Commit 55927aaf authored by myamlak's avatar myamlak
Browse files

Example added

parent 674f74ad
......@@ -11,10 +11,272 @@
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_cgemm.hpp"
#include "gemm_specialization.hpp"
// stub only
int main() { return 0; }
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = BF16;
using BDataType = BF16;
using CDataType = BF16;
using AccDataType = F32;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_CShuffle
<ALayout, // typename ALayout
BLayout, // typename BLayout
CLayout, // typename CLayout
ADataType, // typename ADataType
BDataType, // typename BDataType
CDataType, // typename CDataType
AccDataType, // typename GemmAccDataType
CDataType, // typename CShuffleDataType
PassThrough, // typename AElementwiseOperation
PassThrough, // typename BElementwiseOperation
PassThrough, // typename CElementwiseOperation
GemmDefault, // GemmSpecialization GemmSpec
1, // index_t NumGemmKPrefetchStage
256, // index_t BlockSize
256, // index_t MPerBlock
128, // index_t NPerBlock
32, // index_t KPerBlock
8, // index_t AK1
8, // index_t BK1
32, // index_t MPerXDL
32, // index_t NPerXDL
4, // index_t MXdlPerWave
2, // index_t NXdlPerWave
S<4, 64, 1>, // typename ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // typename ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // typename ABlockTransferSrcAccessOrder
2, // index_t ABlockTransferSrcVectorDim
8, // index_t ABlockTransferSrcScalarPerVector
8, // index_t ABlockTransferDstScalarPerVector_AK1
1, // index_t ABlockLdsExtraM
S<4, 64, 1>, // typename BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // typename BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // typename BBlockTransferSrcAccessOrder
2, // index_t BBlockTransferSrcVectorDim
8, // index_t BBlockTransferSrcScalarPerVector
8, // index_t BBlockTransferDstScalarPerVector_BK1
1, // index_t BBlockLdsExtraN
1, // index_t CShuffleMXdlPerWavePerShuffle
1, // index_t CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
using ReferenceCGemmInstance = ck::tensor_operation::host::
ReferenceCGemm<float, float, float, PassThrough, PassThrough, PassThrough>;
int main(int argc, char* argv[])
{
bool do_verification = 0;
int init_method = 0;
int nrepeat = 5;
// CGEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: run kernel # of times (>1)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k_real(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<ADataType> a_m_k_imag(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n_real(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<BDataType> b_k_n_imag(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_real_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_imag_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> aux(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k_real: " << a_m_k_real.mDesc << std::endl;
std::cout << "a_m_k_imag: " << a_m_k_imag.mDesc << std::endl;
std::cout << "b_k_n_real: " << b_k_n_real.mDesc << std::endl;
std::cout << "b_k_n_imag: " << b_k_n_imag.mDesc << std::endl;
std::cout << "c_m_n_real: " << c_m_n_real_device_result.mDesc << std::endl;
std::cout << "c_m_n_imag: " << c_m_n_imag_device_result.mDesc << std::endl;
std::cout << "aux: " << aux.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k_real.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
a_m_k_imag.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n_real.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
b_k_n_imag.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_m_k_real.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
a_m_k_imag.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n_real.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
b_k_n_imag.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
}
DeviceMem a_m_k_real_device_buf(sizeof(ADataType) * a_m_k_real.mDesc.GetElementSpace());
DeviceMem a_m_k_imag_device_buf(sizeof(ADataType) * a_m_k_imag.mDesc.GetElementSpace());
DeviceMem b_k_n_real_device_buf(sizeof(BDataType) * b_k_n_real.mDesc.GetElementSpace());
DeviceMem b_k_n_imag_device_buf(sizeof(BDataType) * b_k_n_imag.mDesc.GetElementSpace());
DeviceMem c_m_n_real_device_buf(sizeof(CDataType) *
c_m_n_real_device_result.mDesc.GetElementSpace());
DeviceMem c_m_n_imag_device_buf(sizeof(CDataType) *
c_m_n_imag_device_result.mDesc.GetElementSpace());
DeviceMem aux_device_buf(sizeof(CDataType) * aux.mDesc.GetElementSpace());
a_m_k_real_device_buf.ToDevice(a_m_k_real.mData.data());
a_m_k_imag_device_buf.ToDevice(a_m_k_imag.mData.data());
b_k_n_real_device_buf.ToDevice(b_k_n_real.mData.data());
b_k_n_imag_device_buf.ToDevice(b_k_n_imag.mData.data());
auto a_element_op = PassThrough{};
auto b_element_op = PassThrough{};
auto c_element_op = PassThrough{};
// do GEMM
auto cgemm = DeviceCGemmInstance{};
auto invoker = cgemm.MakeInvoker();
auto argument =
cgemm.MakeArgument(static_cast<ADataType*>(a_m_k_real_device_buf.GetDeviceBuffer()),
static_cast<ADataType*>(a_m_k_imag_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_real_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_imag_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_real_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_imag_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(aux_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
if(!cgemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_cgemm with the specified compilation parameters does "
"not support this CGEMM problem");
}
float ave_time = invoker.Run(argument, nrepeat);
std::size_t flop = std::size_t(8) * M * N * K;
std::size_t num_btype = std::size_t(2) * sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< cgemm.GetTypeString() << std::endl;
c_m_n_real_device_buf.FromDevice(c_m_n_real_device_result.mData.data());
c_m_n_imag_device_buf.FromDevice(c_m_n_imag_device_result.mData.data());
if(do_verification)
{
Tensor<float> a_f32_m_k_real(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<float> a_f32_m_k_imag(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<float> b_f32_k_n_real(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<float> b_f32_k_n_imag(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<float> c_m_n_real_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<float> c_m_n_imag_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<float> c_m_n_real_device_f32_result(
f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<float> c_m_n_imag_device_f32_result(
f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
bf16_to_f32_(a_m_k_real, a_f32_m_k_real);
bf16_to_f32_(a_m_k_imag, a_f32_m_k_imag);
bf16_to_f32_(b_k_n_real, b_f32_k_n_real);
bf16_to_f32_(b_k_n_imag, b_f32_k_n_imag);
bf16_to_f32_(c_m_n_real_device_result, c_m_n_real_device_f32_result);
bf16_to_f32_(c_m_n_imag_device_result, c_m_n_imag_device_f32_result);
auto ref_cgemm = ReferenceCGemmInstance{};
auto ref_invoker = ref_cgemm.MakeInvoker();
auto ref_argument = ref_cgemm.MakeArgument(a_f32_m_k_real,
a_f32_m_k_imag,
b_f32_k_n_real,
b_f32_k_n_imag,
c_m_n_real_host_result,
c_m_n_imag_host_result,
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
ck::utils::check_err(c_m_n_real_device_f32_result.mData, c_m_n_real_host_result.mData);
ck::utils::check_err(c_m_n_imag_device_f32_result.mData, c_m_n_imag_host_result.mData);
}
return 0;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment