Unverified Commit 5903efe7 authored by arai713's avatar arai713 Committed by GitHub
Browse files

Merge branch 'develop' into transpose_5d

parents 2100ea4b e1fa0091
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using InDataType = ck::Tuple<ck::bhalf_t, ck::bhalf_t>;
using WeiDataType = ck::Tuple<ck::bhalf_t, ck::bhalf_t>;
using OutDataType = ck::bhalf_t;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int main() { return execute_conv_fwd_scaleadd_ab(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using InDataType = ck::Tuple<ck::half_t, ck::half_t>;
using WeiDataType = ck::Tuple<ck::half_t, ck::half_t>;
using OutDataType = ck::half_t;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int main() { return execute_conv_fwd_scaleadd_ab(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using InDataType = ck::Tuple<float, float>;
using WeiDataType = ck::Tuple<float, float>;
using OutDataType = float;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int main() { return execute_conv_fwd_scaleadd_ab(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using InDataType = ck::Tuple<int8_t, int8_t>;
using WeiDataType = ck::Tuple<int8_t, int8_t>;
using OutDataType = int8_t;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int main() { return execute_conv_fwd_scaleadd_ab(); }
...@@ -48,6 +48,12 @@ idna==3.4 ...@@ -48,6 +48,12 @@ idna==3.4
# via requests # via requests
imagesize==1.4.1 imagesize==1.4.1
# via sphinx # via sphinx
importlib-metadata==6.8.0
# via
# sphinx
# sphinxcontrib-bibtex
importlib-resources==6.1.0
# via rocm-docs-core
jinja2==3.1.2 jinja2==3.1.2
# via # via
# myst-parser # myst-parser
...@@ -90,9 +96,13 @@ pygments==2.14.0 ...@@ -90,9 +96,13 @@ pygments==2.14.0
# pydata-sphinx-theme # pydata-sphinx-theme
# sphinx # sphinx
pyjwt[crypto]==2.6.0 pyjwt[crypto]==2.6.0
# via pygithub # via
# pygithub
# pyjwt
pynacl==1.5.0 pynacl==1.5.0
# via pygithub # via pygithub
pytz==2023.3.post1
# via babel
pyyaml==6.0 pyyaml==6.0
# via # via
# myst-parser # myst-parser
...@@ -103,7 +113,7 @@ requests==2.28.2 ...@@ -103,7 +113,7 @@ requests==2.28.2
# via # via
# pygithub # pygithub
# sphinx # sphinx
rocm-docs-core==0.26.0 rocm-docs-core==0.27.0
# via -r requirements.in # via -r requirements.in
six==1.16.0 six==1.16.0
# via # via
...@@ -157,3 +167,7 @@ urllib3==1.26.15 ...@@ -157,3 +167,7 @@ urllib3==1.26.15
# via requests # via requests
wrapt==1.15.0 wrapt==1.15.0
# via deprecated # via deprecated
zipp==3.17.0
# via
# importlib-metadata
# importlib-resources
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp" #include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio ...@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout> template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
using DeviceGroupedConvNDFwdInstance = using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial, NDimSpatial,
InLayout, InLayout,
WeiLayout, WeiLayout,
......
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp" #include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio ...@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout> template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
using DeviceGroupedConvNDFwdInstance = using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial, NDimSpatial,
InLayout, InLayout,
WeiLayout, WeiLayout,
......
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp" #include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio ...@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout> template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
using DeviceGroupedConvNDFwdInstance = using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial, NDimSpatial,
InLayout, InLayout,
WeiLayout, WeiLayout,
......
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp" #include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio ...@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout> template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
using DeviceGroupedConvNDFwdInstance = using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial, NDimSpatial,
InLayout, InLayout,
WeiLayout, WeiLayout,
......
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp" #include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio ...@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout> template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
using DeviceGroupedConvNDFwdInstance = using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial, NDimSpatial,
InLayout, InLayout,
WeiLayout, WeiLayout,
......
add_example_executable(example_layernorm_fp16 layernorm_fp16.cpp)
add_example_executable(example_layernorm_splitk_fp16 layernorm_splitk_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using SaveMeanInvStdDataType = float;
using ComputeDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
#define SAVE_MEAN_INV_STD
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
using DeviceInstance =
ck::tensor_operation::device::DeviceNormalizationImpl<XDataType,
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // XYVectorDim (0=M, 1=K)
8, // SrcScalarPerVector
1, // GammaVecDim (0=M, 1=K)
8, // GammaScalarPerVector
1, // BetaVecDim (0=M, 1=K)
8, // BetaScalarPerVector
8, // YScalarPerVector
1>; // SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
int main() { return run_groupnorm_example<DeviceInstance>(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using SaveMeanInvStdDataType = float;
using ComputeDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
#define SAVE_MEAN_INV_STD
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
using DeviceInstance =
ck::tensor_operation::device::DeviceNormalizationSplitKImpl<XDataType,
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // XYVectorDim (0=M, 1=K)
8, // XScalarPerVector
1, // GammaVecDim (0=M, 1=K)
8, // GammaScalarPerVector
1, // BetaVecDim (0=M, 1=K)
8, // BetaScalarPerVector
8, // YScalarPerVector
1>; // SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
int main() { return run_groupnorm_example<DeviceInstance>(); }
add_example_executable(example_layernorm2d_fwd_fp16 layernorm2d_fwd_fp16.cpp)
add_example_executable(example_layernorm2d_fwd_splitk_fp16 layernorm2d_fwd_splitk_fp16.cpp)
...@@ -10,8 +10,8 @@ ...@@ -10,8 +10,8 @@
#include <getopt.h> #include <getopt.h>
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp" #include "ck/tensor_operation/gpu/device/impl/device_normalization_fwd_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_splitk_impl.hpp" #include "ck/tensor_operation/gpu/device/impl/device_normalization_fwd_splitk_impl.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using SaveMeanInvStdDataType = float;
using ComputeDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
#define SAVE_MEAN_INV_STD
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
using DeviceInstance =
ck::tensor_operation::device::DeviceNormalizationFwdImpl<XDataType,
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // XYVectorDim (0=M, 1=K)
8, // SrcScalarPerVector
1, // GammaVecDim (0=M, 1=K)
8, // GammaScalarPerVector
1, // BetaVecDim (0=M, 1=K)
8, // BetaScalarPerVector
8, // YScalarPerVector
1>; // SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
int main() { return run_layernorm2d_fwd_example<DeviceInstance>(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using SaveMeanInvStdDataType = float;
using ComputeDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
#define SAVE_MEAN_INV_STD
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
using DeviceInstance = ck::tensor_operation::device::DeviceNormalizationFwdSplitKImpl<
XDataType,
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // XYVectorDim (0=M, 1=K)
8, // XScalarPerVector
1, // GammaVecDim (0=M, 1=K)
8, // GammaScalarPerVector
1, // BetaVecDim (0=M, 1=K)
8, // BetaScalarPerVector
8, // YScalarPerVector
1>; // SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
int main() { return run_layernorm2d_fwd_example<DeviceInstance>(); }
...@@ -4,7 +4,7 @@ ...@@ -4,7 +4,7 @@
#pragma once #pragma once
template <typename DeviceInstance> template <typename DeviceInstance>
int run_groupnorm_example() int run_layernorm2d_fwd_example()
{ {
bool time_kernel = false; bool time_kernel = false;
......
...@@ -26,5 +26,5 @@ out: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 331776, 1, 9216, 256} ...@@ -26,5 +26,5 @@ out: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 331776, 1, 9216, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1} launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time Warm up 1 time
Start running 10 times... Start running 10 times...
Perf: 1.55981 ms, 94.0927 TFlops, 213.868 GB/s, DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<256, 128, 256, 16, Default> Perf: 1.55981 ms, 94.0927 TFlops, 213.868 GB/s, DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<256, 128, 256, 16, Default>
``` ```
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp" #include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment