Commit 57b7dca7 authored by Anthony Chang's avatar Anthony Chang
Browse files

layernorm example code & host verification

parent 83fde45b
......@@ -10,9 +10,10 @@
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "tensor_layout.hpp"
#include "device_gemm_xdl_layernorm_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reduction_operator.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
......@@ -25,12 +26,10 @@ using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using CDataType = ck::half_t;
using AccDataType = float;
using ADataType = F16;
using BDataType = F16;
using CDataType = F16;
using AccDataType = F32;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
......@@ -43,16 +42,73 @@ using CElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F32, AElementOp, BElementOp, CElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmLayerNorm_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, AccDataType, AccDataType, AccDataType, AElementOp, BElementOp, CElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on
// D = Layernorm(acc + broadcast(bias)) * broadcast(gamma) + broadcast(beta)
template <typename InDataType, typename OutDataType>
void Layernorm(Tensor<OutDataType>& result,
const Tensor<InDataType>& acc, // MxN
const Tensor<InDataType>& bias, // 1xN
const Tensor<InDataType>& gamma, // 1xN
const Tensor<InDataType>& beta, // 1xN
const InDataType epsilon = 1e-5)
{
assert(acc.mDesc.GetLengths()[1] == bias.mDesc.GetLengths()[0] &&
acc.mDesc.GetLengths()[1] == gamma.mDesc.GetLengths()[0] &&
acc.mDesc.GetLengths()[1] == beta.mDesc.GetLengths()[0]);
size_t M = acc.mDesc.GetLengths()[0];
size_t N = acc.mDesc.GetLengths()[1];
Tensor<InDataType> avg_acc_sq(HostTensorDescriptor(std::vector<size_t>({M})));
Tensor<InDataType> avg_acc(HostTensorDescriptor(std::vector<size_t>({M})));
Tensor<InDataType> acc_layernorm(acc.mDesc);
// add bias
acc_layernorm.ForEach([&](auto& self, auto idx) {
self(idx[0], idx[1]) = acc(idx[0], idx[1]) + bias(idx[1]);
});
// reduce N dim
for(size_t i = 0; i < M; i++)
{
InDataType sum_acc_sq = 0;
InDataType sum_acc = 0;
for(size_t j = 0; j < N; j++)
{
sum_acc_sq += acc_layernorm(i, j) * acc_layernorm(i, j);
sum_acc += acc_layernorm(i, j);
}
avg_acc_sq(i) = sum_acc_sq / N;
avg_acc(i) = sum_acc / N;
// std::cout << "avg_acc_(" << i << ") =" << avg_acc(i) << std::endl;
// std::cout << "avg_acc_sq_(" << i << ") =" << avg_acc_sq(i) << std::endl;
}
// normalize
acc_layernorm.ForEach([&](auto& self, auto idx) {
self(idx[0], idx[1]) =
(self(idx[0], idx[1]) - avg_acc(idx[0])) /
sqrt(avg_acc_sq(idx[0]) - avg_acc(idx[0]) * avg_acc(idx[0]) + epsilon);
});
// affine
acc_layernorm.ForEach([&](auto& self, auto idx) {
self(idx[0], idx[1]) = self(idx[0], idx[1]) * gamma(idx[1]) + beta(idx[1]);
});
// cast
result = acc_layernorm.template CopyAsType<OutDataType>();
}
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AElementOp, BElementOp, CElementOp>;
ReferenceGemm<ADataType, BDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
int main(int argc, char* argv[])
{
......@@ -62,14 +118,18 @@ int main(int argc, char* argv[])
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t N = 128;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
ck::index_t StrideC = 128;
if(argc == 4)
if(argc == 1)
{
// do nothing
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
......@@ -116,10 +176,17 @@ int main(int argc, char* argv[])
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<AccDataType> acc_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<AccDataType> c0_n_bias(HostTensorDescriptor(std::vector<size_t>({size_t(N)})));
Tensor<AccDataType> c0_n_gamma(HostTensorDescriptor(std::vector<size_t>({size_t(N)})));
Tensor<AccDataType> c0_n_beta(HostTensorDescriptor(std::vector<size_t>({size_t(N)})));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "c0_n_bias: " << c0_n_bias.mDesc << std::endl;
std::cout << "c0_n_gamma: " << c0_n_gamma.mDesc << std::endl;
std::cout << "c0_n_beta: " << c0_n_beta.mDesc << std::endl;
switch(init_method)
{
......@@ -137,12 +204,25 @@ int main(int argc, char* argv[])
b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
}
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
// TODO ANT: test other init
c_m_n_host_result.GenerateTensorValue(GeneratorTensor_1<CDataType>{0});
acc_m_n_host_result.GenerateTensorValue(GeneratorTensor_1<AccDataType>{0});
c0_n_bias.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
c0_n_gamma.GenerateTensorValue(GeneratorTensor_1<AccDataType>{2});
c0_n_beta.GenerateTensorValue(GeneratorTensor_1<AccDataType>{2});
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
DeviceMem c0_bias_buf(sizeof(AccDataType) * c0_n_bias.mDesc.GetElementSpace());
DeviceMem c0_gamma_buf(sizeof(AccDataType) * c0_n_gamma.mDesc.GetElementSpace());
DeviceMem c0_beta_buf(sizeof(AccDataType) * c0_n_beta.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
c0_bias_buf.ToDevice(c0_n_bias.mData.data());
c0_gamma_buf.ToDevice(c0_n_gamma.mData.data());
c0_beta_buf.ToDevice(c0_n_beta.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
......@@ -151,9 +231,12 @@ int main(int argc, char* argv[])
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<AccDataType*>(c0_bias_buf.GetDeviceBuffer()),
static_cast<AccDataType*>(c0_gamma_buf.GetDeviceBuffer()),
static_cast<AccDataType*>(c0_beta_buf.GetDeviceBuffer()),
M,
N,
K,
......@@ -184,20 +267,31 @@ int main(int argc, char* argv[])
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
bool pass = true;
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
a_m_k, b_k_n, acc_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1;
}
Layernorm(c_m_n_host_result, acc_m_n_host_result, c0_n_bias, c0_n_gamma, c0_n_beta);
return 0;
pass &= ck::utils::check_err(
c_m_n_device_result.mData, c_m_n_host_result.mData, "Error: Incorrect results c");
// if (!pass)
// {
// LogRangeAsType<float>(std::cout << "c_host: ", c_m_n_host_result.mData, ",")
// << std::endl;
// LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
// << std::endl;
// }
}
return pass ? 0 : 1;
}
......@@ -212,6 +212,40 @@ struct Tensor
Tensor(const HostTensorDescriptor& desc) : mDesc(desc), mData(mDesc.GetElementSpace()) {}
template <typename OutT>
Tensor<OutT> CopyAsType()
{
Tensor<OutT> ret(mDesc);
for(size_t i = 0; i < mData.size(); i++)
{
ret.mData[i] = static_cast<OutT>(mData[i]);
}
return ret;
}
template <typename F>
void ForEach_impl(F&& f, std::vector<size_t>& idx, size_t rank)
{
if(rank == mDesc.GetNumOfDimension())
{
f(*this, idx);
return;
}
// else
for(size_t i = 0; i < mDesc.GetLengths()[rank]; i++)
{
idx[rank] = i;
ForEach_impl(std::forward<F>(f), idx, rank + 1);
}
}
template <typename F>
void ForEach(F&& f)
{
std::vector<size_t> idx(mDesc.GetNumOfDimension(), 0);
ForEach_impl(std::forward<F>(f), idx, size_t(0));
}
template <typename G>
void GenerateTensorValue(G g, std::size_t num_thread = 1)
{
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment