Unverified Commit 5903efe7 authored by arai713's avatar arai713 Committed by GitHub
Browse files

Merge branch 'develop' into transpose_5d

parents 2100ea4b e1fa0091
...@@ -9,18 +9,18 @@ namespace tensor_operation { ...@@ -9,18 +9,18 @@ namespace tensor_operation {
namespace device { namespace device {
namespace instance { namespace instance {
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_int8_instances( void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC, NDHWGC,
GKZYXC, GKZYXC,
Empty_Tuple, Empty_Tuple,
NDHWGK, NDHWGK,
int8_t, int8_t,
int8_t, int8_t,
Empty_Tuple, Empty_Tuple,
int8_t, int8_t,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances) PassThrough>>>& instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_grouped_conv_fwd_xdl_int8_instances<3, device_grouped_conv_fwd_xdl_int8_instances<3,
......
set(GROUPED_CONV3D_FWD_SCALEADD_AB
xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp)
add_instance_library(device_grouped_conv3d_fwd_scaleadd_ab_instance ${GROUPED_CONV3D_FWD_SCALEADD_AB})
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ck::Tuple<BF16, BF16>,
ck::Tuple<BF16, BF16>,
ck::Tuple<>,
BF16,
ScaleAdd,
ScaleAdd,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_bf16_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_bf16_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_bf16_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1S1P0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ck::Tuple<F16, F16>,
ck::Tuple<F16, F16>,
ck::Tuple<>,
F16,
ScaleAdd,
ScaleAdd,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_f16_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_f16_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_f16_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1S1P0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ck::Tuple<F32, F32>,
ck::Tuple<F32, F32>,
ck::Tuple<>,
F32,
ScaleAdd,
ScaleAdd,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_f32_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_f32_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_f32_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1S1P0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ck::Tuple<int8_t, int8_t>,
ck::Tuple<int8_t, int8_t>,
ck::Tuple<>,
int8_t,
ScaleAdd,
ScaleAdd,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_int8_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_int8_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_int8_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1S1P0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -10,18 +10,18 @@ namespace device { ...@@ -10,18 +10,18 @@ namespace device {
namespace instance { namespace instance {
void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_bf16_instances( void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC, NDHWGC,
GKZYXC, GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>, ck::Tuple<NDHWGK, NDHWGK>,
NDHWGK, NDHWGK,
BF16, BF16,
BF16, BF16,
ck::Tuple<BF16, BF16>, ck::Tuple<BF16, BF16>,
BF16, BF16,
PassThrough, PassThrough,
PassThrough, PassThrough,
ScaleAddScaleAddRelu>>>& instances) ScaleAddScaleAddRelu>>>& instances)
{ {
add_device_operation_instances( add_device_operation_instances(
instances, instances,
......
...@@ -10,18 +10,18 @@ namespace device { ...@@ -10,18 +10,18 @@ namespace device {
namespace instance { namespace instance {
void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_f16_instances( void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC, NDHWGC,
GKZYXC, GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>, ck::Tuple<NDHWGK, NDHWGK>,
NDHWGK, NDHWGK,
F16, F16,
F16, F16,
ck::Tuple<half_t, half_t>, ck::Tuple<half_t, half_t>,
F16, F16,
PassThrough, PassThrough,
PassThrough, PassThrough,
ScaleAddScaleAddRelu>>>& instances) ScaleAddScaleAddRelu>>>& instances)
{ {
add_device_operation_instances( add_device_operation_instances(
instances, instances,
......
...@@ -10,18 +10,18 @@ namespace device { ...@@ -10,18 +10,18 @@ namespace device {
namespace instance { namespace instance {
void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_f32_instances( void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC, NDHWGC,
GKZYXC, GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>, ck::Tuple<NDHWGK, NDHWGK>,
NDHWGK, NDHWGK,
F32, F32,
F32, F32,
ck::Tuple<F32, F32>, ck::Tuple<F32, F32>,
F32, F32,
PassThrough, PassThrough,
PassThrough, PassThrough,
ScaleAddScaleAddRelu>>>& instances) ScaleAddScaleAddRelu>>>& instances)
{ {
add_device_operation_instances( add_device_operation_instances(
instances, instances,
......
...@@ -9,18 +9,18 @@ namespace tensor_operation { ...@@ -9,18 +9,18 @@ namespace tensor_operation {
namespace device { namespace device {
namespace instance { namespace instance {
void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_int8_instances( void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC, NDHWGC,
GKZYXC, GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>, ck::Tuple<NDHWGK, NDHWGK>,
NDHWGK, NDHWGK,
int8_t, int8_t,
int8_t, int8_t,
ck::Tuple<F32, F32>, ck::Tuple<F32, F32>,
int8_t, int8_t,
PassThrough, PassThrough,
PassThrough, PassThrough,
ScaleAddScaleAddRelu>>>& instances) ScaleAddScaleAddRelu>>>& instances)
{ {
add_device_operation_instances( add_device_operation_instances(
instances, instances,
......
set(DEVICE_NORMALIZATION_INSTANCES)
list(APPEND DEVICE_NORMALIZATION_INSTANCES
device_layernorm2d_f16_instance.cpp
device_layernorm4d_f16_instance.cpp
device_groupnorm_f16_instance.cpp
device_groupnorm_swish_f16_instance.cpp
device_groupnorm_swish_f16_f32_f32_f16_instance.cpp
device_layernorm2d_f32_instance.cpp
device_layernorm4d_f32_instance.cpp
device_groupnorm_f32_instance.cpp
device_groupnorm_swish_f32_instance.cpp)
add_instance_library(device_normalization_instance ${DEVICE_NORMALIZATION_INSTANCES})
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_splitk_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_instances =
// clang-format off
std::tuple <
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 8, 1, 8, 1, 8, 8, 2>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_splitk_f16_instances =
// clang-format off
std::tuple <
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 8, 1, 8, 1, 8, 8, 2>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_generic_instance = std::tuple<
// clang-format off
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f32_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_splitk_f32_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f32_generic_instance = std::tuple<
// clang-format off
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_f32_f32_f16_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_splitk_f16_f32_f32_f16_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_f32_f32_f16_generic_instance = std::tuple<
// clang-format off
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
set(DEVICE_NORMALIZATION_FWD_INSTANCES)
list(APPEND DEVICE_NORMALIZATION_FWD_INSTANCES
device_layernorm2d_fwd_f16_instance.cpp
device_layernorm4d_fwd_f16_instance.cpp
device_groupnorm_fwd_f16_instance.cpp
device_groupnorm_fwd_swish_f16_instance.cpp
device_groupnorm_fwd_swish_f16_f32_f32_f16_instance.cpp
device_layernorm2d_fwd_f32_instance.cpp
device_layernorm4d_fwd_f32_instance.cpp
device_groupnorm_fwd_f32_instance.cpp
device_groupnorm_fwd_swish_f32_instance.cpp)
add_instance_library(device_normalization_fwd_instance ${DEVICE_NORMALIZATION_FWD_INSTANCES})
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp" #include "normalization_fwd_instance_common.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -10,8 +10,8 @@ namespace instance { ...@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough; using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_5_3_f16_instances( void add_device_normalization_fwd_rank_5_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Pass, 5, 3>>>& std::vector<std::unique_ptr<DeviceNormalizationFwd<F16, F16, F16, F16, F32, Pass, 5, 3>>>&
instances) instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp" #include "normalization_fwd_instance_common.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -10,8 +10,8 @@ namespace instance { ...@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough; using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_5_3_f32_instances( void add_device_normalization_fwd_rank_5_3_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 5, 3>>>& std::vector<std::unique_ptr<DeviceNormalizationFwd<F32, F32, F32, F32, F32, Pass, 5, 3>>>&
instances) instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp" #include "normalization_fwd_instance_common.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -10,8 +10,8 @@ namespace instance { ...@@ -10,8 +10,8 @@ namespace instance {
using Swish = ck::tensor_operation::element_wise::Swish; using Swish = ck::tensor_operation::element_wise::Swish;
void add_device_normalization_rank_5_3_swish_f16_f32_f32_f16_instances( void add_device_normalization_fwd_rank_5_3_swish_f16_f32_f32_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F32, F32, F16, F32, Swish, 5, 3>>>& std::vector<std::unique_ptr<DeviceNormalizationFwd<F16, F32, F32, F16, F32, Swish, 5, 3>>>&
instances) instances)
{ {
add_device_operation_instances( add_device_operation_instances(
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp" #include "normalization_fwd_instance_common.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -10,8 +10,8 @@ namespace instance { ...@@ -10,8 +10,8 @@ namespace instance {
using Swish = ck::tensor_operation::element_wise::Swish; using Swish = ck::tensor_operation::element_wise::Swish;
void add_device_normalization_rank_5_3_swish_f16_instances( void add_device_normalization_fwd_rank_5_3_swish_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Swish, 5, 3>>>& std::vector<std::unique_ptr<DeviceNormalizationFwd<F16, F16, F16, F16, F32, Swish, 5, 3>>>&
instances) instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp" #include "normalization_fwd_instance_common.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -10,8 +10,8 @@ namespace instance { ...@@ -10,8 +10,8 @@ namespace instance {
using Swish = ck::tensor_operation::element_wise::Swish; using Swish = ck::tensor_operation::element_wise::Swish;
void add_device_normalization_rank_5_3_swish_f32_instances( void add_device_normalization_fwd_rank_5_3_swish_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Swish, 5, 3>>>& std::vector<std::unique_ptr<DeviceNormalizationFwd<F32, F32, F32, F32, F32, Swish, 5, 3>>>&
instances) instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp" #include "normalization_fwd_instance_common.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -10,8 +10,8 @@ namespace instance { ...@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough; using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_2_1_f16_instances( void add_device_normalization_fwd_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Pass, 2, 1>>>& std::vector<std::unique_ptr<DeviceNormalizationFwd<F16, F16, F16, F16, F32, Pass, 2, 1>>>&
instances) instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp" #include "normalization_fwd_instance_common.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -10,8 +10,8 @@ namespace instance { ...@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough; using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_2_1_f32_instances( void add_device_normalization_fwd_rank_2_1_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 2, 1>>>& std::vector<std::unique_ptr<DeviceNormalizationFwd<F32, F32, F32, F32, F32, Pass, 2, 1>>>&
instances) instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment