Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
5c8112d9
Commit
5c8112d9
authored
Jan 28, 2022
by
Jing Zhang
Browse files
merge develop
parents
7b1ce567
ca47a6cf
Changes
89
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1907 additions
and
470 deletions
+1907
-470
device_operation/include/element_wise_operation.hpp
device_operation/include/element_wise_operation.hpp
+0
-20
example/1_gemm_xdl/gemm_xdl.cpp
example/1_gemm_xdl/gemm_xdl.cpp
+50
-36
example/3_gemm_xdl_bias_relu_add/README.md
example/3_gemm_xdl_bias_relu_add/README.md
+0
-0
example/3_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
example/3_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
+29
-82
example/3_gemm_xdl_bias_relu_add/include/device_gemm_xdl_two_extra_source_reduce.hpp
...u_add/include/device_gemm_xdl_two_extra_source_reduce.hpp
+25
-56
example/4_conv2d_fwd_xdl/README.md
example/4_conv2d_fwd_xdl/README.md
+5
-5
example/4_conv2d_fwd_xdl/conv2d_fwd_xdl.cpp
example/4_conv2d_fwd_xdl/conv2d_fwd_xdl.cpp
+20
-31
example/4_conv_xdl_bias_relu_add/include/device_conv_fwd_xdl_bias_activation_add.hpp
...u_add/include/device_conv_fwd_xdl_bias_activation_add.hpp
+0
-61
example/5_conv2d_fwd_xdl_bias_relu/README.md
example/5_conv2d_fwd_xdl_bias_relu/README.md
+0
-0
example/5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bias_relu.cpp
...e/5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bias_relu.cpp
+296
-0
example/6_conv2d_fwd_xdl_bias_relu_add/README.md
example/6_conv2d_fwd_xdl_bias_relu_add/README.md
+61
-0
example/6_conv2d_fwd_xdl_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp
...2d_fwd_xdl_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp
+28
-157
example/7_conv2d_fwd_xdl_bias_relu_atomic_add/README.md
example/7_conv2d_fwd_xdl_bias_relu_atomic_add/README.md
+61
-0
example/7_conv2d_fwd_xdl_bias_relu_atomic_add/conv2d_fwd_xdl_bias_relu_atomic_add.cpp
...s_relu_atomic_add/conv2d_fwd_xdl_bias_relu_atomic_add.cpp
+299
-0
example/CMakeLists.txt
example/CMakeLists.txt
+13
-7
host/host_tensor/src/host_tensor.cpp
host/host_tensor/src/host_tensor.cpp
+6
-3
profiler/CMakeLists.txt
profiler/CMakeLists.txt
+54
-12
profiler/include/profile_conv_fwd_bias_relu_add_impl.hpp
profiler/include/profile_conv_fwd_bias_relu_add_impl.hpp
+305
-0
profiler/include/profile_conv_fwd_bias_relu_atomic_add_impl.hpp
...er/include/profile_conv_fwd_bias_relu_atomic_add_impl.hpp
+328
-0
profiler/include/profile_conv_fwd_bias_relu_impl.hpp
profiler/include/profile_conv_fwd_bias_relu_impl.hpp
+327
-0
No files found.
device_operation/include/element_wise_operation.hpp
deleted
100644 → 0
View file @
7b1ce567
#ifndef ELEMENT_WISE_OPERATION_HPP
#define ELEMENT_WISE_OPERATION_HPP
namespace
ck
{
namespace
tensor_operation
{
namespace
element_wise
{
struct
PassThrough
{
template
<
typename
T
>
__host__
__device__
constexpr
T
operator
()(
T
v
)
const
{
return
v
;
}
};
}
// namespace element_wise
}
// namespace tensor_operation
}
// namespace ck
#endif
example/1_gemm_xdl/gemm_xdl.cpp
View file @
5c8112d9
...
...
@@ -12,25 +12,8 @@
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_gemm_xdl.hpp"
struct
PassThrough
{
template
<
typename
T
>
__host__
__device__
constexpr
T
operator
()(
T
v
)
const
{
return
v
;
}
};
struct
Relu
{
template
<
typename
T
>
__host__
__device__
constexpr
T
operator
()(
T
v
)
const
{
return
v
>
0
?
v
:
0
;
}
};
#include "device_gemm_xdl_c_shuffle.hpp"
#include "element_wise_operation.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
@@ -44,18 +27,49 @@ using ALayout = ck::tensor_layout::gemm::RowMajor;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
A
Op
=
PassThrough
;
using
B
Op
=
PassThrough
;
using
C
Op
=
Relu
;
using
A
ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
B
ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
C
ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// Compilation parameters for NT problem
// clang-format off
using
DeviceGemmInstance
=
//#########################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| AElementwise| BElementwise| CElementwise| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
//#########################################| Type| Type| Type| Type| | | | Operation| Operation| Operation| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN|
//#########################################| | | | | | | | | | | | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | |
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck
::
tensor_operation
::
device
::
DeviceGemmXdl
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AOp
,
BOp
,
COp
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
2
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdl_C_Shuffle
<
ADataType
,
// ADataType
BDataType
,
// BDataType
CDataType
,
// CDataType
AccDataType
,
// AccDataType
ALayout
,
// ALayout
BLayout
,
// BLayout
CLayout
,
// CLayout
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CElementOp
,
// CElementwiseOperation
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXDL
32
,
// NPerXDL
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
// CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
template
<
typename
AType
,
...
...
@@ -107,9 +121,9 @@ int main(int argc, char* argv[])
if
(
argc
==
4
)
{
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
...
...
@@ -189,9 +203,9 @@ int main(int argc, char* argv[])
StrideA
,
StrideB
,
StrideC
,
AOp
{},
BOp
{},
COp
{});
A
Element
Op
{},
B
Element
Op
{},
C
Element
Op
{});
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
...
...
@@ -217,7 +231,7 @@ int main(int argc, char* argv[])
if
(
do_verification
)
{
host_verify
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
A
Op
{},
BOp
{},
C
Op
{});
host_verify
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
A
ElementOp
{},
BElementOp
{},
CElement
Op
{});
check_error
(
c_m_n_host_result
,
c_m_n_device_result
);
}
...
...
example/
2
_gemm_xdl_bias_relu_add/README.md
→
example/
3
_gemm_xdl_bias_relu_add/README.md
View file @
5c8112d9
File moved
example/
2
_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
→
example/
3
_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
View file @
5c8112d9
...
...
@@ -12,7 +12,7 @@
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "example/
2
_gemm_xdl_bias_relu_add/include/device_gemm_xdl_two_extra_source_reduce.hpp"
#include "example/
3
_gemm_xdl_bias_relu_add/include/device_gemm_xdl_two_extra_source_reduce.hpp"
// C[m, n] = Relu(A[m, k] * B[k, n] + C0[m]) + C1[m, n]
// assume C0 is contiguous in memory
...
...
@@ -37,7 +37,7 @@ struct BiasReluAdd
{
#if 0
float a = v1 + v0;
float b =
max(a, float(0))
;
float b =
a > 0 ? a : 0
;
float c = b + v2;
return c;
...
...
@@ -52,70 +52,13 @@ struct BiasReluAdd
}
};
// v0 is from A * B
// v1 is from C0
// v2 is from C1
struct
BiasLeakyReluAdd
{
template
<
typename
T1
,
typename
T2
>
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
{
float
a
=
v0
+
v1
;
float
b
=
0.1
*
a
;
float
c
=
b
>
0
?
b
:
0
;
float
d
=
c
+
v2
;
return
d
;
}
template
<
typename
T1
,
typename
T2
>
__device__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
{
constexpr
float
alpha
=
0.1
;
constexpr
float
alpha_inv
=
1.0
/
alpha
;
float
a
=
v2
*
alpha_inv
;
float
b
=
v1
+
v0
;
float
c
=
max
(
b
,
float
(
0
));
float
d
=
alpha
*
(
a
+
c
);
return
d
;
}
};
struct
BiasLeakyRelu
{
template
<
typename
T1
,
typename
T2
>
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
)
const
{
float
a
=
v0
+
v1
;
float
b
=
0.1
*
a
;
float
c
=
b
>
0
?
b
:
0
;
return
c
;
}
template
<
typename
T1
,
typename
T2
>
__device__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
)
const
{
constexpr
float
alpha
=
0.1
;
float
b
=
v1
+
v0
;
float
c
=
max
(
b
,
float
(
0
));
float
d
=
alpha
*
c
;
return
d
;
}
};
struct
BiasAdd
struct
DoSomething
{
#if 1
// correct result
// no scratch memory, good VGPR allocation (59)
// good perf (101Tflops)
template
<
typename
T1
,
typename
T2
>
__host__
__device__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
// good perf (101Tflops @ 1089Mhz)
__host__
__device__
constexpr
float
operator
()(
float
v0
,
ck
::
half_t
v1
,
ck
::
half_t
v2
)
const
{
constexpr
float
alpha
=
0.1
;
constexpr
float
beta
=
0.2
;
...
...
@@ -124,7 +67,7 @@ struct BiasAdd
// compiler seems very volatile to the order of these calculation:
// compiler is very eager to read AccVgpr (v0) out prematurely, resulting in register
// over-allocation. Therefore, move v0 calculation to the very end
float
a
=
T1
(
beta
)
*
v1
+
T2
(
gamma
)
*
v2
;
float
a
=
ck
::
half_t
(
beta
)
*
v1
+
ck
::
half_t
(
gamma
)
*
v2
;
float
b
=
a
+
float
(
alpha
)
*
v0
;
return
b
;
...
...
@@ -137,15 +80,14 @@ struct BiasAdd
// wrong result
// lots of scratch memory
// huge perf drop
template
<
typename
T1
,
typename
T2
>
__host__
__device__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
__host__
__device__
constexpr
float
operator
()(
float
v0
,
ck
::
half_t
v1
,
ck
::
half_t
v2
)
const
{
return
alpha
*
v0
+
beta
*
v1
+
gamma
*
v2
;
}
#elif 0
// correct result
// some scratch memory (68 dword)
// some perf drop (94Tflops)
// some perf drop (94Tflops
@ 1089MHz
)
// fp64 instructions are used
__host__
__device__
constexpr
auto
operator
()(
float
v0
,
ck
::
half_t
v1
,
ck
::
half_t
v2
)
const
{
...
...
@@ -185,16 +127,20 @@ using CLayout = ck::tensor_layout::gemm::RowMajor;
using
AOp
=
PassThrough
;
using
BOp
=
PassThrough
;
#if 1
using
COp
=
BiasReluAdd
;
#else
using
COp
=
DoSomething
;
#endif
// Compilation parameters for NT problem
// clang-format off
using
DeviceGemmInstance
=
//#################################################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| AElementwise| BElementwise| CElementwise| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer|
ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlock
Transfer
| BBlockTransfer|
BBlockTransfer| BBlockTransfer|
BBlockTransfer|
BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer|
ABlockLds| BBlockLds|
//#################################################################| Type| Type| Type| Type| | | | Operation| Operation| Operation| Size| Block| Block| Block| | XDL| XDL| Per| Per|
ThreadSlice|
ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
ThreadSlice
| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar|
AddExtraM| AddExtraN|
//#################################################################| | | | | | | | | | | | | | | | | | Wave| Wave|
Lengths_K0_N_K1|
Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1|
Lengths_K0_N_K1
| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector|
| |
//#################################################################| | | | | | | | | | | | | | | | | | | | |
|
| | | | |
| | | | |
| |
| |
|
|
ck
::
tensor_operation
::
device
::
DeviceGemmXdl_two_extra_source_reduce
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AOp
,
BOp
,
COp
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
2
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
;
//#################################################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| AElementwise| BElementwise| CElementwise| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlock
Lds
| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer|
BBlockLds|
CThreadTransfer| CThreadTransfer|
//#################################################################| Type| Type| Type| Type| | | | Operation| Operation| Operation| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
AddExtraM
| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
AddExtraN|
SrcDstVectorDim| DstScalar|
//#################################################################| | | | | | | | | | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1|
| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1|
|
| PerVector|
//#################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | |
ck
::
tensor_operation
::
device
::
DeviceGemmXdl_two_extra_source_reduce
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AOp
,
BOp
,
COp
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
7
,
1
>
;
// clang-format on
template
<
typename
AType
,
...
...
@@ -215,16 +161,15 @@ static void host_verify(const Tensor<AType>& a_m_k,
auto
f_mk_kn_mn
=
[
&
](
auto
m
,
auto
n
)
{
const
int
K
=
a_m_k
.
mDesc
.
GetLengths
()[
1
];
double
v
=
0
;
float
acc
=
0
;
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
v
+=
static_cast
<
const
double
>
(
a_element_op
(
a_m_k
(
m
,
k
)))
*
static_cast
<
const
double
>
(
b_element_op
(
b_k_n
(
k
,
n
)));
acc
+=
static_cast
<
const
double
>
(
a_element_op
(
a_m_k
(
m
,
k
)))
*
static_cast
<
const
double
>
(
b_element_op
(
b_k_n
(
k
,
n
)));
}
c_m_n
(
m
,
n
)
=
c_element_op
(
v
,
static_cast
<
const
double
>
(
c0_m_n
(
m
,
n
)),
static_cast
<
const
double
>
(
c1_m_n
(
m
,
n
)));
c_m_n
(
m
,
n
)
=
c_element_op
(
acc
,
c0_m_n
(
m
,
n
),
c1_m_n
(
m
,
n
));
};
make_ParallelTensorFunctor
(
f_mk_kn_mn
,
...
...
@@ -249,9 +194,9 @@ int main(int argc, char* argv[])
if
(
argc
==
4
)
{
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
...
...
@@ -337,7 +282,9 @@ int main(int argc, char* argv[])
c0_m_n_device_buf
.
ToDevice
(
c0_m_n
.
mData
.
data
());
c1_m_n_device_buf
.
ToDevice
(
c1_m_n
.
mData
.
data
());
auto
c_element_op
=
BiasReluAdd
{};
auto
a_element_op
=
AOp
{};
auto
b_element_op
=
BOp
{};
auto
c_element_op
=
COp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
...
...
@@ -354,8 +301,8 @@ int main(int argc, char* argv[])
StrideA
,
StrideB
,
StrideC
,
PassThrough
{}
,
PassThrough
{}
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
...
...
example/
2
_gemm_xdl_bias_relu_add/include/device_gemm_xdl_two_extra_source_reduce.hpp
→
example/
3
_gemm_xdl_bias_relu_add/include/device_gemm_xdl_two_extra_source_reduce.hpp
View file @
5c8112d9
...
...
@@ -2,6 +2,7 @@
#define DEVICE_GEMM_XDL_TWO_EXTRA_SOURCE_REDUCE_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
...
...
@@ -34,24 +35,22 @@ template <typename ADataType,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadSliceLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
typename
BBlockTransferThreadSliceLengths_K0_N_K1
,
bool
ABlockLdsAddExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BBlockLdsAddExtraN
,
ck
::
index_t
CThreadTransferSrcDstVectorDim
,
ck
::
index_t
CThreadTransferDstScalarPerVector
,
bool
ABlockLdsAddExtraM
,
bool
BBlockLdsAddExtraN
>
ck
::
index_t
CThreadTransferDstScalarPerVector
>
struct
DeviceGemmXdl_two_extra_source_reduce
:
public
BaseOperator
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
...
...
@@ -136,45 +135,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
using
C1GridDesc_M_N
=
decltype
(
make_naive_tensor_descriptor
(
make_tuple
(
1
,
1
),
make_tuple
(
I1
,
I0
)));
// TODO remove these hacks
static
constexpr
auto
a_k0_m_k1_grid_step_hacks
=
make_tuple
(
make_tuple
(
Sequence
<
0
,
0
,
0
>
{},
// 0+: K0
Sequence
<
0
,
0
,
0
>
{},
// 1+: M
Sequence
<
0
,
0
,
0
>
{}),
// 2+: K1
make_tuple
(
Sequence
<
0
,
0
,
0
>
{},
// 0-: K0
Sequence
<
0
,
0
,
0
>
{},
// 1-: M
Sequence
<
0
,
0
,
0
>
{}));
// 2-: K1
static
constexpr
auto
b_k0_n_k1_grid_step_hacks
=
make_tuple
(
make_tuple
(
Sequence
<
0
,
0
,
0
>
{},
// 0+: K0
Sequence
<
0
,
0
,
0
>
{},
// 1+: N
Sequence
<
0
,
0
,
0
>
{}),
// 2+: K1
make_tuple
(
Sequence
<
0
,
0
,
0
>
{},
// 0-: K0
Sequence
<
0
,
0
,
0
>
{},
// 1-: N
Sequence
<
0
,
0
,
0
>
{}));
// 2-: K1
static
constexpr
auto
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks
=
make_tuple
(
make_tuple
(
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 0+: M0
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 1+: N0
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 2+: M1
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 3+: N1
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 4+: M2
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 5+: M3
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 6+: M4
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{}),
// 7+: N2
make_tuple
(
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 0-: M0
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 1-: N0
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 2-: M1
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 3-: N1
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 4-: M2
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 5-: M3
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 6-: M4
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{}));
// 7-: N2
static
constexpr
auto
a_k0_m_k1_grid_move_slice_window_step_hacks
=
Sequence
<
0
,
0
,
0
>
{};
static
constexpr
auto
b_k0_n_k1_grid_move_slice_window_step_hacks
=
Sequence
<
0
,
0
,
0
>
{};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r5
<
BlockSize
,
...
...
@@ -198,7 +158,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
K1
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadSliceLengths_K0_M_K1
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
...
...
@@ -206,25 +165,18 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
B
Block
TransferThreadSliceLengths_K0_N_K1
,
A
Block
LdsAddExtraM
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN
,
Sequence
<
0
,
2
,
4
,
5
,
6
,
1
,
3
,
7
>
,
// CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim
,
CThreadTransferDstScalarPerVector
,
decltype
(
a_k0_m_k1_grid_step_hacks
),
// AGridStepHacks,
decltype
(
b_k0_n_k1_grid_step_hacks
),
// BGridStepHacks,
decltype
(
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks
),
// CGridStepHacks,
decltype
(
a_k0_m_k1_grid_move_slice_window_step_hacks
),
// AGridMoveSliceWindowStepHacks,
decltype
(
b_k0_n_k1_grid_move_slice_window_step_hacks
),
// BGridMoveSliceWindowStepHacks,
false
,
// CAccessOrderMRepeatNRepeat,
ABlockLdsAddExtraM
,
BBlockLdsAddExtraN
>
;
CThreadTransferDstScalarPerVector
>
;
using
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
=
decltype
(
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
CGridDesc_M_N
{}));
...
...
@@ -560,6 +512,23 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGemmXdl_two_extra_source_reduce"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
...
...
example/
3
_conv_xdl/README.md
→
example/
4
_conv
2d_fwd
_xdl/README.md
View file @
5c8112d9
# Instructions for ```conv_xdl``` Example
# Instructions for ```conv
2d_fwd
_xdl``` Example
## Docker script
```
bash
...
...
@@ -13,7 +13,7 @@ rocm/tensorflow:rocm4.3.1-tf2.6-dev \
/bin/bash
```
## Build ```conv_xdl```
## Build ```conv
2d_fwd
_xdl```
```
bash
mkdir
build
&&
cd
build
```
...
...
@@ -30,16 +30,16 @@ cmake \
```
```
bash
make
-j
conv_xdl
make
-j
conv
2d_fwd
_xdl
```
## Run ```conv_xdl```
## Run ```conv
2d_fwd
_xdl```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
./example/conv_xdl 0 1 5
./example/conv
2d_fwd
_xdl 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
...
...
example/
3
_conv_xdl/conv_xdl.cpp
→
example/
4
_conv
2d_fwd
_xdl/conv
2d_fwd
_xdl.cpp
View file @
5c8112d9
...
...
@@ -11,27 +11,8 @@
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "device_conv_fwd_xdl.hpp"
#include "device_conv_fwd_xdl_nhwc_kyxc_nhwk.hpp"
struct
PassThrough
{
template
<
typename
T
>
__host__
__device__
constexpr
T
operator
()(
T
v
)
const
{
return
v
;
}
};
struct
Relu
{
template
<
typename
T
>
__host__
__device__
constexpr
T
operator
()(
T
v
)
const
{
T
tmp
=
0.1
*
v
;
return
tmp
>
0
?
tmp
:
0
;
}
};
#include "device_operation/include/device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
...
...
@@ -45,17 +26,21 @@ using InLayout = ck::tensor_layout::convolution::NHWC;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWK
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
Relu
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization_t
::
Default
;
using
DeviceConvFwdInstance
=
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
// clang-format off
//
############################################| NDim|
InData| WeiData| OutData| AccData|
In| Wei| Out|
In| Wei| Out| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer|
ABlockTransfer|
ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer|
BBlockTransfer| BBlockTransfer|
BBlockTransfer|
BlockTransfer| BBlockTransfer| BBlockTransfer|
CThreadTransfer| CThreadTransfer| ABlockLd
s|
B
Block
Lds
|
//
############################################| Spatial| Type|
Type| Type| Type|
Layout| Layout| Layout
| Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per|
ThreadSlice|
ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
ThreadSlice
| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN
|
//
############################################|
|
| | | |
| | |
Operation| Operation| Operation| | | | | | | | Wave| Wave|
Lengths_K0_N_K1|
Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1|
Lengths_K0_N_K1
| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1|
| PerVector| |
|
//
############################################|
| | | | |
| |
| |
|
| | | | | | | | | | | | | | | | |
| | | |
|
|
|
|
| | |
ck
::
tensor_operation
::
device
::
DeviceConvFwdXdl
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
1
,
2
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
4
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
;
//
|
InData| WeiData| OutData| AccData| In| Wei| Out|
ConvForward|
Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer|
ABlockLds|
BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer|
BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLength
s|
C
Block
Transfer
|
//
|
Type| Type| Type|
Type
| Elementwise| Elementwise| Elementwise|
Specialization|
Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
AddExtraM
| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector
|
// | | | | | Operation| Operation| Operation|
|
| | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1|
| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1|
| PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl
|
//
|
|
| | | | |
|
| | | | | | | | | | | | | | | |
|
| |
|
| |
|
|
|
|
| |
<
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvFwdDefault
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
;
// clang-format on
template
<
typename
TIn
,
...
...
@@ -94,7 +79,11 @@ void host_verify(const Tensor<TIn>& in,
}
}
}
out
(
n
,
k
,
ho
,
wo
)
=
out_element_op
(
v
);
double
v2
=
out
(
n
,
k
,
ho
,
wo
);
out_element_op
(
v2
,
v
);
out
(
n
,
k
,
ho
,
wo
)
=
v2
;
};
make_ParallelTensorFunctor
(
f_nchw
,
...
...
example/4_conv_xdl_bias_relu_add/include/device_conv_fwd_xdl_bias_activation_add.hpp
deleted
100644 → 0
View file @
7b1ce567
#ifndef DEVICE_CONV_FWD_XDL_BIAS_ACTIVATION_ADD_HPP
#define DEVICE_CONV_FWD_XDL_BIAS_ACTIVATION_ADD_HPP
#include <iostream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_conv.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
typename
InElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
OutElementwiseOperation
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
K0PerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
MPerXDL
,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadSliceLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
typename
BBlockTransferThreadSliceLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
ck
::
index_t
CThreadTransferSrcDstVectorDim
,
ck
::
index_t
CThreadTransferDstScalarPerVector
,
bool
ABlockLdsAddExtraM
,
bool
BBlockLdsAddExtraN
>
struct
DeviceConvFwdXdl_bias_activation_add
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
example/
4
_conv_xdl_bias_relu
_add
/README.md
→
example/
5
_conv
2d_fwd
_xdl_bias_relu/README.md
View file @
5c8112d9
File moved
example/5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bias_relu.cpp
0 → 100644
View file @
5c8112d9
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWK
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
MemorySet
=
ck
::
InMemoryDataOperationEnum_t
::
Set
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization_t
::
Default
;
// clang-format off
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
// clang-format off
// | InData| WeiData| OutData| AccData| In| Wei| Out| Out| ConvForward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| GlobalMemory| Specialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
// | | | | | Operation| Operation| Operation| DataOperation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
// | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
MemorySet
,
ConvFwdDefault
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
;
// clang-format on
template
<
typename
TIn
,
typename
TWei
,
typename
TOut
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
>
void
host_reference_calculation
(
const
Tensor
<
TIn
>&
in_n_c_hi_wi
,
const
Tensor
<
TWei
>&
wei_k_c_y_x
,
Tensor
<
TOut
>&
out_n_k_ho_wo
,
const
Tensor
<
TOut
>&
bias_k
,
const
std
::
vector
<
ck
::
index_t
>&
conv_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
/* in_right_pads */
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
auto
f_nchw
=
[
&
](
auto
n
,
auto
k
,
auto
ho
,
auto
wo
)
{
double
v
=
0
;
for
(
int
c
=
0
;
c
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
1
];
++
c
)
{
for
(
int
y
=
0
;
y
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
2
];
++
y
)
{
int
hi
=
ho
*
conv_strides
[
0
]
+
y
*
conv_dilations
[
0
]
-
in_left_pads
[
0
];
for
(
int
x
=
0
;
x
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
3
];
++
x
)
{
int
wi
=
wo
*
conv_strides
[
1
]
+
x
*
conv_dilations
[
1
]
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
in_n_c_hi_wi
.
mDesc
.
GetLengths
()[
2
]
&&
wi
>=
0
&&
wi
<
in_n_c_hi_wi
.
mDesc
.
GetLengths
()[
3
])
{
v
+=
in_element_op
(
static_cast
<
const
double
>
(
in_n_c_hi_wi
(
n
,
c
,
hi
,
wi
)))
*
wei_element_op
(
static_cast
<
const
double
>
(
wei_k_c_y_x
(
k
,
c
,
y
,
x
)));
}
}
}
}
out_n_k_ho_wo
(
n
,
k
,
ho
,
wo
)
=
out_element_op
(
v
,
bias_k
(
k
));
};
make_ParallelTensorFunctor
(
f_nchw
,
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
0
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
1
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
2
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
// Conv shape
ck
::
index_t
N
=
128
;
ck
::
index_t
K
=
256
;
ck
::
index_t
C
=
192
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
71
;
ck
::
index_t
Wi
=
71
;
ck
::
index_t
conv_stride_h
=
2
;
ck
::
index_t
conv_stride_w
=
2
;
ck
::
index_t
conv_dilation_h
=
1
;
ck
::
index_t
conv_dilation_w
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
19
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
N
=
std
::
stoi
(
argv
[
4
]);
K
=
std
::
stoi
(
argv
[
5
]);
C
=
std
::
stoi
(
argv
[
6
]);
Y
=
std
::
stoi
(
argv
[
7
]);
X
=
std
::
stoi
(
argv
[
8
]);
Hi
=
std
::
stoi
(
argv
[
9
]);
Wi
=
std
::
stoi
(
argv
[
10
]);
conv_stride_h
=
std
::
stoi
(
argv
[
11
]);
conv_stride_w
=
std
::
stoi
(
argv
[
12
]);
conv_dilation_h
=
std
::
stoi
(
argv
[
13
]);
conv_dilation_w
=
std
::
stoi
(
argv
[
14
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
15
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
16
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
17
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
18
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
0
);
}
const
ck
::
index_t
YEff
=
(
Y
-
1
)
*
conv_dilation_h
+
1
;
const
ck
::
index_t
XEff
=
(
X
-
1
)
*
conv_dilation_w
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
YEff
)
/
conv_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
XEff
)
/
conv_stride_w
+
1
;
const
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
{{
conv_stride_h
,
conv_stride_w
}};
const
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
{{
conv_dilation_h
,
conv_dilation_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{{
in_left_pad_h
,
in_left_pad_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{{
in_right_pad_h
,
in_right_pad_w
}};
// tensor layout
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
}
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NHWC
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KYXC
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NHWK
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
}
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
,
WeiLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_host_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_device_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
// bias: assume contiguous 1d vector
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
K
)})));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
bias_device_buf
(
sizeof
(
OutDataType
)
*
bias_k
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
mData
.
data
());
auto
conv
=
DeviceConvFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
static_cast
<
const
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
N
,
K
,
C
,
std
::
vector
<
ck
::
index_t
>
{{
Hi
,
Wi
}},
std
::
vector
<
ck
::
index_t
>
{{
Y
,
X
}},
std
::
vector
<
ck
::
index_t
>
{{
Ho
,
Wo
}},
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device operator with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
)
+
sizeof
(
OutDataType
)
*
(
K
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
host_reference_calculation
(
in_n_c_hi_wi
,
wei_k_c_y_x
,
out_n_k_ho_wo_host_result
,
bias_k
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
check_error
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
);
}
}
example/6_conv2d_fwd_xdl_bias_relu_add/README.md
0 → 100644
View file @
5c8112d9
# Instructions for ```conv_xdl_bias_relu_add``` Example
## Docker script
```
bash
docker run
\
-it
\
--rm
\
--privileged
\
--group-add
sudo
\
-w
/root/workspace
\
-v
${
PATH_TO_LOCAL_WORKSPACE
}
:/root/workspace
\
rocm/tensorflow:rocm4.3.1-tf2.6-dev
\
/bin/bash
```
## Build ```conv_xdl_bias_relu_add```
```
bash
mkdir
build
&&
cd
build
```
```
bash
# Need to specify target ID, example below is gfx908
cmake
\
-D
BUILD_DEV
=
OFF
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
CMAKE_CXX_FLAGS
=
"-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 "
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
..
```
```
bash
make
-j
conv_xdl_bias_relu_add
```
## Run ```conv_xdl_bias_relu_add```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
./example/conv_xdl_bias_relu_add 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
wei_k_c_y_x: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
bias_k: dim 1, lengths {256}, strides {1}
resi_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
arg.a_grid_desc_k0_m_k1_{216, 165888, 8}
arg.b_grid_desc_k0_n_k1_{216, 256, 8}
arg.c_grid_desc_m_n_{ 165888, 256}
arg.c0_grid_desc_m_n_{ 165888, 256}
arg.c1_grid_desc_m_n_{ 165888, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.71779 ms, 85.4396 TFlops, 194.2 GB/s
```
example/
4
_conv_xdl_bias_relu_add/conv_xdl_bias_relu_add.cpp
→
example/
6
_conv
2d_fwd
_xdl_bias_relu_add/conv
2d_fwd
_xdl_bias_relu_add.cpp
View file @
5c8112d9
...
...
@@ -11,148 +11,8 @@
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "example/4_conv_xdl_bias_relu_add/include/device_conv_fwd_xdl_bias_activation_add.hpp"
#include "example/4_conv_xdl_bias_relu_add/include/device_conv_fwd_xdl_bias_activation_add_nhwc_kyxc_nhwk.hpp"
struct
PassThrough
{
template
<
typename
T
>
__host__
__device__
constexpr
T
operator
()(
T
v
)
const
{
return
v
;
}
};
struct
BiasLeakyReluAdd
{
template
<
typename
T1
,
typename
T2
>
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
{
float
a
=
v0
+
v1
;
float
b
=
0.1
*
a
;
float
c
=
b
>
0
?
b
:
0
;
float
d
=
c
+
v2
;
return
d
;
}
template
<
typename
T1
,
typename
T2
>
__device__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
{
#if 0
// this use not too many registers, but use fp64 mul
float a = v0 + v1;
float b = 0.1 * a;
float c = b > 0 ? b : 0;
float d = c + v2;
return d;
#elif
0
// this spill register
float
a
=
v0
+
v1
;
float
b
=
float
(
0.1
)
*
a
;
float
c
=
b
>
0
?
b
:
0
;
float
d
=
c
+
v2
;
return
d
;
#elif 0
// this use lots of registers (but no spill)
constexpr
float
alpha
=
0.1
;
constexpr
float
alpha_inv
=
1.0
/
alpha
;
float
a
=
v2
*
alpha_inv
;
float
b
=
v1
+
v0
;
float
c
=
b
>
0
?
b
:
0
;
float
d
=
alpha
*
(
a
+
c
);
return
d
;
#elif 1
// this use lots of registers (but no spill), 89 Tflops
constexpr
float
alpha
=
0.1
;
constexpr
float
alpha_inv
=
1.0
/
alpha
;
float
a
=
v2
*
alpha_inv
;
float
b
=
v1
+
v0
;
float
c
=
max
(
b
,
float
(
0
));
float
d
=
alpha
*
(
a
+
c
);
return
d
;
#elif 1
// this spill registers, 89 Tflops
float
a
=
v0
+
v1
;
float
alpha
=
0.1
;
float
b
;
asm
volatile
(
"
\n
\
v_mul_f32_e32 %0, %1, %2
\n
\
"
:
"=v"
(
b
)
:
"s"
(
alpha
),
"v"
(
a
));
float
c
=
b
>
0
?
b
:
0
;
float
d
=
c
+
v2
;
return
d
;
#endif
}
};
struct
BiasReluAdd
{
template
<
typename
T1
,
typename
T2
>
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
{
float
b
=
v0
+
v1
;
float
c
=
b
>
0
?
b
:
0
;
float
d
=
c
+
v2
;
return
d
;
}
template
<
typename
T1
,
typename
T2
>
__device__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
v2
)
const
{
#if 0
float a = v1 + v0;
float b = max(a, float(0));
float c = b + v2;
return c;
#else
float
a
=
v1
+
v2
;
float
b
=
v2
;
float
c
=
(
v0
>
-
v1
)
?
a
+
v0
:
v2
;
return
c
;
#endif
}
};
struct
BiasLeakyRelu
{
template
<
typename
T1
,
typename
T2
>
__host__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
)
const
{
float
a
=
v0
+
v1
;
float
b
=
0.1
*
a
;
float
c
=
b
>
0
?
b
:
0
;
return
c
;
}
template
<
typename
T1
,
typename
T2
>
__device__
constexpr
float
operator
()(
float
v0
,
T1
v1
,
T2
)
const
{
constexpr
float
alpha
=
0.1
;
float
b
=
v1
+
v0
;
float
c
=
max
(
b
,
float
(
0
));
float
d
=
alpha
*
c
;
return
d
;
}
};
#include "device_conv2d_fwd_xdl_c_shuffle_bias_activation_add_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
...
...
@@ -166,17 +26,21 @@ using InLayout = ck::tensor_layout::convolution::NHWC;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWK
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
BiasReluAdd
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization_t
::
Default
;
// clang-format off
using
DeviceConvFwdInstance
=
//################################################################| NDim| InData| WeiData| OutData| AccData| In| Wei| Out| In| Wei| Out| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
//################################################################| Spatial| Type| Type| Type| Type| Layout| Layout| Layout| Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN|
//################################################################| | | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | |
//################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck
::
tensor_operation
::
device
::
DeviceConvFwdXdl_bias_activation_add
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
1
,
2
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
4
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
;
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
// | InData| WeiData| OutData| AccData| In| Wei| Out| ConvForward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
// | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
// | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvFwdDefault
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
;
// clang-format on
template
<
typename
TIn
,
...
...
@@ -193,7 +57,7 @@ void host_reference_calculation(const Tensor<TIn>& in_n_c_hi_wi,
const
std
::
vector
<
ck
::
index_t
>&
conv_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
,
const
std
::
vector
<
ck
::
index_t
>&
/* in_right_pads */
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
...
...
@@ -218,7 +82,14 @@ void host_reference_calculation(const Tensor<TIn>& in_n_c_hi_wi,
}
}
out_n_k_ho_wo
(
n
,
k
,
ho
,
wo
)
=
out_element_op
(
v
,
bias_k
(
k
),
resi_n_k_ho_wo
(
n
,
k
,
ho
,
wo
));
double
v2
=
out_n_k_ho_wo
(
n
,
k
,
ho
,
wo
);
out_element_op
(
v2
,
v
,
static_cast
<
const
double
>
(
bias_k
(
k
)),
static_cast
<
const
double
>
(
resi_n_k_ho_wo
(
n
,
k
,
ho
,
wo
)));
out_n_k_ho_wo
(
n
,
k
,
ho
,
wo
)
=
v2
;
};
make_ParallelTensorFunctor
(
f_nchw
,
...
...
@@ -358,8 +229,8 @@ int main(int argc, char* argv[])
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.
5
,
0.5
});
resi_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.
5
,
0.5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.
0
,
1.0
});
resi_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.
0
,
1.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
...
...
@@ -399,8 +270,8 @@ int main(int argc, char* argv[])
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device
_conv
with the specified compilation parameters does "
"not support this
Conv
problem"
);
"wrong! device
operator
with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
...
...
example/7_conv2d_fwd_xdl_bias_relu_atomic_add/README.md
0 → 100644
View file @
5c8112d9
# Instructions for ```conv_xdl_bias_relu_add``` Example
## Docker script
```
bash
docker run
\
-it
\
--rm
\
--privileged
\
--group-add
sudo
\
-w
/root/workspace
\
-v
${
PATH_TO_LOCAL_WORKSPACE
}
:/root/workspace
\
rocm/tensorflow:rocm4.3.1-tf2.6-dev
\
/bin/bash
```
## Build ```conv_xdl_bias_relu_add```
```
bash
mkdir
build
&&
cd
build
```
```
bash
# Need to specify target ID, example below is gfx908
cmake
\
-D
BUILD_DEV
=
OFF
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
CMAKE_CXX_FLAGS
=
"-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 "
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
..
```
```
bash
make
-j
conv_xdl_bias_relu_add
```
## Run ```conv_xdl_bias_relu_add```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
./example/conv_xdl_bias_relu_add 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
wei_k_c_y_x: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
bias_k: dim 1, lengths {256}, strides {1}
resi_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
arg.a_grid_desc_k0_m_k1_{216, 165888, 8}
arg.b_grid_desc_k0_n_k1_{216, 256, 8}
arg.c_grid_desc_m_n_{ 165888, 256}
arg.c0_grid_desc_m_n_{ 165888, 256}
arg.c1_grid_desc_m_n_{ 165888, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.71779 ms, 85.4396 TFlops, 194.2 GB/s
```
example/7_conv2d_fwd_xdl_bias_relu_atomic_add/conv2d_fwd_xdl_bias_relu_atomic_add.cpp
0 → 100644
View file @
5c8112d9
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWK
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
MemoryAtomicAdd
=
ck
::
InMemoryDataOperationEnum_t
::
AtomicAdd
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization_t
::
Default
;
// clang-format off
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
// clang-format off
// | InData| WeiData| OutData| AccData| In| Wei| Out| Out| ConvForward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| GlobalMemory| Specialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
// | | | | | Operation| Operation| Operation| DataOperation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
// | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
MemoryAtomicAdd
,
ConvFwdDefault
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
8
,
1
,
1
,
32
>
,
2
>
;
// clang-format on
template
<
typename
TIn
,
typename
TWei
,
typename
TOut
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
>
void
host_reference_calculation
(
const
Tensor
<
TIn
>&
in_n_c_hi_wi
,
const
Tensor
<
TWei
>&
wei_k_c_y_x
,
Tensor
<
TOut
>&
out_n_k_ho_wo
,
const
Tensor
<
TOut
>&
bias_k
,
const
std
::
vector
<
ck
::
index_t
>&
conv_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
/* in_right_pads */
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
auto
f_nchw
=
[
&
](
auto
n
,
auto
k
,
auto
ho
,
auto
wo
)
{
double
v
=
0
;
for
(
int
c
=
0
;
c
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
1
];
++
c
)
{
for
(
int
y
=
0
;
y
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
2
];
++
y
)
{
int
hi
=
ho
*
conv_strides
[
0
]
+
y
*
conv_dilations
[
0
]
-
in_left_pads
[
0
];
for
(
int
x
=
0
;
x
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
3
];
++
x
)
{
int
wi
=
wo
*
conv_strides
[
1
]
+
x
*
conv_dilations
[
1
]
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
in_n_c_hi_wi
.
mDesc
.
GetLengths
()[
2
]
&&
wi
>=
0
&&
wi
<
in_n_c_hi_wi
.
mDesc
.
GetLengths
()[
3
])
{
v
+=
in_element_op
(
static_cast
<
const
double
>
(
in_n_c_hi_wi
(
n
,
c
,
hi
,
wi
)))
*
wei_element_op
(
static_cast
<
const
double
>
(
wei_k_c_y_x
(
k
,
c
,
y
,
x
)));
}
}
}
}
out_n_k_ho_wo
(
n
,
k
,
ho
,
wo
)
+=
out_element_op
(
v
,
bias_k
(
k
));
};
make_ParallelTensorFunctor
(
f_nchw
,
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
0
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
1
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
2
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
// Conv shape
ck
::
index_t
N
=
128
;
ck
::
index_t
K
=
256
;
ck
::
index_t
C
=
192
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
71
;
ck
::
index_t
Wi
=
71
;
ck
::
index_t
conv_stride_h
=
2
;
ck
::
index_t
conv_stride_w
=
2
;
ck
::
index_t
conv_dilation_h
=
1
;
ck
::
index_t
conv_dilation_w
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
19
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
N
=
std
::
stoi
(
argv
[
4
]);
K
=
std
::
stoi
(
argv
[
5
]);
C
=
std
::
stoi
(
argv
[
6
]);
Y
=
std
::
stoi
(
argv
[
7
]);
X
=
std
::
stoi
(
argv
[
8
]);
Hi
=
std
::
stoi
(
argv
[
9
]);
Wi
=
std
::
stoi
(
argv
[
10
]);
conv_stride_h
=
std
::
stoi
(
argv
[
11
]);
conv_stride_w
=
std
::
stoi
(
argv
[
12
]);
conv_dilation_h
=
std
::
stoi
(
argv
[
13
]);
conv_dilation_w
=
std
::
stoi
(
argv
[
14
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
15
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
16
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
17
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
18
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
0
);
}
const
ck
::
index_t
YEff
=
(
Y
-
1
)
*
conv_dilation_h
+
1
;
const
ck
::
index_t
XEff
=
(
X
-
1
)
*
conv_dilation_w
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
YEff
)
/
conv_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
XEff
)
/
conv_stride_w
+
1
;
const
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
{{
conv_stride_h
,
conv_stride_w
}};
const
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
{{
conv_dilation_h
,
conv_dilation_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{{
in_left_pad_h
,
in_left_pad_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{{
in_right_pad_h
,
in_right_pad_w
}};
// tensor layout
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
}
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NHWC
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KYXC
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NHWK
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
}
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
,
WeiLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_host_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_device_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
// bias: assume contiguous 1d vector
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
K
)})));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
out_n_k_ho_wo_host_result
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
out_n_k_ho_wo_host_result
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.5
,
0.5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
bias_device_buf
(
sizeof
(
OutDataType
)
*
bias_k
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
out_device_buf
.
ToDevice
(
out_n_k_ho_wo_host_result
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
mData
.
data
());
auto
conv
=
DeviceConvFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
static_cast
<
const
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
N
,
K
,
C
,
std
::
vector
<
ck
::
index_t
>
{{
Hi
,
Wi
}},
std
::
vector
<
ck
::
index_t
>
{{
Y
,
X
}},
std
::
vector
<
ck
::
index_t
>
{{
Ho
,
Wo
}},
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device operator with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
)
+
sizeof
(
OutDataType
)
*
(
K
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
host_reference_calculation
(
in_n_c_hi_wi
,
wei_k_c_y_x
,
out_n_k_ho_wo_host_result
,
bias_k
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
check_error
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
);
}
}
example/CMakeLists.txt
View file @
5c8112d9
...
...
@@ -12,16 +12,22 @@ include_directories(BEFORE
)
set
(
GEMM_XDL_SOURCE 1_gemm_xdl/gemm_xdl.cpp
)
set
(
GEMM_XDL_BIAS_RELU_ADD_SOURCE 2_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
)
set
(
CONV_XDL_SOURCE 3_conv_xdl/conv_xdl.cpp
)
set
(
CONV_XDL_BIAS_RELU_ADD_SOURCE 4_conv_xdl_bias_relu_add/conv_xdl_bias_relu_add.cpp
)
set
(
GEMM_XDL_BIAS_RELU_ADD_SOURCE 3_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
)
set
(
CONV2D_FWD_XDL_SOURCE 4_conv2d_fwd_xdl/conv2d_fwd_xdl.cpp
)
set
(
CONV2D_FWD_XDL_BIAS_RELU_SOURCE 5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bias_relu.cpp
)
set
(
CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE 6_conv2d_fwd_xdl_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp
)
set
(
CONV2D_FWD_XDL_BIAS_RELU_ATOMIC_ADD_SOURCE 7_conv2d_fwd_xdl_bias_relu_atomic_add/conv2d_fwd_xdl_bias_relu_atomic_add.cpp
)
add_executable
(
gemm_xdl
${
GEMM_XDL_SOURCE
}
)
add_executable
(
gemm_xdl_bias_relu_add
${
GEMM_XDL_BIAS_RELU_ADD_SOURCE
}
)
add_executable
(
conv_xdl
${
CONV_XDL_SOURCE
}
)
add_executable
(
conv_xdl_bias_relu_add
${
CONV_XDL_BIAS_RELU_ADD_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl
${
CONV2D_FWD_XDL_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl_bias_relu
${
CONV2D_FWD_XDL_BIAS_RELU_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl_bias_relu_add
${
CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl_bias_relu_atomic_add
${
CONV2D_FWD_XDL_BIAS_RELU_ATOMIC_ADD_SOURCE
}
)
target_link_libraries
(
gemm_xdl PRIVATE host_tensor
)
target_link_libraries
(
gemm_xdl_bias_relu_add PRIVATE host_tensor
)
target_link_libraries
(
conv_xdl PRIVATE host_tensor
)
target_link_libraries
(
conv_xdl_bias_relu_add PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl_bias_relu PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl_bias_relu_add PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl_bias_relu_atomic_add PRIVATE host_tensor
)
host/host_tensor/src/host_tensor.cpp
View file @
5c8112d9
#include <boost/range/adaptor/transformed.hpp>
#include <cassert>
#include "host_tensor.hpp"
...
...
@@ -26,8 +25,12 @@ std::size_t HostTensorDescriptor::GetElementSize() const
std
::
size_t
HostTensorDescriptor
::
GetElementSpace
()
const
{
auto
ls
=
mLens
|
boost
::
adaptors
::
transformed
([](
std
::
size_t
v
)
{
return
v
-
1
;
});
return
std
::
inner_product
(
ls
.
begin
(),
ls
.
end
(),
mStrides
.
begin
(),
std
::
size_t
{
0
})
+
1
;
std
::
size_t
space
=
1
;
for
(
int
i
=
0
;
i
<
mLens
.
size
();
++
i
)
{
space
+=
(
mLens
[
i
]
-
1
)
*
mStrides
[
i
];
}
return
space
;
}
const
std
::
vector
<
std
::
size_t
>&
HostTensorDescriptor
::
GetLengths
()
const
{
return
mLens
;
}
...
...
profiler/CMakeLists.txt
View file @
5c8112d9
...
...
@@ -30,23 +30,65 @@ target_compile_features(device_gemm_instance PUBLIC)
set_target_properties
(
device_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
install
(
TARGETS device_gemm_instance LIBRARY DESTINATION lib
)
# device_conv_instance
set
(
DEVICE_CONV_INSTANCE_SOURCE
${
PROJECT_SOURCE_DIR
}
/device_operation/device_conv_xdl_instance_f32_f32_f32_nhwc_kyxc_nhwk.cpp;
${
PROJECT_SOURCE_DIR
}
/device_operation/device_conv_xdl_instance_f16_f16_f16_nhwc_kyxc_nhwk.cpp;
# device_conv2d_fwd_instance
set
(
DEVICE_CONV2D_FWD_INSTANCE_SOURCE
${
PROJECT_SOURCE_DIR
}
/device_operation/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instance.cpp;
${
PROJECT_SOURCE_DIR
}
/device_operation/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instance.cpp;
${
PROJECT_SOURCE_DIR
}
/device_operation/device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instance.cpp;
)
add_library
(
device_conv_instance SHARED
${
DEVICE_CONV_INSTANCE_SOURCE
}
)
target_include_directories
(
device_conv_instance SYSTEM PUBLIC $<BUILD_INTERFACE:
${
HALF_INCLUDE_DIR
}
>
)
target_compile_features
(
device_conv_instance PUBLIC
)
set_target_properties
(
device_conv_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
install
(
TARGETS device_conv_instance LIBRARY DESTINATION lib
)
add_library
(
device_conv2d_fwd_instance SHARED
${
DEVICE_CONV2D_FWD_INSTANCE_SOURCE
}
)
target_include_directories
(
device_conv2d_fwd_instance SYSTEM PUBLIC $<BUILD_INTERFACE:
${
HALF_INCLUDE_DIR
}
>
)
target_compile_features
(
device_conv2d_fwd_instance PUBLIC
)
set_target_properties
(
device_conv2d_fwd_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
install
(
TARGETS device_conv2d_fwd_instance LIBRARY DESTINATION lib
)
# device_conv2d_fwd_bias_relu_instance
set
(
DEVICE_CONV2D_FWD_BIAS_RELU_INSTANCE_SOURCE
${
PROJECT_SOURCE_DIR
}
/device_operation/device_conv2d_fwd_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_f16_instance.cpp;
)
add_library
(
device_conv2d_fwd_bias_relu_instance SHARED
${
DEVICE_CONV2D_FWD_BIAS_RELU_INSTANCE_SOURCE
}
)
target_include_directories
(
device_conv2d_fwd_bias_relu_instance SYSTEM PUBLIC $<BUILD_INTERFACE:
${
HALF_INCLUDE_DIR
}
>
)
target_compile_features
(
device_conv2d_fwd_bias_relu_instance PUBLIC
)
set_target_properties
(
device_conv2d_fwd_bias_relu_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
install
(
TARGETS device_conv2d_fwd_bias_relu_instance LIBRARY DESTINATION lib
)
# device_conv2d_fwd_bias_relu_add_instance
set
(
DEVICE_CONV2D_FWD_BIAS_RELU_ADD_INSTANCE_SOURCE
${
PROJECT_SOURCE_DIR
}
/device_operation/device_conv2d_fwd_xdl_c_shuffle_bias_relu_add_nhwc_kyxc_nhwk_f16_instance.cpp;
)
add_library
(
device_conv2d_fwd_bias_relu_add_instance SHARED
${
DEVICE_CONV2D_FWD_BIAS_RELU_ADD_INSTANCE_SOURCE
}
)
target_include_directories
(
device_conv2d_fwd_bias_relu_add_instance SYSTEM PUBLIC $<BUILD_INTERFACE:
${
HALF_INCLUDE_DIR
}
>
)
target_compile_features
(
device_conv2d_fwd_bias_relu_add_instance PUBLIC
)
set_target_properties
(
device_conv2d_fwd_bias_relu_add_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
install
(
TARGETS device_conv2d_fwd_bias_relu_add_instance LIBRARY DESTINATION lib
)
# device_conv2d_fwd_bias_relu_atomic_add_instance
set
(
DEVICE_CONV2D_FWD_BIAS_RELU_ATOMIC_ADD_INSTANCE_SOURCE
${
PROJECT_SOURCE_DIR
}
/device_operation/device_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instance.cpp;
)
add_library
(
device_conv2d_fwd_bias_relu_atomic_add_instance SHARED
${
DEVICE_CONV2D_FWD_BIAS_RELU_ATOMIC_ADD_INSTANCE_SOURCE
}
)
target_include_directories
(
device_conv2d_fwd_bias_relu_atomic_add_instance SYSTEM PUBLIC $<BUILD_INTERFACE:
${
HALF_INCLUDE_DIR
}
>
)
target_compile_features
(
device_conv2d_fwd_bias_relu_atomic_add_instance PUBLIC
)
set_target_properties
(
device_conv2d_fwd_bias_relu_atomic_add_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
install
(
TARGETS device_conv2d_fwd_bias_relu_atomic_add_instance LIBRARY DESTINATION lib
)
# ck_profiler
#set(PROFILER_SOURCE profiler.cpp gemm_profiler.cpp conv_profiler.cpp)
set
(
PROFILER_SOURCE profiler.cpp gemm_profiler.cpp
)
set
(
PROFILER_SOURCE
profiler.cpp
profile_gemm.cpp
profile_conv_fwd.cpp
profile_conv_fwd_bias_relu.cpp
profile_conv_fwd_bias_relu_add.cpp
profile_conv_fwd_bias_relu_atomic_add.cpp
)
add_executable
(
ckProfiler
${
PROFILER_SOURCE
}
)
target_link_libraries
(
ckProfiler PRIVATE host_tensor
)
#target_link_libraries(ckProfiler PRIVATE device_gemm_instance device_conv_instance)
target_link_libraries
(
ckProfiler PRIVATE device_gemm_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_conv2d_fwd_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_conv2d_fwd_bias_relu_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_conv2d_fwd_bias_relu_add_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_conv2d_fwd_bias_relu_atomic_add_instance
)
profiler/include/profile_conv_fwd_bias_relu_add_impl.hpp
0 → 100644
View file @
5c8112d9
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv_fwd_bias_activation_add.hpp"
#include "element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_conv2d_fwd_bias_activation_add_instance
{
using
DeviceConvFwdBiasReluAddPtr
=
DeviceConvFwdBiasActivationAddPtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
>
;
void
add_device_conv2d_fwd_xdl_c_shuffle_bias_relu_add_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
DeviceConvFwdBiasReluAddPtr
>&
);
}
// namespace device_conv2d_fwd_bias_activation_add_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
profiler
{
template
<
typename
TIn
,
typename
TWei
,
typename
TOut
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
>
void
host_reference_calculation
(
const
Tensor
<
TIn
>&
in_n_c_hi_wi
,
const
Tensor
<
TWei
>&
wei_k_c_y_x
,
Tensor
<
TOut
>&
out_n_k_ho_wo
,
const
Tensor
<
TOut
>&
bias_k
,
const
Tensor
<
TOut
>&
resi_n_k_ho_wo
,
const
std
::
vector
<
ck
::
index_t
>&
conv_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
/* in_right_pads */
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
auto
f_nchw
=
[
&
](
auto
n
,
auto
k
,
auto
ho
,
auto
wo
)
{
double
v
=
0
;
for
(
int
c
=
0
;
c
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
1
];
++
c
)
{
for
(
int
y
=
0
;
y
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
2
];
++
y
)
{
int
hi
=
ho
*
conv_strides
[
0
]
+
y
*
conv_dilations
[
0
]
-
in_left_pads
[
0
];
for
(
int
x
=
0
;
x
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
3
];
++
x
)
{
int
wi
=
wo
*
conv_strides
[
1
]
+
x
*
conv_dilations
[
1
]
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
in_n_c_hi_wi
.
mDesc
.
GetLengths
()[
2
]
&&
wi
>=
0
&&
wi
<
in_n_c_hi_wi
.
mDesc
.
GetLengths
()[
3
])
{
v
+=
in_element_op
(
static_cast
<
const
double
>
(
in_n_c_hi_wi
(
n
,
c
,
hi
,
wi
)))
*
wei_element_op
(
static_cast
<
const
double
>
(
wei_k_c_y_x
(
k
,
c
,
y
,
x
)));
}
}
}
}
out_n_k_ho_wo
(
n
,
k
,
ho
,
wo
)
=
out_element_op
(
v
,
bias_k
(
k
),
resi_n_k_ho_wo
(
n
,
k
,
ho
,
wo
));
};
make_ParallelTensorFunctor
(
f_nchw
,
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
0
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
1
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
2
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
}
template
<
int
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
void
profile_conv_fwd_bias_relu_add_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
int
nrepeat
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
{
const
ck
::
index_t
Y
=
filter_spatial_lengths
[
0
];
const
ck
::
index_t
X
=
filter_spatial_lengths
[
1
];
const
ck
::
index_t
Hi
=
input_spatial_lengths
[
0
];
const
ck
::
index_t
Wi
=
input_spatial_lengths
[
1
];
const
ck
::
index_t
Ho
=
output_spatial_lengths
[
0
];
const
ck
::
index_t
Wo
=
output_spatial_lengths
[
1
];
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
if
constexpr
(
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
}
else
if
constexpr
(
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWC
>::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
KYXC
>::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWK
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
}
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
,
WeiLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_host_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_device_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
// bias: assume contiguous 1d vector
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
K
)})));
// residual: assume same layout as output tensor
Tensor
<
OutDataType
>
resi_n_k_ho_wo
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"resi_n_k_ho_wo: "
<<
resi_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
resi_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
resi_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
}
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
if
(
do_verification
)
{
host_reference_calculation
(
in_n_c_hi_wi
,
wei_k_c_y_x
,
out_n_k_ho_wo_host_result
,
bias_k
,
resi_n_k_ho_wo
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
bias_device_buf
(
sizeof
(
OutDataType
)
*
bias_k
.
mDesc
.
GetElementSpace
());
DeviceMem
resi_device_buf
(
sizeof
(
OutDataType
)
*
resi_n_k_ho_wo
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
mData
.
data
());
resi_device_buf
.
ToDevice
(
resi_n_k_ho_wo
.
mData
.
data
());
using
DeviceConvFwdBiasReluAddPtr
=
ck
::
tensor_operation
::
device
::
DeviceConvFwdBiasActivationAddPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// add device operator instances
std
::
vector
<
DeviceConvFwdBiasReluAddPtr
>
op_ptrs
;
if
constexpr
(
ck
::
is_same_v
<
ck
::
remove_cv_t
<
InDataType
>
,
ck
::
half_t
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
WeiDataType
>
,
ck
::
half_t
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
OutDataType
>
,
ck
::
half_t
>
)
{
ck
::
tensor_operation
::
device
::
device_conv2d_fwd_bias_activation_add_instance
::
add_device_conv2d_fwd_xdl_c_shuffle_bias_relu_add_nhwc_kyxc_nhwk_f16_instances
(
op_ptrs
);
}
if
(
op_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device Conv instance found"
);
}
std
::
string
best_conv_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device Conv instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
const
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
resi_device_buf
.
GetDeviceBuffer
()),
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
string
conv_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
)
+
sizeof
(
OutDataType
)
*
(
K
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_conv_name
=
conv_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
check_error
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei: "
,
wei_k_c_y_x
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_host : "
,
out_n_k_ho_wo_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_device: "
,
out_n_k_ho_wo_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_conv_name
<<
std
::
endl
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profile_conv_fwd_bias_relu_atomic_add_impl.hpp
0 → 100644
View file @
5c8112d9
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv_fwd_bias_activation.hpp"
#include "element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_conv2d_fwd_bias_activation_atomic_add_instance
{
using
DeviceConvFwdBiasReluPtr
=
DeviceConvFwdBiasActivationPtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddRelu
>
;
void
add_device_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
DeviceConvFwdBiasReluPtr
>&
);
}
// namespace device_conv2d_fwd_bias_activation_atomic_add_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
profiler
{
void
cpu_conv_bias_relu_atomic_add
(
ck
::
half_t
*
in_ptr
,
ck
::
half_t
*
weight_ptr
,
ck
::
half_t
*
output_ptr
,
ck
::
half_t
*
bias_ptr
,
const
ck
::
index_t
N
,
const
ck
::
index_t
K
,
const
ck
::
index_t
C
,
const
ck
::
index_t
Y
,
const
ck
::
index_t
X
,
const
ck
::
index_t
Hi
,
const
ck
::
index_t
Wi
,
const
ck
::
index_t
Ho
,
const
ck
::
index_t
Wo
,
const
ck
::
index_t
Stride
,
const
ck
::
index_t
Dilation
,
const
ck
::
index_t
Pad
)
{
const
auto
in_desc
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
N
),
static_cast
<
std
::
size_t
>
(
Hi
),
static_cast
<
std
::
size_t
>
(
Wi
),
static_cast
<
std
::
size_t
>
(
C
)});
const
auto
wei_desc
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
K
),
static_cast
<
std
::
size_t
>
(
Y
),
static_cast
<
std
::
size_t
>
(
X
),
static_cast
<
std
::
size_t
>
(
C
)});
const
auto
out_desc
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
N
),
static_cast
<
std
::
size_t
>
(
Ho
),
static_cast
<
std
::
size_t
>
(
Wo
),
static_cast
<
std
::
size_t
>
(
K
)});
const
auto
bias_desc
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
K
)});
auto
f_k
=
[
&
](
auto
k
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
for
(
int
ho
=
0
;
ho
<
Ho
;
++
ho
)
{
for
(
int
wo
=
0
;
wo
<
Wo
;
++
wo
)
{
double
v
=
0
;
for
(
int
c
=
0
;
c
<
C
;
++
c
)
{
for
(
int
y
=
0
;
y
<
Y
;
++
y
)
{
int
hi
=
ho
*
Stride
+
y
*
Dilation
-
Pad
;
for
(
int
x
=
0
;
x
<
X
;
++
x
)
{
int
wi
=
wo
*
Stride
+
x
*
Dilation
-
Pad
;
if
(
hi
>=
0
&&
hi
<
Hi
&&
wi
>=
0
&&
wi
<
Wi
)
{
double
in
=
in_ptr
[
in_desc
.
GetOffsetFromMultiIndex
(
n
,
hi
,
wi
,
c
)];
double
wei
=
weight_ptr
[
wei_desc
.
GetOffsetFromMultiIndex
(
k
,
y
,
x
,
c
)];
v
+=
in
*
wei
;
}
}
}
}
v
+=
bias_ptr
[
bias_desc
.
GetOffsetFromMultiIndex
(
k
)];
v
=
v
>
0
?
v
:
0
;
output_ptr
[
out_desc
.
GetOffsetFromMultiIndex
(
n
,
ho
,
wo
,
k
)]
=
v
;
}
}
}
};
make_ParallelTensorFunctor
(
f_k
,
K
)(
std
::
thread
::
hardware_concurrency
());
}
template
<
int
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
void
profile_conv_fwd_bias_relu_atomic_add_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
int
nrepeat
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
{
const
ck
::
index_t
Y
=
filter_spatial_lengths
[
0
];
const
ck
::
index_t
X
=
filter_spatial_lengths
[
1
];
const
ck
::
index_t
Hi
=
input_spatial_lengths
[
0
];
const
ck
::
index_t
Wi
=
input_spatial_lengths
[
1
];
const
ck
::
index_t
Ho
=
output_spatial_lengths
[
0
];
const
ck
::
index_t
Wo
=
output_spatial_lengths
[
1
];
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
if
constexpr
(
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
}
else
if
constexpr
(
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWC
>::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
KYXC
>::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWK
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
}
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
,
WeiLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_host_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_device_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
// bias: assume contiguous 1d vector
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
K
)})));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
}
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
if
(
do_verification
)
{
cpu_conv_bias_relu_atomic_add
(
in_n_c_hi_wi
.
mData
.
data
(),
wei_k_c_y_x
.
mData
.
data
(),
out_n_k_ho_wo_host_result
.
mData
.
data
(),
bias_k
.
mData
.
data
(),
N
,
K
,
C
,
Y
,
X
,
Hi
,
Wi
,
Ho
,
Wo
,
conv_filter_strides
[
0
],
conv_filter_dilations
[
0
],
input_left_pads
[
0
]);
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
bias_device_buf
(
sizeof
(
OutDataType
)
*
bias_k
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
mData
.
data
());
using
DeviceConvFwdBiasReluPtr
=
ck
::
tensor_operation
::
device
::
DeviceConvFwdBiasActivationPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// add device operator instances
std
::
vector
<
DeviceConvFwdBiasReluPtr
>
op_ptrs
;
if
constexpr
(
ck
::
is_same_v
<
ck
::
remove_cv_t
<
InDataType
>
,
ck
::
half_t
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
WeiDataType
>
,
ck
::
half_t
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
OutDataType
>
,
ck
::
half_t
>
)
{
ck
::
tensor_operation
::
device
::
device_conv2d_fwd_bias_activation_atomic_add_instance
::
add_device_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instances
(
op_ptrs
);
}
if
(
op_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device Conv instance found"
);
}
std
::
string
best_conv_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device Conv instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
const
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
string
conv_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
)
+
sizeof
(
OutDataType
)
*
(
K
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_conv_name
=
conv_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
check_error
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei: "
,
wei_k_c_y_x
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_host : "
,
out_n_k_ho_wo_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_device: "
,
out_n_k_ho_wo_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_conv_name
<<
std
::
endl
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profile_conv_fwd_bias_relu_impl.hpp
0 → 100644
View file @
5c8112d9
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv_fwd_bias_activation.hpp"
#include "element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_conv2d_fwd_bias_activation_instance
{
using
DeviceConvFwdBiasReluPtr
=
DeviceConvFwdBiasActivationPtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddRelu
>
;
void
add_device_conv2d_fwd_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
DeviceConvFwdBiasReluPtr
>&
);
}
// namespace device_conv2d_fwd_bias_activation_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
profiler
{
void
cpu_conv_bias_relu
(
ck
::
half_t
*
in_ptr
,
ck
::
half_t
*
weight_ptr
,
ck
::
half_t
*
output_ptr
,
ck
::
half_t
*
bias_ptr
,
const
ck
::
index_t
N
,
const
ck
::
index_t
K
,
const
ck
::
index_t
C
,
const
ck
::
index_t
Y
,
const
ck
::
index_t
X
,
const
ck
::
index_t
Hi
,
const
ck
::
index_t
Wi
,
const
ck
::
index_t
Ho
,
const
ck
::
index_t
Wo
,
const
ck
::
index_t
Stride
,
const
ck
::
index_t
Dilation
,
const
ck
::
index_t
Pad
)
{
const
auto
in_desc
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
N
),
static_cast
<
std
::
size_t
>
(
Hi
),
static_cast
<
std
::
size_t
>
(
Wi
),
static_cast
<
std
::
size_t
>
(
C
)});
const
auto
wei_desc
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
K
),
static_cast
<
std
::
size_t
>
(
Y
),
static_cast
<
std
::
size_t
>
(
X
),
static_cast
<
std
::
size_t
>
(
C
)});
const
auto
out_desc
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
N
),
static_cast
<
std
::
size_t
>
(
Ho
),
static_cast
<
std
::
size_t
>
(
Wo
),
static_cast
<
std
::
size_t
>
(
K
)});
const
auto
bias_desc
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
K
)});
auto
f_k
=
[
&
](
auto
k
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
for
(
int
ho
=
0
;
ho
<
Ho
;
++
ho
)
{
for
(
int
wo
=
0
;
wo
<
Wo
;
++
wo
)
{
double
v
=
0
;
for
(
int
c
=
0
;
c
<
C
;
++
c
)
{
for
(
int
y
=
0
;
y
<
Y
;
++
y
)
{
int
hi
=
ho
*
Stride
+
y
*
Dilation
-
Pad
;
for
(
int
x
=
0
;
x
<
X
;
++
x
)
{
int
wi
=
wo
*
Stride
+
x
*
Dilation
-
Pad
;
if
(
hi
>=
0
&&
hi
<
Hi
&&
wi
>=
0
&&
wi
<
Wi
)
{
double
in
=
in_ptr
[
in_desc
.
GetOffsetFromMultiIndex
(
n
,
hi
,
wi
,
c
)];
double
wei
=
weight_ptr
[
wei_desc
.
GetOffsetFromMultiIndex
(
k
,
y
,
x
,
c
)];
v
+=
in
*
wei
;
}
}
}
}
v
+=
bias_ptr
[
bias_desc
.
GetOffsetFromMultiIndex
(
k
)];
v
=
v
>
0
?
v
:
0
;
output_ptr
[
out_desc
.
GetOffsetFromMultiIndex
(
n
,
ho
,
wo
,
k
)]
=
v
;
}
}
}
};
make_ParallelTensorFunctor
(
f_k
,
K
)(
std
::
thread
::
hardware_concurrency
());
}
template
<
int
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
void
profile_conv_fwd_bias_relu_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
int
nrepeat
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
{
const
ck
::
index_t
Y
=
filter_spatial_lengths
[
0
];
const
ck
::
index_t
X
=
filter_spatial_lengths
[
1
];
const
ck
::
index_t
Hi
=
input_spatial_lengths
[
0
];
const
ck
::
index_t
Wi
=
input_spatial_lengths
[
1
];
const
ck
::
index_t
Ho
=
output_spatial_lengths
[
0
];
const
ck
::
index_t
Wo
=
output_spatial_lengths
[
1
];
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
if
constexpr
(
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
}
else
if
constexpr
(
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWC
>::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
KYXC
>::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWK
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
}
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
,
WeiLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_host_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_device_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
// bias: assume contiguous 1d vector
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
K
)})));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
}
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
if
(
do_verification
)
{
cpu_conv_bias_relu
(
in_n_c_hi_wi
.
mData
.
data
(),
wei_k_c_y_x
.
mData
.
data
(),
out_n_k_ho_wo_host_result
.
mData
.
data
(),
bias_k
.
mData
.
data
(),
N
,
K
,
C
,
Y
,
X
,
Hi
,
Wi
,
Ho
,
Wo
,
conv_filter_strides
[
0
],
conv_filter_dilations
[
0
],
input_left_pads
[
0
]);
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
bias_device_buf
(
sizeof
(
OutDataType
)
*
bias_k
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
mData
.
data
());
using
DeviceConvFwdBiasReluPtr
=
ck
::
tensor_operation
::
device
::
DeviceConvFwdBiasActivationPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// add device operator instances
std
::
vector
<
DeviceConvFwdBiasReluPtr
>
op_ptrs
;
if
constexpr
(
ck
::
is_same_v
<
ck
::
remove_cv_t
<
InDataType
>
,
ck
::
half_t
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
WeiDataType
>
,
ck
::
half_t
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
OutDataType
>
,
ck
::
half_t
>
)
{
ck
::
tensor_operation
::
device
::
device_conv2d_fwd_bias_activation_instance
::
add_device_conv2d_fwd_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_f16_instances
(
op_ptrs
);
}
if
(
op_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device Conv instance found"
);
}
std
::
string
best_conv_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device Conv instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
const
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
string
conv_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
)
+
sizeof
(
OutDataType
)
*
(
K
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_conv_name
=
conv_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
check_error
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei: "
,
wei_k_c_y_x
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_host : "
,
out_n_k_ho_wo_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_device: "
,
out_n_k_ho_wo_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_conv_name
<<
std
::
endl
;
}
}
// namespace profiler
}
// namespace ck
Prev
1
2
3
4
5
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment