTransferThreadSliceLengths_GemmK_GemmM,
GemmABlockTransferThreadClusterLengths_GemmK_GemmM,
GemmABlockTransferSrcScalarPerVector_GemmK,
GemmABlockTransferDstScalarPerVector_GemmM,
GemmBBlockTransferThreadSliceLengths_GemmK_GemmN,
GemmBBlockTransferThreadClusterLengths_GemmK_GemmN,
GemmBBlockTransferSrcScalarPerVector_GemmN,
GemmBBlockTransferDstScalarPerVector_GemmN,
GemmCThreadTransferDstScalarPerVector_GemmN1>{};
conv_driver.Run(wei_k_c_y_x_desc,
in_n_c_hi_wi_desc,
out_n_k_ho_wo_desc,
conv_strides,
conv_dilations,
in_left_pads,
in_right_pads,
static_cast<TDevice*>(wei_kcyx_device_buf.GetDeviceBuffer()),
static_cast<TDevice*>(in_nchw_device_buf.GetDeviceBuffer()),
static_cast<TDevice*>(out_nkhw_device_buf.GetDeviceBuffer()));
out_nkhw_device_buf.FromDevice(out_nkhw.mData.data());
}
......@@ -17,6 +17,8 @@
#include "device_dynamic_convolution_forward_implicit_gemm_v4r4_nchw_kcyx_nkhw.hpp"
#include "device_dynamic_convolution_forward_implicit_gemm_v4r4_nhwc_kyxc_nhwk.hpp"
#include "device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw.hpp"
int main(int argc, char* argv[])
{
using namespace ck;
......@@ -47,8 +49,8 @@ int main(int argc, char* argv[])
using ConvStrides = Sequence<1, 1>;
using ConvDilations = Sequence<1, 1>;
using LeftPads = Sequence<0, 0>;
using RightPads = Sequence<0, 0>;
using LeftPads = Sequence<0, 0>;
using RightPads = Sequence<0, 0>;
#elif 0
constexpr index_t N = 1;
constexpr index_t C = 4;
......@@ -725,7 +727,7 @@ int main(int argc, char* argv[])
LeftPads{},
RightPads{},
nrepeat);
#elif 1
#elif 0
device_dynamic_convolution_forward_implicit_gemm_v4r4_nhwc_kyxc_nhwk(in_nchw_desc,
in_nchw,
wei_kcyx_desc,
......@@ -737,6 +739,19 @@ int main(int argc, char* argv[])
LeftPads{},
RightPads{},
nrepeat);
#elif 1
device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw(in_nchw_desc,
in_nchw,
wei_kcyx_desc,
wei_kcyx,
out_nkhw_desc,
out_nkhw_device,
ConvStrides{},
ConvDilations{},
LeftPads{},
RightPads{},
nrepeat);
#endif
if(do_verification)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment