Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
5b02dfaf
Commit
5b02dfaf
authored
Aug 16, 2023
by
Jing Zhang
Browse files
instance and client
parent
56863b9a
Changes
15
Show whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
1718 additions
and
0 deletions
+1718
-0
client_example/20_grouped_gemm_bias/CMakeLists.txt
client_example/20_grouped_gemm_bias/CMakeLists.txt
+6
-0
client_example/20_grouped_gemm_bias/grouped_gemm_fixed_nk_fp16.cpp
...ample/20_grouped_gemm_bias/grouped_gemm_fixed_nk_fp16.cpp
+238
-0
client_example/20_grouped_gemm_bias/grouped_gemm_fixed_nk_fp8.cpp
...xample/20_grouped_gemm_bias/grouped_gemm_fixed_nk_fp8.cpp
+239
-0
client_example/20_grouped_gemm_bias/grouped_gemm_fixed_nk_i8.cpp
...example/20_grouped_gemm_bias/grouped_gemm_fixed_nk_i8.cpp
+239
-0
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp8.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp8.cpp
+330
-0
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
...or_operation/gpu/element/unary_element_wise_operation.hpp
+6
-0
library/include/ck/library/tensor_operation_instance/device_operation_instance_factory.hpp
..._operation_instance/device_operation_instance_factory.hpp
+1
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp
...y/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp
+190
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_fixed_nk/CMakeLists.txt
...eration_instance/gpu/grouped_gemm_fixed_nk/CMakeLists.txt
+10
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_fixed_nk/device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_kn_mn_instance.cpp
...ouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_kn_mn_instance.cpp
+75
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_fixed_nk/device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_nk_mn_instance.cpp
...ouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_nk_mn_instance.cpp
+78
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_fixed_nk/device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_kn_mn_instance.cpp
...rouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_kn_mn_instance.cpp
+75
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_fixed_nk/device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_nk_mn_instance.cpp
...rouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_nk_mn_instance.cpp
+78
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_fixed_nk/device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_kn_mn_instance.cpp
...rouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_kn_mn_instance.cpp
+75
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_fixed_nk/device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_instance.cpp
...rouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_instance.cpp
+78
-0
No files found.
client_example/20_grouped_gemm_bias/CMakeLists.txt
View file @
5b02dfaf
...
...
@@ -3,3 +3,9 @@ target_link_libraries(client_grouped_gemm_fixed_nk_bias_fp16 PRIVATE composable_
add_executable
(
client_grouped_gemm_fixed_nk_fp16 grouped_gemm_fixed_nk_fp16.cpp
)
target_link_libraries
(
client_grouped_gemm_fixed_nk_fp16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_gemm_fixed_nk_fp8 grouped_gemm_fixed_nk_fp8.cpp
)
target_link_libraries
(
client_grouped_gemm_fixed_nk_fp8 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_gemm_fixed_nk_i8 grouped_gemm_fixed_nk_i8.cpp
)
target_link_libraries
(
client_grouped_gemm_fixed_nk_i8 PRIVATE composable_kernel::device_operations
)
client_example/20_grouped_gemm_bias/grouped_gemm_fixed_nk_fp16.cpp
0 → 100644
View file @
5b02dfaf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include <random>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
std
::
vector
<
int
>
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideEs
;
int
sum_of_m
=
0
;
// Ms = {167, 183, 177, 181, 153, 139, 156, 173, 163, 150, 204, 184, 168, 156, 168, 148};
Ms
=
{
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
};
int
group_count
=
Ms
.
size
();
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
Ns
.
push_back
(
768
);
Ks
.
push_back
(
4608
);
StrideAs
.
push_back
(
std
::
is_same
<
Row
,
ALayout
>::
value
?
Ks
[
i
]
:
Ms
[
i
]);
StrideBs
.
push_back
(
std
::
is_same
<
Row
,
BLayout
>::
value
?
Ns
[
i
]
:
Ks
[
i
]);
StrideEs
.
push_back
(
std
::
is_same
<
Row
,
ELayout
>::
value
?
Ns
[
i
]
:
Ms
[
i
]);
sum_of_m
+=
Ms
[
i
];
}
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
std
::
vector
<
SimpleDeviceMem
>
a_dev_bufs
,
b_dev_bufs
,
e_dev_bufs
;
a_dev_bufs
.
reserve
(
group_count
);
b_dev_bufs
.
reserve
(
group_count
);
e_dev_bufs
.
reserve
(
group_count
);
std
::
vector
<
void
*>
p_e
;
p_e
.
reserve
(
group_count
);
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
std
::
vector
<
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<
1
>>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
a_dev_bufs
.
emplace_back
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
Ms
[
i
],
Ks
[
i
],
StrideAs
[
i
],
ALayout
{}));
b_dev_bufs
.
emplace_back
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
Ks
[
i
],
Ns
[
i
],
StrideBs
[
i
],
BLayout
{}));
e_dev_bufs
.
emplace_back
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
Ms
[
i
],
Ns
[
i
],
StrideEs
[
i
],
ELayout
{}));
gemm_descs
.
push_back
({
sum_of_m
,
Ns
[
i
],
Ks
[
i
],
1
,
StrideBs
[
i
],
1
,
{
0
}});
p_e
.
push_back
(
e_dev_bufs
[
i
].
GetDeviceBuffer
());
grouped_gemm_kernel_args_
.
push_back
({
a_dev_bufs
[
i
].
GetDeviceBuffer
(),
b_dev_bufs
[
i
].
GetDeviceBuffer
(),
{},
e_dev_bufs
[
i
].
GetDeviceBuffer
(),
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
{},
StrideEs
[
i
]});
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmFixedNK
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
std
::
vector
<
const
void
*>
p_a
=
{},
p_b
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_ds
=
{};
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
p_a
,
p_b
,
p_ds
,
p_e
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
SimpleDeviceMem
grouped_gemm_kernel_args_dev
(
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()));
SimpleDeviceMem
grouped_gemm_workspace_dev
(
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
hipGetErrorString
(
hipMemcpy
(
grouped_gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
));
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
grouped_gemm_workspace_dev
.
GetDeviceBuffer
());
op_ptr
->
SetDeviceKernelArgs
(
argument_ptr
.
get
(),
grouped_gemm_kernel_args_dev
.
GetDeviceBuffer
());
op_ptr
->
SetKBatch
(
argument_ptr
.
get
(),
32
);
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
j
=
0
;
j
<
gemm_descs
.
size
();
++
j
)
{
flop
+=
std
::
size_t
(
2
)
*
Ms
[
j
]
*
Ns
[
j
]
*
Ks
[
j
];
num_btype
+=
sizeof
(
ADataType
)
*
Ms
[
j
]
*
Ks
[
j
]
+
sizeof
(
BDataType
)
*
Ks
[
j
]
*
Ns
[
j
]
+
sizeof
(
EDataType
)
*
Ms
[
j
]
*
Ns
[
j
];
}
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
0
;
}
client_example/20_grouped_gemm_bias/grouped_gemm_fixed_nk_fp8.cpp
0 → 100644
View file @
5b02dfaf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include <random>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp"
using
F8
=
ck
::
f8_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F8
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
std
::
vector
<
int
>
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideEs
;
int
sum_of_m
=
0
;
//Ms = {167, 183, 177, 181, 153, 139, 156, 173, 163, 150, 204, 184, 168, 156, 168, 148};
Ms
=
{
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
};
int
group_count
=
Ms
.
size
();
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
Ns
.
push_back
(
768
);
Ks
.
push_back
(
4608
);
StrideAs
.
push_back
(
std
::
is_same
<
Row
,
ALayout
>::
value
?
Ks
[
i
]
:
Ms
[
i
]);
StrideBs
.
push_back
(
std
::
is_same
<
Row
,
BLayout
>::
value
?
Ns
[
i
]
:
Ks
[
i
]);
StrideEs
.
push_back
(
std
::
is_same
<
Row
,
ELayout
>::
value
?
Ns
[
i
]
:
Ms
[
i
]);
sum_of_m
+=
Ms
[
i
];
}
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
std
::
vector
<
SimpleDeviceMem
>
a_dev_bufs
,
b_dev_bufs
,
e_dev_bufs
;
a_dev_bufs
.
reserve
(
group_count
);
b_dev_bufs
.
reserve
(
group_count
);
e_dev_bufs
.
reserve
(
group_count
);
std
::
vector
<
void
*>
p_e
;
p_e
.
reserve
(
group_count
);
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
std
::
vector
<
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<
1
>>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
a_dev_bufs
.
emplace_back
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
Ms
[
i
],
Ks
[
i
],
StrideAs
[
i
],
ALayout
{}));
b_dev_bufs
.
emplace_back
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
Ks
[
i
],
Ns
[
i
],
StrideBs
[
i
],
BLayout
{}));
e_dev_bufs
.
emplace_back
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
Ms
[
i
],
Ns
[
i
],
StrideEs
[
i
],
ELayout
{}));
gemm_descs
.
push_back
({
sum_of_m
,
Ns
[
i
],
Ks
[
i
],
1
,
StrideBs
[
i
],
1
,
{
0
}});
p_e
.
push_back
(
e_dev_bufs
[
i
].
GetDeviceBuffer
());
grouped_gemm_kernel_args_
.
push_back
({
a_dev_bufs
[
i
].
GetDeviceBuffer
(),
b_dev_bufs
[
i
].
GetDeviceBuffer
(),
{},
e_dev_bufs
[
i
].
GetDeviceBuffer
(),
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
{},
StrideEs
[
i
]});
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmFixedNK
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
std
::
vector
<
const
void
*>
p_a
=
{},
p_b
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_ds
=
{};
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
p_a
,
p_b
,
p_ds
,
p_e
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
SimpleDeviceMem
grouped_gemm_kernel_args_dev
(
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()));
SimpleDeviceMem
grouped_gemm_workspace_dev
(
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
hipGetErrorString
(
hipMemcpy
(
grouped_gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
));
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
grouped_gemm_workspace_dev
.
GetDeviceBuffer
());
op_ptr
->
SetDeviceKernelArgs
(
argument_ptr
.
get
(),
grouped_gemm_kernel_args_dev
.
GetDeviceBuffer
());
op_ptr
->
SetKBatch
(
argument_ptr
.
get
(),
16
);
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
j
=
0
;
j
<
gemm_descs
.
size
();
++
j
)
{
flop
+=
std
::
size_t
(
2
)
*
Ms
[
j
]
*
Ns
[
j
]
*
Ks
[
j
];
num_btype
+=
sizeof
(
ADataType
)
*
Ms
[
j
]
*
Ks
[
j
]
+
sizeof
(
BDataType
)
*
Ks
[
j
]
*
Ns
[
j
]
+
sizeof
(
EDataType
)
*
Ms
[
j
]
*
Ns
[
j
];
}
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
0
;
}
client_example/20_grouped_gemm_bias/grouped_gemm_fixed_nk_i8.cpp
0 → 100644
View file @
5b02dfaf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include <random>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp"
using
I8
=
int8_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
I8
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
std
::
vector
<
int
>
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideEs
;
int
sum_of_m
=
0
;
//Ms = {167, 183, 177, 181, 153, 139, 156, 173, 163, 150, 204, 184, 168, 156, 168, 148};
Ms
=
{
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
};
int
group_count
=
Ms
.
size
();
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
Ns
.
push_back
(
768
);
Ks
.
push_back
(
4608
);
StrideAs
.
push_back
(
std
::
is_same
<
Row
,
ALayout
>::
value
?
Ks
[
i
]
:
Ms
[
i
]);
StrideBs
.
push_back
(
std
::
is_same
<
Row
,
BLayout
>::
value
?
Ns
[
i
]
:
Ks
[
i
]);
StrideEs
.
push_back
(
std
::
is_same
<
Row
,
ELayout
>::
value
?
Ns
[
i
]
:
Ms
[
i
]);
sum_of_m
+=
Ms
[
i
];
}
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
std
::
vector
<
SimpleDeviceMem
>
a_dev_bufs
,
b_dev_bufs
,
e_dev_bufs
;
a_dev_bufs
.
reserve
(
group_count
);
b_dev_bufs
.
reserve
(
group_count
);
e_dev_bufs
.
reserve
(
group_count
);
std
::
vector
<
void
*>
p_e
;
p_e
.
reserve
(
group_count
);
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
std
::
vector
<
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<
1
>>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
a_dev_bufs
.
emplace_back
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
Ms
[
i
],
Ks
[
i
],
StrideAs
[
i
],
ALayout
{}));
b_dev_bufs
.
emplace_back
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
Ks
[
i
],
Ns
[
i
],
StrideBs
[
i
],
BLayout
{}));
e_dev_bufs
.
emplace_back
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
Ms
[
i
],
Ns
[
i
],
StrideEs
[
i
],
ELayout
{}));
gemm_descs
.
push_back
({
sum_of_m
,
Ns
[
i
],
Ks
[
i
],
1
,
StrideBs
[
i
],
1
,
{
0
}});
p_e
.
push_back
(
e_dev_bufs
[
i
].
GetDeviceBuffer
());
grouped_gemm_kernel_args_
.
push_back
({
a_dev_bufs
[
i
].
GetDeviceBuffer
(),
b_dev_bufs
[
i
].
GetDeviceBuffer
(),
{},
e_dev_bufs
[
i
].
GetDeviceBuffer
(),
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
{},
StrideEs
[
i
]});
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmFixedNK
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
std
::
vector
<
const
void
*>
p_a
=
{},
p_b
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_ds
=
{};
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
p_a
,
p_b
,
p_ds
,
p_e
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
SimpleDeviceMem
grouped_gemm_kernel_args_dev
(
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()));
SimpleDeviceMem
grouped_gemm_workspace_dev
(
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
hipGetErrorString
(
hipMemcpy
(
grouped_gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
));
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
grouped_gemm_workspace_dev
.
GetDeviceBuffer
());
op_ptr
->
SetDeviceKernelArgs
(
argument_ptr
.
get
(),
grouped_gemm_kernel_args_dev
.
GetDeviceBuffer
());
op_ptr
->
SetKBatch
(
argument_ptr
.
get
(),
32
);
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
j
=
0
;
j
<
gemm_descs
.
size
();
++
j
)
{
flop
+=
std
::
size_t
(
2
)
*
Ms
[
j
]
*
Ns
[
j
]
*
Ks
[
j
];
num_btype
+=
sizeof
(
ADataType
)
*
Ms
[
j
]
*
Ks
[
j
]
+
sizeof
(
BDataType
)
*
Ks
[
j
]
*
Ns
[
j
]
+
sizeof
(
EDataType
)
*
Ms
[
j
]
*
Ns
[
j
];
}
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
0
;
}
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp8.cpp
0 → 100644
View file @
5b02dfaf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F8
=
ck
::
f8_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F8
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl_Fixed_NK
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
int
k_batch
=
1
;
bool
time_kernel
=
false
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
void
*>
p_Cs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]
*
problem_size
.
Ns
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
(),
a_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
ADataType
));
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
(),
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
BDataType
));
c_tensors_device
[
i
]
->
SetZero
();
p_Cs
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
gemm_descs
.
push_back
({
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
1
,
problem_size
.
stride_Bs
[
i
],
1
,
{}});
grouped_gemm_kernel_args_
.
push_back
({
a_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b_tensors_device
[
i
]
->
GetDeviceBuffer
(),
{},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
{},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
const
void
*>
p_As
=
{};
std
::
vector
<
const
void
*>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_Ds
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_arg_dev_mem
(
gemm
.
GetDeviceKernelArgSize
(
&
argument
));
DeviceMem
gemm_workspace_dev
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace_dev
.
GetDeviceBuffer
());
hip_check_error
(
hipMemcpy
(
gemm_arg_dev_mem
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
gemm
.
GetDeviceKernelArgSize
(
&
argument
),
hipMemcpyHostToDevice
));
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
(),
c_device_tensors
[
i
].
mDesc
.
GetElementSize
()
*
sizeof
(
EDataType
));
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
],
c_host_tensors
[
i
]);
}
}
return
pass
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
problem_size
.
Ms
=
{
167
,
183
,
177
,
181
,
153
,
139
,
156
,
173
,
163
,
150
,
204
,
184
,
168
,
156
,
168
,
148
};
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ns
.
push_back
(
768
);
problem_size
.
Ks
.
push_back
(
4608
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
if
(
argc
==
5
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
config
.
k_batch
=
std
::
stoi
(
argv
[
4
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4: k_batch (> 0)
\n
"
);
exit
(
0
);
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
View file @
5b02dfaf
...
...
@@ -69,6 +69,12 @@ struct PassThrough
y
=
type_convert
<
bhalf_t
>
(
x
);
}
template
<
>
__host__
__device__
void
operator
()
<
float
,
half_t
>
(
float
&
y
,
const
half_t
&
x
)
const
{
y
=
type_convert
<
float
>
(
x
);
}
template
<
>
__host__
__device__
void
operator
()
<
int8_t
,
int8_t
>
(
int8_t
&
y
,
const
int8_t
&
x
)
const
{
...
...
library/include/ck/library/tensor_operation_instance/device_operation_instance_factory.hpp
View file @
5b02dfaf
...
...
@@ -17,6 +17,7 @@ namespace instance {
using
F64
=
double
;
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
F8
=
ck
::
f8_t
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
I32
=
int32_t
;
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp
0 → 100644
View file @
5b02dfaf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// fp16_output
void
add_device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmFixedNK
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmFixedNK
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
// fp8_inputB
void
add_device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmFixedNK
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F8
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmFixedNK
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F8
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
// i8_inputB
void
add_device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmFixedNK
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
I8
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmFixedNK
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
I8
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
template
<
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmFixedNK
<
ALayout
,
BLayout
,
Empty_Tuple
,
ELayout
,
ADataType
,
BDataType
,
Empty_Tuple
,
EDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
{
using
DeviceOp
=
DeviceGroupedGemmFixedNK
<
ALayout
,
BLayout
,
Empty_Tuple
,
ELayout
,
ADataType
,
BDataType
,
Empty_Tuple
,
EDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
// fp16_output
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
}
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
}
}
// fp8_input
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
f8_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_kn_mn_instances
(
op_ptrs
);
}
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_nk_mn_instances
(
op_ptrs
);
}
}
// i8_input
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_kn_mn_instances
(
op_ptrs
);
}
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_instances
(
op_ptrs
);
}
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_fixed_nk/CMakeLists.txt
0 → 100644
View file @
5b02dfaf
add_instance_library
(
device_grouped_gemm_fixed_nk_instance
device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_nk_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_nk_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_instance.cpp
)
library/src/tensor_operation_instance/gpu/grouped_gemm_fixed_nk/device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_kn_mn_instance.cpp
0 → 100644
View file @
5b02dfaf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_kn_mn_irregular_tile_instances
=
std
::
tuple
<
// clang-format off
//############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
16
,
16
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
// clang-format on
>
;
void
add_device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmFixedNK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_kn_mn_irregular_tile_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_fixed_nk/device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_nk_mn_instance.cpp
0 → 100644
View file @
5b02dfaf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_nk_mn_irregular_tile_instances
=
std
::
tuple
<
// clang-format off
//############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
64
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
64
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
64
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
64
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
128
,
64
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
64
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
64
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
64
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
32
,
128
,
64
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
32
,
256
,
64
,
8
,
8
,
32
,
32
,
1
,
4
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
64
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
64
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
64
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
// clang-format on
>
;
void
add_device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmFixedNK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F16
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_nk_mn_irregular_tile_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_fixed_nk/device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_kn_mn_instance.cpp
0 → 100644
View file @
5b02dfaf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F8
=
ck
::
f8_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_kn_mn_irregular_tile_instances
=
std
::
tuple
<
// clang-format off
//############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
16
,
16
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
// clang-format on
>
;
void
add_device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmFixedNK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F8
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_kn_mn_irregular_tile_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_fixed_nk/device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_nk_mn_instance.cpp
0 → 100644
View file @
5b02dfaf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F8
=
ck
::
f8_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_nk_mn_irregular_tile_instances
=
std
::
tuple
<
// clang-format off
//############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
64
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
64
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
64
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
64
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
128
,
64
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
64
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
64
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
64
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
32
,
128
,
64
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
32
,
256
,
64
,
8
,
8
,
32
,
32
,
1
,
4
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
64
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
64
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
64
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
// clang-format on
>
;
void
add_device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmFixedNK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
F8
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_fixed_nk_f16_f8_f16_mk_nk_mn_irregular_tile_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_fixed_nk/device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_kn_mn_instance.cpp
0 → 100644
View file @
5b02dfaf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
I8
=
int8_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_kn_mn_irregular_tile_instances
=
std
::
tuple
<
// clang-format off
//############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
16
,
16
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
// clang-format on
>
;
void
add_device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmFixedNK
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
I8
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_kn_mn_irregular_tile_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_fixed_nk/device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_instance.cpp
0 → 100644
View file @
5b02dfaf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
I8
=
int8_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_irregular_tile_instances
=
std
::
tuple
<
// clang-format off
//############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
64
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
64
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
64
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
64
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
128
,
64
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
64
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
64
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
64
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
32
,
128
,
64
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
128
,
32
,
256
,
64
,
8
,
8
,
32
,
32
,
1
,
4
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
64
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
64
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedGemm_Xdl_Fixed_NK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
I8
,
F32
,
F32
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
64
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
8
,
8
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
// clang-format on
>
;
void
add_device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmFixedNK
<
Row
,
Col
,
DsLayout
,
Row
,
F16
,
I8
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_irregular_tile_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment