Commit 577417f4 authored by rocking's avatar rocking
Browse files

Add normalize device op (not implement invoker::run())

parent aebdc4b2
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// Input: x, E[x], E[x^2], Gamma, Beta
// Output: {[(x - E[x]) / sqrt(E[x^2] - E[x]^2 + epsilon)] * gamma} + beta
template <typename XDataType,
typename MeanDataType,
typename MeanSquareDataType,
typename GammaDataType,
typename BetaDataType,
typename OutDataType,
typename ComputeDataType,
typename OutElementwiseFunctor,
index_t Dim,
index_t M0PerThread,
index_t XScalarPerVector = M0PerThread,
index_t MeanScalarPerVector = M0PerThread,
index_t MeanSquareScalarPerVector = M0PerThread,
index_t GammaScalarPerVector = M0PerThread,
index_t BetaScalarPerVector = M0PerThread>
struct DeviceNormalize_Xdl_CShuffle : public BaseOperator
{
static constexpr auto I0 = Number<0>{};
template <typename Desc_M0>
static auto PadDescriptor_M0_1d(Desc_M0 desc_m0, index_t gridSize, index_t blockSize)
{
const auto m0 = desc_m0.GetLength(I0);
const index_t loop_step = gridSize * blockSize * M0PerThread;
const auto pad = math::integer_least_multiple(m0, loop_step) - m0;
const auto desc_m0_pad =
transform_tensor_descriptor(desc_m0,
make_tuple(make_right_pad_transform(m0, pad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return desc_m0_pad;
}
static auto MakeDescriptor_M0(const std::vector<index_t>& shape,
const std::vector<index_t>& stride,
index_t gridSize,
index_t blockSize)
{
auto tupleOfShape = generate_tuple([&](auto I) { return shape[I]; }, Number<Dim>{});
auto tupleOfStride = generate_tuple([&](auto I) { return stride[I]; }, Number<Dim>{});
// nd desc - [s0, s1, s2, ...]
const auto desc = make_naive_tensor_descriptor(tupleOfShape, tupleOfStride);
// merge nd to 1d desc - [s0 * s1 * ...]
if constexpr(Dim > 1)
{
const auto desc_m0 = transform_tensor_descriptor(
desc,
make_tuple(make_merge_transform(tupleOfShape)),
make_tuple(generate_sequence_v2([&](auto I) { return I; }, Number<Dim>{})),
make_tuple(Sequence<0>{}));
return PadDescriptor_M0_1d(desc_m0, gridSize, blockSize);
}
else
return PadDescriptor_M0_1d(desc, gridSize, blockSize);
}
using GridDesc_M0 = decltype(MakeDescriptor_M0({1, 1}, {1, 1}, 1, 1));
struct Argument : public BaseArgument
{
Argument(const XDataType* p_x,
const MeanDataType* p_mean,
const MeanSquareDataType* p_mean_square,
const GammaDataType* p_gamma,
const BetaDataType* p_beta,
OutDataType* p_output,
MeanSquareDataType epsilon,
const std::vector<index_t>& shape,
const std::vector<index_t>& stride_x,
const std::vector<index_t>& stride_mean,
const std::vector<index_t>& stride_mean_square,
const std::vector<index_t>& stride_gamma,
const std::vector<index_t>& stride_beta,
const std::vector<index_t>& stride_output,
OutElementwiseFunctor functor)
: p_x_(p_x),
p_mean_(p_mean),
p_mean_square_(p_mean_square),
p_gamma_(p_gamma),
p_beta_(p_beta),
p_output_(p_output),
epsilon_(epsilon),
shape_(shape),
stride_x_(stride_x),
stride_mean_(stride_mean),
stride_mean_square_(stride_mean_square),
stride_gamma_(stride_gamma),
stride_beta_(stride_beta),
functor_(functor),
blockSize_(256),
gridSize_(120) // FIXME - Calculate the grid size by number of CU in the future
{
x_grid_desc_m0_ = MakeDescriptor_M0(shape, stride_x, gridSize_, blockSize_);
mean_grid_desc_m0_ = MakeDescriptor_M0(shape, stride_mean, gridSize_, blockSize_);
mean_square_grid_desc_m0_ =
MakeDescriptor_M0(shape, stride_mean_square, gridSize_, blockSize_);
gamma_grid_desc_m0_ = MakeDescriptor_M0(shape, stride_gamma, gridSize_, blockSize_);
beta_grid_desc_m0_ = MakeDescriptor_M0(shape, stride_beta, gridSize_, blockSize_);
output_grid_desc_m0_ = MakeDescriptor_M0(shape, stride_output, gridSize_, blockSize_);
}
const XDataType* p_x_;
const MeanDataType* p_mean_;
const MeanSquareDataType* p_mean_square_;
const GammaDataType* p_gamma_;
const BetaDataType* p_beta_;
OutDataType* p_output_;
MeanSquareDataType epsilon_;
std::vector<index_t> shape_;
GridDesc_M0 x_grid_desc_m0_;
GridDesc_M0 mean_grid_desc_m0_;
GridDesc_M0 mean_square_grid_desc_m0_;
GridDesc_M0 gamma_grid_desc_m0_;
GridDesc_M0 beta_grid_desc_m0_;
GridDesc_M0 output_grid_desc_m0_;
std::vector<index_t> stride_x_;
std::vector<index_t> stride_mean_;
std::vector<index_t> stride_mean_square_;
std::vector<index_t> stride_gamma_;
std::vector<index_t> stride_beta_;
OutElementwiseFunctor functor_;
index_t blockSize_;
index_t gridSize_;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
// TODO
(void)arg;
(void)stream_config;
return 0;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
bool IsScalarPerVectorValid(bool broadcastOnFastest, int scalarPerVector)
{
bool ret = true;
if(broadcastOnFastest)
ret = scalarPerVector == 1;
else
ret = M0PerThread % scalarPerVector == 0;
return ret;
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* pArg = dynamic_cast<const Argument*>(p_arg);
if(pArg == nullptr)
return false;
if(pArg->shape_.back() % M0PerThread != 0)
return false;
if(!IsScalarPerVectorValid(pArg->stride_x_.back() == 0, XScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->stride_mean_.back() == 0, MeanScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->stride_mean_square_.back() == 0,
MeanSquareScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->stride_gamma_.back() == 0, GammaScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->stride_beta_.back() == 0, BetaScalarPerVector))
return false;
};
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment