Commit 5a72d8d6 authored by ltqin's avatar ltqin
Browse files

start forward bias

parent a59e8d48
add_example_executable(example_batched_multihead_attention_bias_forward_v2 batched_multihead_attention_bias_forward_v2.cpp)
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#define DIM 128 // DIM should be a multiple of 8.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_mha_fwd_bias_xdl_cshuffle_v2.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_dropout.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using U16 = unsigned short;
using INT32 = int32_t;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DataType = F16;
using GemmDataType = F16;
using ADataType = DataType;
using B0DataType = DataType;
using B1DataType = DataType;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = DataType;
using ZDataType = U16; // INT32
using LSEDataType = F32;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr bool Deterministic = false;
#if(DIM <= 32)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
32, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
1, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
2,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 64, 1, 4>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec, // MaskingSpecialization
Deterministic>;
#elif(DIM <= 64)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec, // MaskingSpecialization
Deterministic>;
#elif(DIM <= 128)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionBiasForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<8, 32, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec, // MaskingSpecialization
Deterministic>;
#endif
// Ref Gemm0: DataType in, AccDataType out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: AccDataType in, DataType out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: DataType in, DataType out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
// Ref dropout
using ReferenceDropoutInstance =
ck::tensor_operation::host::ReferenceDropout<ZDataType, ADataType, ADataType>;
#include "run_batched_multihead_attention_bias_forward.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = true;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t M = 1000; // 120
ck::index_t N = 1000; // 1000
ck::index_t K = DIM;
ck::index_t O = DIM;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t G0 = 7;
ck::index_t G1 = 13;
bool input_permute = false;
bool output_permute = true;
float p_drop = 0.1;
const unsigned long long seed = 1;
const unsigned long long offset = 0;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 13)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
G0 = std::stoi(argv[8]);
G1 = std::stoi(argv[9]);
p_drop = std::stof(argv[10]);
input_permute = std::stoi(argv[11]);
output_permute = std::stoi(argv[12]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 11: M, N, K, O, G0, G1\n");
printf("arg10: scale (alpha)\n");
printf("arg11 to 12: input / output permute\n");
exit(0);
}
float p_dropout = 1 - p_drop;
ZDataType p_dropout_in_16bits = ZDataType(std::floor(p_dropout * 65535.0));
float rp_dropout = 1.0 / p_dropout;
float alpha = 1.f / std::sqrt(K);
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * K, K, G1 * K, 1} // A layout [G0, M, G1, K]
: std::vector<ck::index_t>{G1 * M * K, M * K, K, 1}; // A layout [G0, G1, M, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, G1, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * K, K, G1 * K, 1} // B0 layout [G0, N, G1, K]
: std::vector<ck::index_t>{G1 * N * K, N * K, K, 1}; // B0 layout [G0, G1, N, K]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, G1, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * O, O, 1, G1 * O} // B1 layout [G0, N, G1, O]
: std::vector<ck::index_t>{G1 * N * O, N * O, 1, O}; // B1 layout [G0, G1, N, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides =
output_permute
? std::vector<ck::index_t>{M * G1 * O, O, G1 * O, 1} // C layout [G0, M, G1, O]
: std::vector<ck::index_t>{G1 * M * O, M * O, O, 1}; // C layout [G0, G1, M, O]
std::vector<ck::index_t> z_gs_ms_ns_lengths{G0, G1, M, N};
std::vector<ck::index_t> z_gs_ms_ns_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * N, N, G1 * N, 1} // Z layout [G0, M, G1, N]
: std::vector<ck::index_t>{G1 * M * N, M * N, N, 1}; // Z layout [G0, G1, M, N]
std::vector<ck::index_t> lse_gs_ms_lengths{G0, G1, M};
std::vector<ck::index_t> lse_gs_ms_strides =
std::vector<ck::index_t>{G1 * M, M, 1}; // LSE layout [G0, G1, M]
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<ZDataType> z_gs_ms_ns(z_gs_ms_ns_lengths, z_gs_ms_ns_strides);
Tensor<LSEDataType> lse_gs_ms_host_result(lse_gs_ms_lengths, lse_gs_ms_strides);
Tensor<LSEDataType> lse_gs_ms_device_result(lse_gs_ms_lengths, lse_gs_ms_strides);
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b0_gs_ns_ks: " << b0_gs_ns_ks.mDesc << std::endl;
std::cout << "b1_gs_os_ns: " << b1_gs_os_ns.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
std::cout << "z_gs_ms_ns: " << z_gs_ms_ns.mDesc << std::endl;
std::cout << "lse_gs_ms_os: " << lse_gs_ms_host_result.mDesc << std::endl;
z_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<ZDataType>{0});
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_gs_os_ns.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
DeviceMem z_device_buf(sizeof(ZDataType) * z_gs_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem lse_device_buf(sizeof(LSEDataType) *
lse_gs_ms_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b0_device_buf.ToDevice(b0_gs_ns_ks.mData.data());
b1_device_buf.ToDevice(b1_gs_os_ns.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
// TODO ANT: replace array with vector?
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(
static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<ZDataType*>(nullptr),
static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()),
{}, // std::array<void*, 1> p_acc0_biases;
{}, // std::array<void*, 1> p_acc1_biases;
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
lse_gs_ms_lengths,
{}, // std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_strides},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op,
p_drop, // dropout ratio
{seed, offset}); // dropout random seed and offset, offset should be at least the number of
// elements on a thread
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
ck::index_t BatchCount = G0 * G1;
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
if(do_verification)
{
// run for storing z tensor
argument = gemm.MakeArgument(
static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<ZDataType*>(z_device_buf.GetDeviceBuffer()),
static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()),
{}, // std::array<void*, 1> p_acc0_biases;
{}, // std::array<void*, 1> p_acc1_biases;
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
lse_gs_ms_lengths,
{}, // std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_strides},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op,
p_drop, // dropout ratio
{seed, offset}); // dropout random seed and offset, offset should be at least the number
// of elements on a thread
c_device_buf.SetZero();
lse_device_buf.SetZero();
invoker.Run(argument, StreamConfig{nullptr, false});
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
z_device_buf.FromDevice(z_gs_ms_ns.mData.data());
lse_device_buf.FromDevice(lse_gs_ms_device_result.mData.data());
Tensor<ADataType> a_g_m_k({BatchCount, M, K});
Tensor<B0DataType> b0_g_k_n({BatchCount, K, N});
Tensor<B1DataType> b1_g_n_o({BatchCount, N, O});
Tensor<AccDataType> acc0_g_m_n({BatchCount, M, N}); // scratch object after gemm0
Tensor<ADataType> a1_g_m_n({BatchCount, M, N}); // scratch object after softmax
Tensor<ADataType> a1_g_m_n_drop({G0 * G1, M, N});
Tensor<LSEDataType> lse_g_m_host_result(
{BatchCount, M}); // scratch object after max + ln(sum)
Tensor<ZDataType> z_g_m_n({G0 * G1, M, N});
Tensor<CDataType> c_g_m_o_host_result({BatchCount, M, O}); // scratch object after gemm1
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g_m_k(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g_k_n(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g_n_o(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
z_gs_ms_ns.ForEach([&](auto& self, auto idx) {
z_g_m_n(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
// gemm 0
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
// masking
const auto mask = DeviceGemmInstance::C0MatrixMask(M, N);
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(mask.IsMaskedElement(idx[1], idx[2]))
self(idx) = -ck::NumericLimits<float>::Infinity();
});
// softmax
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument =
ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2}, &lse_g_m_host_result);
ref_softmax_invoker.Run(ref_softmax_argument);
// dropout after softmax
auto ref_dropout = ReferenceDropoutInstance{};
auto ref_dropout_invoker = ref_dropout.MakeInvoker();
auto ref_dropout_argment = ref_dropout.MakeArgument(
z_g_m_n, a1_g_m_n, a1_g_m_n_drop, p_dropout_in_16bits, rp_dropout);
ref_dropout_invoker.Run(ref_dropout_argment);
// gemm1
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(a1_g_m_n_drop,
b1_g_n_o,
c_g_m_o_host_result,
PassThrough{},
b1_element_op,
c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
lse_gs_ms_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = lse_g_m_host_result(g, idx[2]);
});
// default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<DataType, ck::bhalf_t> || std::is_same_v<GemmDataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
return ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData,
"Error: Incorrect results c!",
rtol,
atol) &&
ck::utils::check_err(lse_gs_ms_device_result.mData,
lse_gs_ms_host_result.mData,
"Error: Incorrect results lse!",
rtol,
atol)
? 0
: 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/utility/philox_rand.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_mha_fwd_xdl_cshuffle_v2.hpp"
#include "ck/tensor_operation/operator_transform/transform_contraction_to_gemm.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename ZDataType,
typename FloatLSE,
typename GemmAccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename AccElementwiseOperation,
typename B1ElementwiseOperation,
typename CElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename B1GridDesc_BK0_N_BK1,
typename CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
typename LSEGridDescriptor_M,
typename Block2CTileMap,
typename ComputeBasePtrOfStridedBatch,
typename C0MatrixMask,
bool HasMainKBlockLoop,
bool IsDropout,
bool IsLseStoring,
bool Deterministic>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_batched_multiheadattention_forward_xdl_cshuffle_v2(
const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
const FloatAB* __restrict__ p_b1_grid,
FloatC* __restrict__ p_c_grid,
ZDataType* __restrict__ p_z_grid,
FloatLSE* __restrict__ p_lse_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const AccElementwiseOperation acc_element_op,
const B1ElementwiseOperation b1_element_op,
const CElementwiseOperation c_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
const ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
const LSEGridDescriptor_M lse_grid_desc_m,
const Block2CTileMap block_2_ctile_map,
const index_t batch_count,
const index_t mblock,
const ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch,
const C0MatrixMask c0_matrix_mask,
const ushort p_dropout_in_16bits,
const GemmAccDataType p_dropout_rescale,
const unsigned long long seed,
const unsigned long long offset,
const index_t raw_m_padded,
const index_t raw_n_padded)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_base_ptr_of_batch.GetABasePtr(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_base_ptr_of_batch.GetBBasePtr(g_idx)));
const long_index_t b1_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_base_ptr_of_batch.GetB1BasePtr(g_idx)));
const long_index_t c_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_base_ptr_of_batch.GetCBasePtr(g_idx)));
const long_index_t z_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_base_ptr_of_batch.GetZBasePtr(g_idx)));
const long_index_t lse_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_base_ptr_of_batch.GetLSEBasePtr(g_idx)));
// const index_t global_thread_id = get_thread_global_1d_id();
ck::philox ph(seed, 0, offset);
const index_t z_random_matrix_offset = g_idx * raw_m_padded * raw_n_padded;
if constexpr(Deterministic)
{
for(index_t i = 0; i < mblock; i++)
{
GridwiseGemm::template Run<HasMainKBlockLoop, IsDropout, IsLseStoring>(
p_a_grid + a_batch_offset,
p_b_grid + b_batch_offset,
p_b1_grid + b1_batch_offset,
p_c_grid + c_batch_offset,
nullptr ? nullptr : p_z_grid + z_batch_offset,
nullptr ? nullptr : p_lse_grid + lse_batch_offset,
p_shared,
a_element_op,
b_element_op,
acc_element_op,
b1_element_op,
c_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
lse_grid_desc_m,
block_2_ctile_map,
c0_matrix_mask,
p_dropout_in_16bits,
p_dropout_rescale,
ph,
z_random_matrix_offset,
raw_n_padded,
i);
}
}
else
{
GridwiseGemm::template Run<HasMainKBlockLoop, IsDropout, IsLseStoring>(
p_a_grid + a_batch_offset,
p_b_grid + b_batch_offset,
p_b1_grid + b1_batch_offset,
p_c_grid + c_batch_offset,
nullptr ? nullptr : p_z_grid + z_batch_offset,
nullptr ? nullptr : p_lse_grid + lse_batch_offset,
p_shared,
a_element_op,
b_element_op,
acc_element_op,
b1_element_op,
c_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
lse_grid_desc_m,
block_2_ctile_map,
c0_matrix_mask,
p_dropout_in_16bits,
p_dropout_rescale,
ph,
z_random_matrix_offset,
raw_n_padded,
0);
}
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_b1_grid;
ignore = p_c_grid;
ignore = p_z_grid;
ignore = p_lse_grid;
ignore = a_element_op;
ignore = b_element_op;
ignore = acc_element_op;
ignore = b1_element_op;
ignore = c_element_op;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = b1_grid_desc_bk0_n_bk1;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5;
ignore = lse_grid_desc_m;
ignore = block_2_ctile_map;
ignore = batch_count;
ignore = mblock;
ignore = compute_base_ptr_of_batch;
ignore = c0_matrix_mask;
ignore = p_dropout_in_16bits;
ignore = p_dropout_rescale;
ignore = seed;
ignore = offset;
ignore = raw_m_padded;
ignore = raw_n_padded;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
// Computes C = A * B0 * B1
// ^^^^^^ (Acc0)
// ^^^^^^^^^^^ (Acc1)
template <index_t NumDimG,
index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
index_t NumDimO, // NumDimGemm1N
typename ADataType,
typename BDataType,
typename B1DataType,
typename CDataType,
typename GemmDataType,
typename ZDataType,
typename LSEDataType,
typename Acc0BiasDataType,
typename Acc1BiasDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename AccElementwiseOperation,
typename B1ElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
TensorSpecialization ASpec,
TensorSpecialization BSpec,
TensorSpecialization B1Spec,
TensorSpecialization CSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock, // Gemm0NPerBlock
index_t KPerBlock, // Gemm0KPerBlock
index_t Gemm1NPerBlock,
index_t Gemm1KPerBlock,
index_t AK1,
index_t BK1,
index_t B1K1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
index_t Gemm1NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
typename B1BlockTransferThreadClusterLengths_BK0_N_BK1,
typename B1BlockTransferThreadClusterArrangeOrder,
typename B1BlockTransferSrcAccessOrder,
index_t B1BlockTransferSrcVectorDim,
index_t B1BlockTransferSrcScalarPerVector,
index_t B1BlockTransferDstScalarPerVector_BK1,
bool B1BlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
MaskingSpecialization MaskingSpec,
bool Deterministic,
LoopScheduler LoopSched = LoopScheduler::Default>
struct DeviceBatchedMultiheadAttentionBiasForward_Xdl_CShuffle_V2
: public DeviceBatchedMultiheadAttentionForward<NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
BDataType,
B1DataType,
CDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AElementwiseOperation,
BElementwiseOperation,
AccElementwiseOperation,
B1ElementwiseOperation,
CElementwiseOperation,
MaskingSpec>
{
static_assert(NumDimG > 0 && NumDimM > 0 && NumDimN > 0 && NumDimK > 0 && NumDimO > 0,
"Number of dimension must be greater than 0");
static constexpr index_t NumAcc0Bias = Acc0BiasDataType::Size();
static constexpr index_t NumAcc1Bias = Acc1BiasDataType::Size();
// TODO ANT: implement bias combination
static_assert(NumAcc0Bias == 0 && NumAcc0Bias == 0, "Bias addition is unimplemented");
#if 0
// TODO ANT: use alias
static constexpr index_t NumDimGemm0M = NumDimM;
static constexpr index_t NumDimGemm0N = NumDimN;
static constexpr index_t NumDimGemm0K = NumDimK;
static constexpr index_t NumDimGemm1M = NumDimM;
static constexpr index_t NumDimGemm1N = NumDimO;
static constexpr index_t NumDimGemm1K = NumDimN;
#endif
using DeviceOp = DeviceBatchedMultiheadAttentionBiasForward_Xdl_CShuffle_V2;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
using Transform = TransformBatchedContractionContractionToBatchedGemmGemm<
Sequence<NumDimG, NumDimM, NumDimN, NumDimK, NumDimO>,
Sequence<MPerBlock, NPerBlock, KPerBlock, Gemm1NPerBlock>,
GemmSpec,
ASpec,
BSpec,
B1Spec,
CSpec>;
static auto MakeAGridDescriptor_AK0_M_AK1(const std::vector<index_t>& a_gs_ms_ks_lengths_vec,
const std::vector<index_t>& a_gs_ms_ks_strides_vec)
{
return Transform::MakeAGridDescriptor_AK0_M_AK1(
Transform::MakeAGridDescriptor_M_K(a_gs_ms_ks_lengths_vec, a_gs_ms_ks_strides_vec),
Number<AK1>{});
}
static auto MakeBGridDescriptor_BK0_N_BK1(const std::vector<index_t>& b_gs_ns_ks_lengths_vec,
const std::vector<index_t>& b_gs_ns_ks_strides_vec)
{
return Transform::MakeB0GridDescriptor_BK0_N_BK1(
Transform::MakeB0GridDescriptor_N_K(b_gs_ns_ks_lengths_vec, b_gs_ns_ks_strides_vec),
Number<BK1>{});
}
static auto
MakeB1GridDescriptor_BK0_N_BK1(const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_lengths_vec,
const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides_vec)
{
return Transform::MakeB1GridDescriptor_BK0_N_BK1(
Transform::MakeB1GridDescriptor_N_K(b1_gs_gemm1ns_gemm1ks_lengths_vec,
b1_gs_gemm1ns_gemm1ks_strides_vec),
Number<B1K1>{});
}
static auto MakeZGridDescriptor_M_N(const std::vector<index_t>& z_gs_ms_ns_lengths_vec,
const std::vector<index_t>& z_gs_ms_ns_strides_vec)
{
return Transform::MakeCGridDescriptor_M_N(z_gs_ms_ns_lengths_vec, z_gs_ms_ns_strides_vec);
}
static auto MakeLSEGridDescriptor_M(index_t MRaw)
{
const auto lse_grid_desc_mraw = make_naive_tensor_descriptor_packed(make_tuple(MRaw));
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto MPad = M - MRaw;
if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M
return transform_tensor_descriptor(lse_grid_desc_mraw,
make_tuple(make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
}
else
{
// not pad M
return lse_grid_desc_mraw;
}
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1({}, {}));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1({}, {}));
using B1GridDesc_BK0_N_BK1 = decltype(MakeB1GridDescriptor_BK0_N_BK1({}, {}));
using CGridDesc_M_N = decltype(Transform::MakeCGridDescriptor_M_N({}, {}));
using ZGridDesc_M_N = decltype(MakeZGridDescriptor_M_N({}, {}));
using LSEGridDesc_M = decltype(MakeLSEGridDescriptor_M(1));
using AGridDesc_G_M_K = decltype(Transform::MakeAGridDescriptor_G_M_K({}, {}));
using BGridDesc_G_N_K = decltype(Transform::MakeB0GridDescriptor_G_N_K({}, {}));
using B1GridDesc_G_N_K = decltype(Transform::MakeB1GridDescriptor_G_N_K({}, {}));
using CGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
using ZGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
constexpr static auto make_MaskOutPredicate()
{
if constexpr(MaskingSpec == MaskingSpecialization::MaskDisabled)
{
return MaskDisabledPredicate{};
}
else if constexpr(MaskingSpec == MaskingSpecialization::MaskUpperTriangleFromTopLeft)
{
return MaskUpperTriangleFromTopLeftPredicate{};
}
else if constexpr(MaskingSpec == MaskingSpecialization::MaskUpperTriangleFromBottomRight)
{
return MaskUpperTriangleFromBottomRightPredicate{};
}
}
using C0MatrixMask = C0MatrixMask_impl<decltype(make_MaskOutPredicate())>;
struct ComputeBasePtrOfStridedBatch
{
ComputeBasePtrOfStridedBatch(const AGridDesc_G_M_K& a_grid_desc_g_m_k,
const BGridDesc_G_N_K& b_grid_desc_g_n_k,
const B1GridDesc_G_N_K& b1_grid_desc_g_n_k,
const CGridDesc_G_M_N& c_grid_desc_g_m_n,
const ZGridDesc_G_M_N& z_grid_desc_g_m_n,
index_t BatchStrideLSE)
: a_grid_desc_g_m_k_(a_grid_desc_g_m_k),
b_grid_desc_g_n_k_(b_grid_desc_g_n_k),
b1_grid_desc_g_n_k_(b1_grid_desc_g_n_k),
c_grid_desc_g_m_n_(c_grid_desc_g_m_n),
z_grid_desc_g_m_n_(z_grid_desc_g_m_n),
BatchStrideLSE_(BatchStrideLSE)
{
}
__host__ __device__ constexpr long_index_t GetABasePtr(index_t g_idx) const
{
return a_grid_desc_g_m_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
__host__ __device__ constexpr long_index_t GetBBasePtr(index_t g_idx) const
{
return b_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
__host__ __device__ constexpr long_index_t GetB1BasePtr(index_t g_idx) const
{
return b1_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
__host__ __device__ constexpr long_index_t GetCBasePtr(index_t g_idx) const
{
return c_grid_desc_g_m_n_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
__host__ __device__ constexpr long_index_t GetZBasePtr(index_t g_idx) const
{
return z_grid_desc_g_m_n_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
__host__ __device__ constexpr long_index_t GetLSEBasePtr(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideLSE_);
}
private:
AGridDesc_G_M_K a_grid_desc_g_m_k_;
BGridDesc_G_N_K b_grid_desc_g_n_k_;
B1GridDesc_G_N_K b1_grid_desc_g_n_k_;
CGridDesc_G_M_N c_grid_desc_g_m_n_;
ZGridDesc_G_M_N z_grid_desc_g_m_n_;
index_t BatchStrideLSE_;
};
// GridwiseGemm
using GridwiseGemm = GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2<
ADataType, // TODO: distinguish A/B datatype
ZDataType,
GemmDataType,
GemmAccDataType,
CShuffleDataType,
CDataType,
LSEDataType,
AElementwiseOperation,
BElementwiseOperation,
AccElementwiseOperation,
B1ElementwiseOperation,
CElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
B1GridDesc_BK0_N_BK1,
CGridDesc_M_N,
ZGridDesc_M_N,
LSEGridDesc_M,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
Gemm1NPerBlock,
Gemm1KPerBlock,
AK1,
BK1,
B1K1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
Gemm1NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
true,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
true,
BBlockLdsExtraN,
B1BlockTransferThreadClusterLengths_BK0_N_BK1,
B1BlockTransferThreadClusterArrangeOrder,
B1BlockTransferSrcAccessOrder,
B1BlockTransferSrcVectorDim,
B1BlockTransferSrcScalarPerVector,
B1BlockTransferDstScalarPerVector_BK1,
false,
B1BlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopSched,
Transform::matrix_padder.PadN,
MaskingSpec != MaskingSpecialization::MaskDisabled,
Deterministic>;
// Argument
// FIXME: constness
struct Argument : public BaseArgument
{
Argument(
const ADataType* p_a_grid,
const BDataType* p_b_grid,
const B1DataType* p_b1_grid,
CDataType* p_c_grid,
ZDataType* p_z_grid,
LSEDataType* p_lse_grid,
const std::array<void*, NumAcc0Bias> p_acc0_biases,
const std::array<void*, NumAcc1Bias> p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
const std::vector<index_t>& b_gs_ns_ks_strides,
const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_lengths, // b1_gs_os_ns_lengths
const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
const std::vector<index_t>& c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
const std::vector<index_t>& c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
const std::vector<index_t>& z_gs_ms_ns_lengths,
const std::vector<index_t>& z_gs_ms_ns_strides,
const std::vector<index_t>& lse_gs_ms_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op,
float p_dropout,
std::tuple<unsigned long long, unsigned long long> seeds)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_b1_grid_{p_b1_grid},
p_c_grid_{p_c_grid},
p_z_grid_{p_z_grid},
p_lse_grid_{p_lse_grid},
a_grid_desc_ak0_m_ak1_{
DeviceOp::MakeAGridDescriptor_AK0_M_AK1(a_gs_ms_ks_lengths, a_gs_ms_ks_strides)},
b_grid_desc_bk0_n_bk1_{
DeviceOp::MakeBGridDescriptor_BK0_N_BK1(b_gs_ns_ks_lengths, b_gs_ns_ks_strides)},
b1_grid_desc_bk0_n_bk1_{DeviceOp::MakeB1GridDescriptor_BK0_N_BK1(
b1_gs_gemm1ns_gemm1ks_lengths, b1_gs_gemm1ns_gemm1ks_strides)},
c_grid_desc_m_n_{Transform::MakeCGridDescriptor_M_N(c_gs_ms_gemm1ns_lengths,
c_gs_ms_gemm1ns_strides)},
z_grid_desc_m_n_{MakeZGridDescriptor_M_N(z_gs_ms_ns_lengths, z_gs_ms_ns_strides)},
lse_grid_desc_m_{DeviceOp::MakeLSEGridDescriptor_M(lse_gs_ms_lengths[NumDimG])},
a_grid_desc_g_m_k_{
Transform::MakeAGridDescriptor_G_M_K(a_gs_ms_ks_lengths, a_gs_ms_ks_strides)},
b_grid_desc_g_n_k_{
Transform::MakeB0GridDescriptor_G_N_K(b_gs_ns_ks_lengths, b_gs_ns_ks_strides)},
b1_grid_desc_g_n_k_{Transform::MakeB1GridDescriptor_G_N_K(
b1_gs_gemm1ns_gemm1ks_lengths, b1_gs_gemm1ns_gemm1ks_strides)},
c_grid_desc_g_m_n_{Transform::MakeCGridDescriptor_G_M_N(c_gs_ms_gemm1ns_lengths,
c_gs_ms_gemm1ns_strides)},
z_grid_desc_g_m_n_{
Transform::MakeCGridDescriptor_G_M_N(z_gs_ms_ns_lengths, z_gs_ms_ns_strides)},
c_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_ctile_map_{GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_)},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
acc_element_op_{acc_element_op},
b1_element_op_{b1_element_op},
c_element_op_{c_element_op},
c0_matrix_mask_{a_grid_desc_g_m_k_.GetLength(I1), b_grid_desc_g_n_k_.GetLength(I1)},
raw_lengths_mz_nz_kz_gemm1nz_{a_gs_ms_ks_lengths[NumDimG + NumDimM - 1],
b_gs_ns_ks_lengths[NumDimG + NumDimN - 1],
b_gs_ns_ks_lengths[NumDimG + NumDimN + NumDimK - 1],
b1_gs_gemm1ns_gemm1ks_lengths[NumDimG + NumDimO - 1]},
a_mz_kz_strides_{a_gs_ms_ks_strides[NumDimG + NumDimM - 1],
a_gs_ms_ks_strides[NumDimG + NumDimM + NumDimK - 1]},
b_nz_kz_strides_{b_gs_ns_ks_strides[NumDimG + NumDimN - 1],
b_gs_ns_ks_strides[NumDimG + NumDimN + NumDimK - 1]},
b1_nz_kz_strides_{b1_gs_gemm1ns_gemm1ks_strides[NumDimG + NumDimO - 1],
b1_gs_gemm1ns_gemm1ks_strides[NumDimG + NumDimO + NumDimN - 1]},
c_mz_gemm1nz_strides_{c_gs_ms_gemm1ns_strides[NumDimG + NumDimM - 1],
c_gs_ms_gemm1ns_strides[NumDimG + NumDimM + NumDimO - 1]},
batch_count_{c_grid_desc_g_m_n_.GetLength(I0)},
compute_base_ptr_of_batch_{
a_grid_desc_g_m_k_,
b_grid_desc_g_n_k_,
b1_grid_desc_g_n_k_,
c_grid_desc_g_m_n_,
z_grid_desc_g_m_n_,
type_convert<index_t>(lse_grid_desc_m_.GetElementSpaceSize())}
{
// TODO ANT: implement bias addition
ignore = p_acc0_biases;
ignore = p_acc1_biases;
ignore = acc0_biases_gs_ms_ns_lengths;
ignore = acc0_biases_gs_ms_ns_strides;
ignore = acc1_biases_gs_ms_gemm1ns_lengths;
ignore = acc1_biases_gs_ms_gemm1ns_strides;
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_,
b1_grid_desc_bk0_n_bk1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n_);
}
is_dropout_ = p_dropout > 0.0; //
p_dropout_ = 1.f - p_dropout;
p_dropout_in_16bits_ = uint16_t(std::floor(p_dropout_ * 65535.0));
p_dropout_ = 1.f / p_dropout_;
p_dropout_rescale_ = type_convert<GemmAccDataType>(p_dropout_);
seed_ = std::get<0>(seeds);
offset_ = std::get<1>(seeds);
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(z_grid_desc_m_n_);
m_raw_padded_ = GridwiseGemm::GetPaddedSize(raw_lengths_mz_nz_kz_gemm1nz_[0]);
n_raw_padded_ = GridwiseGemm::GetPaddedSize(raw_lengths_mz_nz_kz_gemm1nz_[1]);
if(p_lse_grid == nullptr)
{
is_lse_storing_ = false;
}
}
void Print() const
{
std::cout << "a_grid_desc_g_m_k_: " << a_grid_desc_g_m_k_.GetLength(I0) << ", "
<< a_grid_desc_g_m_k_.GetLength(I1) << ", "
<< a_grid_desc_g_m_k_.GetLength(I2) << '\n';
std::cout << "b_grid_desc_g_n_k_: " << b_grid_desc_g_n_k_.GetLength(I0) << ", "
<< b_grid_desc_g_n_k_.GetLength(I1) << ", "
<< b_grid_desc_g_n_k_.GetLength(I2) << '\n';
std::cout << "b1_grid_desc_g_n_k_: " << b1_grid_desc_g_n_k_.GetLength(I0) << ", "
<< b1_grid_desc_g_n_k_.GetLength(I1) << ", "
<< b1_grid_desc_g_n_k_.GetLength(I2) << '\n';
std::cout << "c_grid_desc_g_m_n_: " << c_grid_desc_g_m_n_.GetLength(I0) << ", "
<< c_grid_desc_g_m_n_.GetLength(I1) << ", "
<< c_grid_desc_g_m_n_.GetLength(I2) << '\n';
}
// pointers
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
const B1DataType* p_b1_grid_;
CDataType* p_c_grid_;
ZDataType* p_z_grid_;
LSEDataType* p_lse_grid_;
// tensor descriptor
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1_;
CGridDesc_M_N c_grid_desc_m_n_;
ZGridDesc_M_N z_grid_desc_m_n_;
LSEGridDesc_M lse_grid_desc_m_;
AGridDesc_G_M_K a_grid_desc_g_m_k_;
BGridDesc_G_N_K b_grid_desc_g_n_k_;
B1GridDesc_G_N_K b1_grid_desc_g_n_k_;
CGridDesc_G_M_N c_grid_desc_g_m_n_;
ZGridDesc_G_M_N z_grid_desc_g_m_n_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_;
// block-to-c-tile map
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
// element-wise op
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
AccElementwiseOperation acc_element_op_;
B1ElementwiseOperation b1_element_op_;
CElementwiseOperation c_element_op_;
// check C0 masking and padding
C0MatrixMask c0_matrix_mask_;
// For robust IsSupportedArgument() check
std::vector<index_t> raw_lengths_mz_nz_kz_gemm1nz_;
std::vector<index_t> a_mz_kz_strides_;
std::vector<index_t> b_nz_kz_strides_;
std::vector<index_t> b1_nz_kz_strides_;
std::vector<index_t> c_mz_gemm1nz_strides_;
index_t batch_count_;
ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch_;
float p_dropout_;
ushort p_dropout_in_16bits_;
GemmAccDataType p_dropout_rescale_;
unsigned long long seed_;
unsigned long long offset_;
bool is_dropout_;
bool is_lse_storing_ = true;
index_t m_raw_padded_;
index_t n_raw_padded_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(!DeviceOp::IsSupportedArgument(arg))
{
throw std::runtime_error("wrong! unsupported argument");
}
const index_t grid_size =
(Deterministic ? 1
: arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_)) *
arg.batch_count_;
// Gemm0_K
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
float ave_time = 0;
auto launch_kernel =
[&](auto has_main_k_block_loop_, auto is_dropout_, auto is_lse_storing_) {
const auto kernel = kernel_batched_multiheadattention_forward_xdl_cshuffle_v2<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
ZDataType,
LSEDataType,
GemmAccDataType,
AElementwiseOperation,
BElementwiseOperation,
AccElementwiseOperation,
B1ElementwiseOperation,
CElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::B1GridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
DeviceOp::LSEGridDesc_M,
typename GridwiseGemm::DefaultBlock2CTileMap,
ComputeBasePtrOfStridedBatch,
C0MatrixMask,
has_main_k_block_loop_,
is_dropout_,
is_lse_storing_,
Deterministic>;
return launch_and_time_kernel(
stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_b1_grid_,
arg.p_c_grid_,
arg.p_z_grid_,
arg.p_lse_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.acc_element_op_,
arg.b1_element_op_,
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.b1_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg.lse_grid_desc_m_,
arg.block_2_ctile_map_,
arg.batch_count_,
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_),
arg.compute_base_ptr_of_batch_,
arg.c0_matrix_mask_,
arg.p_dropout_in_16bits_,
arg.p_dropout_rescale_,
arg.seed_,
arg.offset_,
arg.m_raw_padded_,
arg.n_raw_padded_);
};
// Gemm1_K is split into Gemm1_K0/K1 where K1 is known at compile time, so we only need
// to concern Gemm0's loop
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
if(arg.is_dropout_)
{
if(arg.is_lse_storing_)
{
ave_time = launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, true>{},
integral_constant<bool, true>{});
}
else
{
ave_time = launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, true>{},
integral_constant<bool, false>{});
}
}
else
{
if(arg.is_lse_storing_)
{
ave_time = launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, false>{},
integral_constant<bool, true>{});
}
else
{
ave_time = launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, false>{},
integral_constant<bool, false>{});
}
}
}
else
{
if(arg.is_dropout_)
{
if(arg.is_lse_storing_)
{
ave_time = launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, true>{},
integral_constant<bool, true>{});
}
else
{
ave_time = launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, true>{},
integral_constant<bool, false>{});
}
}
else
{
if(arg.is_lse_storing_)
{
ave_time = launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, false>{},
integral_constant<bool, true>{});
}
else
{
ave_time = launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, false>{},
integral_constant<bool, false>{});
}
}
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
#if DEBUG_LOG
arg.Print();
#endif
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a" ||
ck::get_device_name() == "gfx940" || ck::get_device_name() == "gfx941" ||
ck::get_device_name() == "gfx942"))
{
return false;
}
// TODO ANT: Check if tensor specialization & strides mismatch
// Check if C permute dimension matches GEMM + GEMM shape
const index_t c_g = arg.c_grid_desc_g_m_n_.GetLength(I0); // unpadded
const index_t c_m = arg.c_grid_desc_m_n_.GetLength(I0);
const index_t c_gemm1n = arg.c_grid_desc_m_n_.GetLength(I1);
const index_t a_m = arg.a_grid_desc_ak0_m_ak1_.GetLength(I1);
const index_t b1_gemm1n = arg.b1_grid_desc_bk0_n_bk1_.GetLength(I1);
if(!(c_g == arg.batch_count_ && c_m == a_m && c_gemm1n == b1_gemm1n))
{
return false;
}
// Note: we need raw lengths since threadwise copy can not handle vector load when part of
// vector is out of bounds
// Note: need lowest dim in Ms/Ns/Ks/Os, not merged M/N/K/O
const auto MzRaw = arg.raw_lengths_mz_nz_kz_gemm1nz_[0];
const auto NzRaw = arg.raw_lengths_mz_nz_kz_gemm1nz_[1];
const auto KzRaw = arg.raw_lengths_mz_nz_kz_gemm1nz_[2];
const auto Gemm1NzRaw = arg.raw_lengths_mz_nz_kz_gemm1nz_[3];
// Check scalar per vector requirement
const auto a_extent_lowest = ABlockTransferSrcVectorDim == 2 ? KzRaw : MzRaw;
const auto b_extent_lowest = BBlockTransferSrcVectorDim == 2 ? KzRaw : NzRaw;
const auto b1_extent_lowest = B1BlockTransferSrcVectorDim == 2 ? NzRaw : Gemm1NzRaw;
const auto c_extent_lowest = Gemm1NzRaw;
if(!(a_extent_lowest % ABlockTransferSrcScalarPerVector == 0 &&
b_extent_lowest % BBlockTransferSrcScalarPerVector == 0 &&
b1_extent_lowest % B1BlockTransferSrcScalarPerVector == 0 &&
c_extent_lowest % CShuffleBlockTransferScalarPerVector_NPerBlock == 0))
{
return false;
}
// Check vector load/store requirement
const auto a_stride_lowest =
ABlockTransferSrcVectorDim == 2 ? arg.a_mz_kz_strides_[1] : arg.a_mz_kz_strides_[0];
const auto b_stride_lowest =
BBlockTransferSrcVectorDim == 2 ? arg.b_nz_kz_strides_[1] : arg.b_nz_kz_strides_[0];
const auto b1_stride_lowest =
B1BlockTransferSrcVectorDim == 2 ? arg.b1_nz_kz_strides_[1] : arg.b1_nz_kz_strides_[0];
const auto c_stride_lowest =
arg.c_mz_gemm1nz_strides_[1]; // cshuffle assumes lowest dim in Gemm1Ns to be contiguous
if(!(a_stride_lowest == 1 || b_stride_lowest == 1 || b1_stride_lowest == 1 ||
c_stride_lowest == 1))
{
return false;
}
return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.b1_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(
const ADataType* p_a,
const BDataType* p_b,
const B1DataType* p_b1,
CDataType* p_c,
ZDataType* p_z,
LSEDataType* p_lse,
const std::array<void*, NumAcc0Bias> p_acc0_biases,
const std::array<void*, NumAcc1Bias> p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
const std::vector<index_t>& b_gs_ns_ks_strides,
const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_lengths, // b1_gs_os_ns_lengths
const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
const std::vector<index_t>& c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
const std::vector<index_t>& c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
const std::vector<index_t>& z_gs_ms_ns_lengths,
const std::vector<index_t>& z_gs_ms_ns_strides,
const std::vector<index_t>& lse_gs_ms_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op,
float p_dropout,
std::tuple<unsigned long long, unsigned long long> seeds)
{
return Argument{p_a,
p_b,
p_b1,
p_c,
p_z,
p_lse,
p_acc0_biases,
p_acc1_biases,
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b_gs_ns_ks_lengths,
b_gs_ns_ks_strides,
b1_gs_gemm1ns_gemm1ks_lengths, // b1_gs_os_ns_lengths
b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
lse_gs_ms_lengths,
acc0_biases_gs_ms_ns_lengths,
acc0_biases_gs_ms_ns_strides,
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
a_element_op,
b_element_op,
acc_element_op,
b1_element_op,
c_element_op,
p_dropout,
seeds};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
// FIXME: constness
std::unique_ptr<BaseArgument> MakeArgumentPointer(
const void* p_a,
const void* p_b,
const void* p_b1,
void* p_c,
void* p_z,
void* p_lse,
const std::array<void*, NumAcc0Bias> p_acc0_biases,
const std::array<void*, NumAcc1Bias> p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
const std::vector<index_t>& b_gs_ns_ks_strides,
const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_lengths, // b1_gs_os_ns_lengths
const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
const std::vector<index_t>& c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
const std::vector<index_t>& c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
const std::vector<index_t>& z_gs_ms_ns_lengths,
const std::vector<index_t>& z_gs_ms_ns_strides,
const std::vector<index_t>& lse_gs_ms_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op,
float p_dropout,
std::tuple<unsigned long long, unsigned long long> seeds) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<const B1DataType*>(p_b1),
static_cast<CDataType*>(p_c),
static_cast<ZDataType*>(p_z),
static_cast<LSEDataType*>(p_lse),
p_acc0_biases, // cast in struct Argument
p_acc1_biases, // cast in struct Argument
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b_gs_ns_ks_lengths,
b_gs_ns_ks_strides,
b1_gs_gemm1ns_gemm1ks_lengths, // b1_gs_os_ns_lengths
b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
lse_gs_ms_lengths,
acc0_biases_gs_ms_ns_lengths,
acc0_biases_gs_ms_ns_strides,
acc1_biases_gs_ms_gemm1ns_lengths,
acc1_biases_gs_ms_gemm1ns_strides,
a_element_op,
b_element_op,
acc_element_op,
b1_element_op,
c_element_op,
p_dropout,
seeds);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceBatchedMultiheadAttentionBiasForward_Xdl_CShuffle_V2"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1 << ", "
<< MPerBlock << ", "
<< Gemm1NPerBlock << ", "
<< Gemm1KPerBlock << ", "
<< B1K1 << ", "
<< getGemmSpecializationString(GemmSpec) << ", "
<< "ASpec" << getTensorSpecializationString(ASpec) << ", "
<< "B0Spec" << getTensorSpecializationString(BSpec) << ", "
<< "B1Spec" << getTensorSpecializationString(B1Spec) << ", "
<< "CSpec" << getTensorSpecializationString(CSpec) << ", "
<< getMaskingSpecializationString(MaskingSpec) << ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment