Unverified Commit 53ea4713 authored by Qianfeng's avatar Qianfeng Committed by GitHub
Browse files

Batchnorm-forward and Batchnorm-infer Implemented using generic kernels (#320)

* Implement multiple-reduction in one kernel (kernels, device ops, examples)

* Add generic elementwise kernel and device interface

* Add generator for normal-distributed data initialization

* Add host refer implementation of batchnorm-forward and batchnorm-infer

* Add examples for implementing batchnorm-forward and batchnorm-infer using generic kernels

* Remove un-needed including in batchnorm example

* Renaming generic_elementwise to elementiwise in kernel and device classes/functions

* Change in gemm_layernorm examples to use DeviceElementwise instead of Device5AryElementwise

* Change in exampe 19_binary_elementwise to use DeviceElementwise instead of DeviceBinaryElementwise

* Change in device_cgemm_4gemm_xdl_cshuffle.hpp to use kernel_elementwise instead of kernel_binary_elementwise

* Add DeviceElementwiseBase and use it in device_normalize_instance.cpp

* Removing and renaming files

* Update to synchronize gemm_layernorm client example to the generic element-wise device op API

* Update to synchronize with the latest headers directory and HostTensorDescriptor interface renaming

* Merge two static member functions in device_elementwise.hpp

* Remove unary_elementwise_1d kernel and device
parent 5ee30459
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <vector>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_5ary_Elementwise_1d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename DDataType,
typename EDataType,
typename FDataType,
typename ComputeDataType,
typename ElementwiseFunctor,
index_t NDim,
index_t MPerThread,
index_t AScalarPerVector,
index_t BScalarPerVector,
index_t CScalarPerVector,
index_t DScalarPerVector,
index_t EScalarPerVector,
index_t FScalarPerVector>
struct Device5AryElementwise : public DeviceElementwise<5, 1, NDim, ElementwiseFunctor>
{
static constexpr auto I0 = Number<0>{};
template <typename Desc_M>
static auto PadDescriptor_M_1d(Desc_M desc_m, index_t gridSize, index_t blockSize)
{
const auto m = desc_m.GetLength(I0);
const index_t loop_step = gridSize * blockSize * MPerThread;
const auto pad = math::integer_least_multiple(m, loop_step) - m;
const auto desc_m_pad =
transform_tensor_descriptor(desc_m,
make_tuple(make_right_pad_transform(m, pad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return desc_m_pad;
}
static auto MakeDescriptor_M(const std::vector<index_t>& lengths,
const std::vector<index_t>& stride,
index_t gridSize,
index_t blockSize)
{
auto tupleOfShape = generate_tuple([&](auto I) { return lengths[I]; }, Number<NDim>{});
auto tupleOfStride = generate_tuple([&](auto I) { return stride[I]; }, Number<NDim>{});
// nd desc - [s0, s1, s2, ...]
const auto desc = make_naive_tensor_descriptor(tupleOfShape, tupleOfStride);
// merge nd to 1d desc - [s0 * s1 * ...]
if constexpr(NDim > 1)
{
const auto desc_m = transform_tensor_descriptor(
desc,
make_tuple(make_merge_transform(tupleOfShape)),
make_tuple(generate_sequence_v2([&](auto I) { return I; }, Number<NDim>{})),
make_tuple(Sequence<0>{}));
return PadDescriptor_M_1d(desc_m, gridSize, blockSize);
}
else
return PadDescriptor_M_1d(desc, gridSize, blockSize);
}
using AGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using BGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using CGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using DGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using EGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using FGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using Gridwise5AryEltwise = Gridwise5AryElementwise_1D<ADataType,
BDataType,
CDataType,
DDataType,
EDataType,
FDataType,
ComputeDataType,
AGridDesc_M,
BGridDesc_M,
CGridDesc_M,
DGridDesc_M,
EGridDesc_M,
FGridDesc_M,
ElementwiseFunctor,
MPerThread,
AScalarPerVector,
BScalarPerVector,
CScalarPerVector,
DScalarPerVector,
EScalarPerVector,
FScalarPerVector>;
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a,
const BDataType* p_b,
const CDataType* p_c,
const DDataType* p_d,
const EDataType* p_e,
FDataType* p_f,
const std::vector<index_t>& lengths,
const std::vector<index_t>& a_strides,
const std::vector<index_t>& b_strides,
const std::vector<index_t>& c_strides,
const std::vector<index_t>& d_strides,
const std::vector<index_t>& e_strides,
const std::vector<index_t>& f_strides,
ElementwiseFunctor functor)
: p_a_(p_a),
p_b_(p_b),
p_c_(p_c),
p_d_(p_d),
p_e_(p_e),
p_f_(p_f),
lengths_(lengths),
a_strides_(a_strides),
b_strides_(b_strides),
c_strides_(c_strides),
d_strides_(d_strides),
e_strides_(e_strides),
f_strides_(f_strides),
functor_(functor),
blockSize_(256),
gridSize_(120) // FIXME - Calculate the grid size by number of CU in the future
{
a_grid_desc_m_ = MakeDescriptor_M(lengths, a_strides, gridSize_, blockSize_);
b_grid_desc_m_ = MakeDescriptor_M(lengths, b_strides, gridSize_, blockSize_);
c_grid_desc_m_ = MakeDescriptor_M(lengths, c_strides, gridSize_, blockSize_);
d_grid_desc_m_ = MakeDescriptor_M(lengths, d_strides, gridSize_, blockSize_);
e_grid_desc_m_ = MakeDescriptor_M(lengths, e_strides, gridSize_, blockSize_);
f_grid_desc_m_ = MakeDescriptor_M(lengths, f_strides, gridSize_, blockSize_);
}
const ADataType* p_a_;
const BDataType* p_b_;
const CDataType* p_c_;
const DDataType* p_d_;
const EDataType* p_e_;
FDataType* p_f_;
std::vector<index_t> lengths_;
AGridDesc_M a_grid_desc_m_;
BGridDesc_M b_grid_desc_m_;
CGridDesc_M c_grid_desc_m_;
DGridDesc_M d_grid_desc_m_;
EGridDesc_M e_grid_desc_m_;
FGridDesc_M f_grid_desc_m_;
std::vector<index_t> a_strides_;
std::vector<index_t> b_strides_;
std::vector<index_t> c_strides_;
std::vector<index_t> d_strides_;
std::vector<index_t> e_strides_;
std::vector<index_t> f_strides_;
ElementwiseFunctor functor_;
index_t blockSize_;
index_t gridSize_;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const auto kernel = kernel_5ary_elementwise_1d<Gridwise5AryEltwise,
ADataType,
BDataType,
CDataType,
DDataType,
EDataType,
FDataType,
AGridDesc_M,
BGridDesc_M,
CGridDesc_M,
DGridDesc_M,
EGridDesc_M,
FGridDesc_M,
ElementwiseFunctor>;
float elapsed_time = launch_and_time_kernel(stream_config,
kernel,
dim3(arg.gridSize_),
dim3(arg.blockSize_),
0,
arg.p_a_,
arg.p_b_,
arg.p_c_,
arg.p_d_,
arg.p_e_,
arg.p_f_,
arg.a_grid_desc_m_,
arg.b_grid_desc_m_,
arg.c_grid_desc_m_,
arg.d_grid_desc_m_,
arg.e_grid_desc_m_,
arg.f_grid_desc_m_,
arg.functor_);
return elapsed_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
bool IsSupportedArgument(const BaseArgument& p_arg) { return IsSupportedArgument(&p_arg); }
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* pArg = dynamic_cast<const Argument*>(p_arg);
if(pArg == nullptr)
return false;
if(pArg->lengths_.size() != NDim)
return false;
if(pArg->lengths_.back() % MPerThread != 0)
return false;
auto IsScalarPerVectorValid = [](bool isLastDimensionCoalesced, int scalarPerVector) {
bool ret = true;
if(!isLastDimensionCoalesced)
ret = scalarPerVector == 1;
else
ret = MPerThread % scalarPerVector == 0;
return ret;
};
if(!IsScalarPerVectorValid(pArg->a_strides_.back() == 1, AScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->b_strides_.back() == 1, BScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->c_strides_.back() == 1, CScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->d_strides_.back() == 1, DScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->e_strides_.back() == 1, EScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->f_strides_.back() == 1, FScalarPerVector))
return false;
return true;
};
static auto MakeArgument(std::array<const void*, 5> p_inputs,
std::array<void*, 1> p_outputs,
std::vector<index_t> lengths,
std::vector<index_t> a_strides,
std::vector<index_t> b_strides,
std::vector<index_t> c_strides,
std::vector<index_t> d_strides,
std::vector<index_t> e_strides,
std::vector<index_t> f_strides,
ElementwiseFunctor functor)
{
return Argument{static_cast<const ADataType*>(p_inputs[0]),
static_cast<const BDataType*>(p_inputs[1]),
static_cast<const CDataType*>(p_inputs[2]),
static_cast<const DDataType*>(p_inputs[3]),
static_cast<const EDataType*>(p_inputs[4]),
static_cast<FDataType*>(p_outputs[0]),
lengths,
a_strides,
b_strides,
c_strides,
d_strides,
e_strides,
f_strides,
functor};
}
std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::array<const void*, 5> p_inputs,
std::array<void*, 1> p_outputs,
std::vector<index_t> lengths,
std::vector<std::vector<index_t>> input_strides,
std::vector<std::vector<index_t>> output_strides,
ElementwiseFunctor functor) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_inputs[0]),
static_cast<const BDataType*>(p_inputs[1]),
static_cast<const CDataType*>(p_inputs[2]),
static_cast<const DDataType*>(p_inputs[3]),
static_cast<const EDataType*>(p_inputs[4]),
static_cast<FDataType*>(p_outputs[0]),
lengths,
input_strides[0],
input_strides[1],
input_strides[2],
input_strides[3],
input_strides[4],
output_strides[0],
functor);
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "Device5aryElementwise"
<< "<"
<< "NDim = " << NDim
<< "MPerThread = " << MPerThread
<< "AScalarPerVector = " << AScalarPerVector
<< "BScalarPerVector = " << BScalarPerVector
<< "CScalarPerVector = " << CScalarPerVector
<< "DScalarPerVector = " << DScalarPerVector
<< "EScalarPerVector = " << EScalarPerVector
<< "FScalarPerVector = " << FScalarPerVector
<< ">";
// clang-format on
return str.str();
}
}; // namespace device
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <index_t Rank, index_t NumBatchNormReduceDim>
struct DeviceBatchNormFwd : public BaseOperator
{
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(
const std::array<index_t, Rank> xyLengths,
const std::array<index_t, Rank> xStrides,
const std::array<index_t, Rank> yStrides,
const std::array<index_t, Rank - NumBatchNormReduceDim> bnScaleBiasMeanVarLengths,
const std::array<index_t, Rank - NumBatchNormReduceDim> bnScaleBiasMeanVarStrides,
const void* p_x,
const void* bnScale,
const void* bnBias,
void* p_y,
double exponentialAverageFactor,
void* resultRunningMean,
void* resultRunningVariance,
double epsilon,
void* resultSaveMean,
void* resultSaveInvVariance) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <index_t Rank, index_t NumBatchNormReduceDim>
using DeviceBatchNormFwdPtr = std::unique_ptr<DeviceBatchNormFwd<Rank, NumBatchNormReduceDim>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <index_t Rank, index_t NumBatchNormReduceDim>
struct DeviceBatchNormInfer : public BaseOperator
{
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(
const std::array<index_t, Rank> xyLengths,
const std::array<index_t, Rank> xStrides,
const std::array<index_t, Rank> yStrides,
const std::array<index_t, Rank - NumBatchNormReduceDim> bnScaleBiasMeanVarLengths,
const std::array<index_t, Rank - NumBatchNormReduceDim> bnScaleBiasMeanVarStrides,
const void* p_x,
const void* bnScale,
const void* bnBias,
double epsilon,
const void* estimatedMean,
const void* estimatedInvVariance,
void* p_y) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <index_t Rank, index_t NumBatchNormReduceDim>
using DeviceBatchNormInferPtr = std::unique_ptr<DeviceBatchNormInfer<Rank, NumBatchNormReduceDim>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_binary_elementwise_1d.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ComputeDataType,
typename ElementwiseFunctor,
index_t NDim,
index_t MPerThread,
index_t AScalarPerVector,
index_t BScalarPerVector,
index_t CScalarPerVector>
struct DeviceBinaryElementwise : public DeviceElementwise<2, 1, NDim, ElementwiseFunctor>
{
static constexpr auto I0 = Number<0>{};
template <typename Desc_M>
static auto PadDescriptor_M_1d(Desc_M desc_m, index_t gridSize, index_t blockSize)
{
const auto M = desc_m.GetLength(I0);
const index_t loop_step = gridSize * blockSize * MPerThread;
const auto pad = math::integer_least_multiple(M, loop_step) - M;
const auto desc_m_pad =
transform_tensor_descriptor(desc_m,
make_tuple(make_right_pad_transform(M, pad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return desc_m_pad;
}
static auto MakeDescriptor_M(const std::vector<index_t>& lengths,
const std::vector<index_t>& strides,
index_t gridSize,
index_t blockSize)
{
auto tupleOfShape = generate_tuple([&](auto I) { return lengths[I]; }, Number<NDim>{});
auto tupleOfStride = generate_tuple([&](auto I) { return strides[I]; }, Number<NDim>{});
// nd desc - [s0, s1, s2, ...]
const auto desc = make_naive_tensor_descriptor(tupleOfShape, tupleOfStride);
// merge nd to 1d desc - [s0 * s1 * ...]
if constexpr(NDim > 1)
{
const auto desc_m = transform_tensor_descriptor(
desc,
make_tuple(make_merge_transform(tupleOfShape)),
make_tuple(generate_sequence_v2([&](auto I) { return I; }, Number<NDim>{})),
make_tuple(Sequence<0>{}));
return PadDescriptor_M_1d(desc_m, gridSize, blockSize);
}
else
return PadDescriptor_M_1d(desc, gridSize, blockSize);
}
using AGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using BGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using CGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using GridwiseBinEltwise = GridwiseBinaryElementwise_1D<ADataType,
BDataType,
CDataType,
ComputeDataType,
AGridDesc_M,
BGridDesc_M,
CGridDesc_M,
ElementwiseFunctor,
MPerThread,
AScalarPerVector,
BScalarPerVector,
CScalarPerVector>;
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
const std::vector<index_t>& lengths,
const std::vector<index_t>& a_strides,
const std::vector<index_t>& b_strides,
const std::vector<index_t>& c_strides,
ElementwiseFunctor functor)
: p_a_(p_a),
p_b_(p_b),
p_c_(p_c),
lengths_(lengths),
a_strides_(a_strides),
b_strides_(b_strides),
c_strides_(c_strides),
functor_(functor),
blockSize_(256),
gridSize_(120) // FIXME - Calculate the grid size by number of CU in the future
{
a_grid_desc_m_ = MakeDescriptor_M(lengths, a_strides, gridSize_, blockSize_);
b_grid_desc_m_ = MakeDescriptor_M(lengths, b_strides, gridSize_, blockSize_);
c_grid_desc_m_ = MakeDescriptor_M(lengths, c_strides, gridSize_, blockSize_);
}
const ADataType* p_a_;
const BDataType* p_b_;
CDataType* p_c_;
std::vector<int> lengths_;
AGridDesc_M a_grid_desc_m_;
BGridDesc_M b_grid_desc_m_;
CGridDesc_M c_grid_desc_m_;
std::vector<index_t> a_strides_;
std::vector<index_t> b_strides_;
std::vector<index_t> c_strides_;
ElementwiseFunctor functor_;
index_t blockSize_;
index_t gridSize_;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const auto kernel = kernel_binary_elementwise_1d<GridwiseBinEltwise,
ADataType,
BDataType,
CDataType,
AGridDesc_M,
BGridDesc_M,
CGridDesc_M,
ElementwiseFunctor>;
float elapsed_time = launch_and_time_kernel(stream_config,
kernel,
dim3(arg.gridSize_),
dim3(arg.blockSize_),
0,
arg.p_a_,
arg.p_b_,
arg.p_c_,
arg.a_grid_desc_m_,
arg.b_grid_desc_m_,
arg.c_grid_desc_m_,
arg.functor_);
return elapsed_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* pArg = dynamic_cast<const Argument*>(p_arg);
if(pArg == nullptr)
return false;
if(pArg->lengths_.size() != NDim)
return false;
if(pArg->lengths_.back() % MPerThread != 0)
return false;
auto IsScalarPerVectorValid = [](bool isLastDimensionCoalesced, int scalarPerVector) {
bool ret = true;
if(!isLastDimensionCoalesced)
ret = scalarPerVector == 1;
else
ret = MPerThread % scalarPerVector == 0;
return ret;
};
if(!IsScalarPerVectorValid(pArg->a_strides_.back() == 1, AScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->b_strides_.back() == 1, BScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->c_strides_.back() == 1, CScalarPerVector))
return false;
return true;
};
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::array<const void*, 2> p_inputs,
std::array<void*, 1> p_outputs,
std::vector<index_t> lengths,
std::vector<std::vector<index_t>> input_strides,
std::vector<std::vector<index_t>> output_strides,
ElementwiseFunctor functor) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_inputs[0]),
static_cast<const BDataType*>(p_inputs[1]),
static_cast<CDataType*>(p_outputs[0]),
lengths,
input_strides[0],
input_strides[1],
output_strides[0],
functor);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceBinaryElementwise"
<< "<"
<< "NDim = " << NDim
<< "MPerThread = " << MPerThread
<< "AScalarPerVector = " << AScalarPerVector
<< "BScalarPerVector = " << BScalarPerVector
<< "CScalarPerVector = " << CScalarPerVector
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
#include "ck/tensor_operation/gpu/device/device_cgemm.hpp" #include "ck/tensor_operation/gpu/device/device_cgemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_binary_elementwise_1d.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_elementwise_1d.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/host_utility/device_prop.hpp" #include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp" #include "ck/host_utility/kernel_launch.hpp"
...@@ -540,45 +540,40 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle ...@@ -540,45 +540,40 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
using Add = ck::tensor_operation::element_wise::Add; using Add = ck::tensor_operation::element_wise::Add;
using Subtract = ck::tensor_operation::element_wise::Subtract; using Subtract = ck::tensor_operation::element_wise::Subtract;
using GridwiseBinAdd = GridwiseBinaryElementwise_1D<CDataType,
CDataType, using GridwiseBinAdd =
CDataType, GridwiseElementwise_1D<Tuple<CGridDesc_M, CGridDesc_M>,
CDataType, Tuple<CGridDesc_M>,
CGridDesc_M, Tuple<const CDataType*, const CDataType*>,
CGridDesc_M, Tuple<CDataType*>,
CGridDesc_M,
Add, Add,
MPerThread, MPerThread,
AScalarPerVector, Sequence<AScalarPerVector, BScalarPerVector>,
BScalarPerVector, Sequence<CScalarPerVector>>;
CScalarPerVector>;
using GridwiseBinSubtract = GridwiseBinaryElementwise_1D<CDataType, using GridwiseBinSubtract =
CDataType, GridwiseElementwise_1D<Tuple<CGridDesc_M, CGridDesc_M>,
CDataType, Tuple<CGridDesc_M>,
CDataType, Tuple<const CDataType*, const CDataType*>,
CGridDesc_M, Tuple<CDataType*>,
CGridDesc_M,
CGridDesc_M,
Subtract, Subtract,
MPerThread, MPerThread,
AScalarPerVector, Sequence<AScalarPerVector, BScalarPerVector>,
BScalarPerVector, Sequence<CScalarPerVector>>;
CScalarPerVector>;
const auto add_kernel = kernel_binary_elementwise_1d<GridwiseBinAdd, const auto add_kernel = kernel_elementwise_1d<GridwiseBinAdd,
CDataType, Tuple<CGridDesc_M, CGridDesc_M>,
CDataType, Tuple<CGridDesc_M>,
CDataType, Tuple<const CDataType*, const CDataType*>,
CGridDesc_M, Tuple<CDataType*>,
CGridDesc_M,
CGridDesc_M,
Add>; Add>;
const auto subtract_kernel = kernel_binary_elementwise_1d<GridwiseBinSubtract,
CDataType, const auto subtract_kernel =
CDataType, kernel_elementwise_1d<GridwiseBinSubtract,
CDataType, Tuple<CGridDesc_M, CGridDesc_M>,
CGridDesc_M, Tuple<CGridDesc_M>,
CGridDesc_M, Tuple<const CDataType*, const CDataType*>,
CGridDesc_M, Tuple<CDataType*>,
Subtract>; Subtract>;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K)) if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
...@@ -631,17 +626,17 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle ...@@ -631,17 +626,17 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
arg.block_2_ctile_map_); arg.block_2_ctile_map_);
// c_real = aux - aux_2 // c_real = aux - aux_2
ave_time += launch_and_time_kernel(stream_config, ave_time += launch_and_time_kernel(
stream_config,
subtract_kernel, subtract_kernel,
dim3(grid_size), dim3(grid_size),
dim3(BlockSize), dim3(BlockSize),
0, 0,
arg.p_aux_grid_, make_tuple(arg.c_grid_desc_m_, arg.c_grid_desc_m_),
arg.p_aux_2_grid_, make_tuple(arg.c_grid_desc_m_),
arg.p_c_grid_real_, make_tuple(const_cast<const CDataType*>(arg.p_aux_grid_),
arg.c_grid_desc_m_, const_cast<const CDataType*>(arg.p_aux_2_grid_)),
arg.c_grid_desc_m_, make_tuple(arg.p_c_grid_real_),
arg.c_grid_desc_m_,
Subtract{}); Subtract{});
ave_time += ave_time +=
...@@ -679,17 +674,17 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle ...@@ -679,17 +674,17 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
arg.block_2_ctile_map_); arg.block_2_ctile_map_);
// c_imag = aux + aux_2 // c_imag = aux + aux_2
ave_time += launch_and_time_kernel(stream_config, ave_time += launch_and_time_kernel(
stream_config,
add_kernel, add_kernel,
dim3(grid_size), dim3(grid_size),
dim3(BlockSize), dim3(BlockSize),
0, 0,
arg.p_aux_grid_, make_tuple(arg.c_grid_desc_m_, arg.c_grid_desc_m_),
arg.p_aux_2_grid_, make_tuple(arg.c_grid_desc_m_),
arg.p_c_grid_imag_, make_tuple(const_cast<const CDataType*>(arg.p_aux_grid_),
arg.c_grid_desc_m_, const_cast<const CDataType*>(arg.p_aux_2_grid_)),
arg.c_grid_desc_m_, make_tuple(arg.p_c_grid_imag_),
arg.c_grid_desc_m_,
Add{}); Add{});
} }
else else
...@@ -742,17 +737,17 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle ...@@ -742,17 +737,17 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
arg.block_2_ctile_map_); arg.block_2_ctile_map_);
// c_real = aux - aux_2 // c_real = aux - aux_2
ave_time += launch_and_time_kernel(stream_config, ave_time += launch_and_time_kernel(
stream_config,
subtract_kernel, subtract_kernel,
dim3(grid_size), dim3(grid_size),
dim3(BlockSize), dim3(BlockSize),
0, 0,
arg.p_aux_grid_, make_tuple(arg.c_grid_desc_m_, arg.c_grid_desc_m_),
arg.p_aux_2_grid_, make_tuple(arg.c_grid_desc_m_),
arg.p_c_grid_real_, make_tuple(const_cast<const CDataType*>(arg.p_aux_grid_),
arg.c_grid_desc_m_, const_cast<const CDataType*>(arg.p_aux_2_grid_)),
arg.c_grid_desc_m_, make_tuple(arg.p_c_grid_real_),
arg.c_grid_desc_m_,
Subtract{}); Subtract{});
ave_time += ave_time +=
...@@ -790,17 +785,17 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle ...@@ -790,17 +785,17 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
arg.block_2_ctile_map_); arg.block_2_ctile_map_);
// c_imag = aux + aux_2 // c_imag = aux + aux_2
ave_time += launch_and_time_kernel(stream_config, ave_time += launch_and_time_kernel(
stream_config,
add_kernel, add_kernel,
dim3(grid_size), dim3(grid_size),
dim3(BlockSize), dim3(BlockSize),
0, 0,
arg.p_aux_grid_, make_tuple(arg.c_grid_desc_m_, arg.c_grid_desc_m_),
arg.p_aux_2_grid_, make_tuple(arg.c_grid_desc_m_),
arg.p_c_grid_imag_, make_tuple(const_cast<const CDataType*>(arg.p_aux_grid_),
arg.c_grid_desc_m_, const_cast<const CDataType*>(arg.p_aux_2_grid_)),
arg.c_grid_desc_m_, make_tuple(arg.p_c_grid_imag_),
arg.c_grid_desc_m_,
Add{}); Add{});
} }
......
...@@ -13,7 +13,6 @@ ...@@ -13,7 +13,6 @@
#include "ck/tensor_operation/gpu/device/device_conv_bwd_weight.hpp" #include "ck/tensor_operation/gpu/device/device_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp" #include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_bwd_weight.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_unary_elementwise_1d.hpp"
#include "ck/host_utility/device_prop.hpp" #include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp" #include "ck/host_utility/kernel_launch.hpp"
......
...@@ -13,7 +13,6 @@ ...@@ -13,7 +13,6 @@
#include "ck/tensor_operation/gpu/device/device_conv_bwd_weight.hpp" #include "ck/tensor_operation/gpu/device/device_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp" #include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_bwd_weight.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_unary_elementwise_1d.hpp"
#include "ck/host_utility/device_prop.hpp" #include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp" #include "ck/host_utility/kernel_launch.hpp"
......
...@@ -2,38 +2,286 @@ ...@@ -2,38 +2,286 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
#include <iostream> #include <iostream>
#include <vector> #include <sstream>
#include "ck/utility/math.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise_base.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_1d.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "device_base.hpp" #include "ck/host_utility/kernel_launch.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
template <ck::index_t NumInputTensor, template <typename InDataTypeTuple,
ck::index_t NumOutputTensor, typename OutDataTypeTuple,
index_t NDim, typename ElementwiseOperation,
typename ElementwiseFunctor> index_t NumDim,
struct DeviceElementwise : public BaseOperator index_t MPerThread,
typename InScalarPerVectorSeq,
typename OutScalarPerVectorSeq>
struct DeviceElementwise
: public DeviceElementwiseBase<InDataTypeTuple, OutDataTypeTuple, ElementwiseOperation, NumDim>
{ {
virtual std::unique_ptr<BaseArgument> static constexpr int NumInput = InDataTypeTuple::Size();
MakeArgumentPointer(std::array<const void*, NumInputTensor> p_inputs, static constexpr int NumOutput = OutDataTypeTuple::Size();
std::array<void*, NumOutputTensor> p_outputs,
std::vector<index_t> lengths, static_assert(NumInput == InScalarPerVectorSeq::Size() &&
std::vector<std::vector<index_t>> input_strides, NumOutput == OutScalarPerVectorSeq::Size(),
std::vector<std::vector<index_t>> output_strides, "Tuple size is inconsistent with the number of in/out!");
ElementwiseFunctor functor) = 0;
static auto GenerateInDataTypePointerTuple()
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; {
}; return generate_tuple(
[&](auto I) {
template <ck::index_t NumInputTensor, using DataType = remove_cvref_t<decltype(InDataTypeTuple{}[I])>;
ck::index_t NumOutputTensor,
index_t NDim, return static_cast<const DataType*>(nullptr);
typename ElementwiseFunctor> },
using DeviceElementwisePtr = Number<NumInput>{});
std::unique_ptr<DeviceElementwise<NumInputTensor, NumOutputTensor, NDim, ElementwiseFunctor>>; };
static auto GenerateOutDataTypePointerTuple()
{
return generate_tuple(
[&](auto I) {
using DataType = remove_cvref_t<decltype(OutDataTypeTuple{}[I])>;
return static_cast<DataType*>(nullptr);
},
Number<NumOutput>{});
};
using InDataTypePointerTuple = decltype(GenerateInDataTypePointerTuple());
using OutDataTypePointerTuple = decltype(GenerateOutDataTypePointerTuple());
template <typename Desc_M>
static auto PadDescriptor_M_1d(Desc_M desc_m, index_t gridSize, index_t blockSize)
{
constexpr auto I0 = Number<0>{};
const auto m = desc_m.GetLength(I0);
const index_t loop_step = gridSize * blockSize * MPerThread;
const auto pad = math::integer_least_multiple(m, loop_step) - m;
const auto desc_m_pad =
transform_tensor_descriptor(desc_m,
make_tuple(make_right_pad_transform(m, pad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return desc_m_pad;
}
static auto MakeDescriptor_M(const std::array<index_t, NumDim>& lengths,
const std::array<index_t, NumDim>& stride,
index_t gridSize,
index_t blockSize)
{
auto tupleOfShape = generate_tuple([&](auto I) { return lengths[I]; }, Number<NumDim>{});
auto tupleOfStride = generate_tuple([&](auto I) { return stride[I]; }, Number<NumDim>{});
// nd desc - [s0, s1, s2, ...]
const auto desc = make_naive_tensor_descriptor(tupleOfShape, tupleOfStride);
// merge nd to 1d desc - [s0 * s1 * ...]
if constexpr(NumDim > 1)
{
const auto desc_m = transform_tensor_descriptor(
desc,
make_tuple(make_merge_transform(tupleOfShape)),
make_tuple(generate_sequence_v2([&](auto I) { return I; }, Number<NumDim>{})),
make_tuple(Sequence<0>{}));
return PadDescriptor_M_1d(desc_m, gridSize, blockSize);
}
else
return PadDescriptor_M_1d(desc, gridSize, blockSize);
}
template <index_t TupleSize>
static auto GenerateInOutGrid1dDescTuple(Number<TupleSize>)
{
return generate_tuple(
[&](auto) {
if constexpr(NumDim > 1)
{
return MakeDescriptor_M({1, 1}, {1, 1}, 1, 1);
}
else
{
return MakeDescriptor_M({1}, {1}, 1, 1);
};
},
Number<TupleSize>{});
};
using InGrid1dDescTuple = decltype(GenerateInOutGrid1dDescTuple(Number<NumInput>{}));
using OutGrid1dDescTuple = decltype(GenerateInOutGrid1dDescTuple(Number<NumOutput>{}));
using GridwiseElementwise = GridwiseElementwise_1D<InGrid1dDescTuple,
OutGrid1dDescTuple,
InDataTypePointerTuple,
OutDataTypePointerTuple,
ElementwiseOperation,
MPerThread,
InScalarPerVectorSeq,
OutScalarPerVectorSeq>;
struct Argument : public BaseArgument
{
Argument(const std::array<index_t, NumDim> lengths,
const std::array<std::array<index_t, NumDim>, NumInput> inStridesArray,
const std::array<std::array<index_t, NumDim>, NumOutput> outStridesArray,
const std::array<const void*, NumInput> in_dev_buffers,
const std::array<void*, NumOutput> out_dev_buffers,
ElementwiseOperation elementwise_op)
: lengths_(lengths),
inStridesArray_(inStridesArray),
outStridesArray_(outStridesArray),
elementwise_op_(elementwise_op),
blockSize_(256),
gridSize_(120) // FIXME - Calculate the grid size by number of CU in the future
{
in_dev_buffers_ = generate_tuple(
[&](auto I) {
using DataType = remove_cvref_t<decltype(InDataTypeTuple{}[I])>;
return static_cast<const DataType*>(in_dev_buffers[I.value]);
},
Number<NumInput>{});
out_dev_buffers_ = generate_tuple(
[&](auto I) {
using DataType = remove_cvref_t<decltype(OutDataTypeTuple{}[I])>;
return static_cast<DataType*>(out_dev_buffers[I.value]);
},
Number<NumOutput>{});
in_grid_1d_desc_tuple_ = generate_tuple(
[&](auto I) {
return MakeDescriptor_M(
lengths, inStridesArray[I.value], gridSize_, blockSize_);
},
Number<NumInput>{});
out_grid_1d_desc_tuple_ = generate_tuple(
[&](auto I) {
return MakeDescriptor_M(
lengths, outStridesArray[I.value], gridSize_, blockSize_);
},
Number<NumOutput>{});
}
InDataTypePointerTuple in_dev_buffers_;
OutDataTypePointerTuple out_dev_buffers_;
InGrid1dDescTuple in_grid_1d_desc_tuple_;
OutGrid1dDescTuple out_grid_1d_desc_tuple_;
std::array<index_t, NumDim> lengths_;
std::array<std::array<index_t, NumDim>, NumInput> inStridesArray_;
std::array<std::array<index_t, NumDim>, NumOutput> outStridesArray_;
ElementwiseOperation elementwise_op_;
index_t blockSize_;
index_t gridSize_;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const auto kernel = kernel_elementwise_1d<GridwiseElementwise,
InGrid1dDescTuple,
OutGrid1dDescTuple,
InDataTypePointerTuple,
OutDataTypePointerTuple,
ElementwiseOperation>;
float elapsed_time = launch_and_time_kernel(stream_config,
kernel,
dim3(arg.gridSize_),
dim3(arg.blockSize_),
0,
arg.in_grid_1d_desc_tuple_,
arg.out_grid_1d_desc_tuple_,
arg.in_dev_buffers_,
arg.out_dev_buffers_,
arg.elementwise_op_);
return elapsed_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* pArg = dynamic_cast<const Argument*>(p_arg);
if(pArg == nullptr)
return false;
if(pArg->lengths_.back() % MPerThread != 0)
return false;
auto IsScalarPerVectorValid = [&](const std::array<index_t, NumDim>& lengths,
const std::array<index_t, NumDim>& strides,
index_t scalarPerVector) {
if(strides.back() == 1 && lengths.back() % scalarPerVector == 0)
return true;
if(strides.back() != 1 && scalarPerVector == 1)
return true;
return false;
};
bool valid = true;
static_for<0, NumInput, 1>{}([&](auto I) {
if(!IsScalarPerVectorValid(
pArg->lengths_, pArg->inStridesArray_[I.value], InScalarPerVectorSeq::At(I)))
valid = false;
});
static_for<0, NumOutput, 1>{}([&](auto I) {
if(!IsScalarPerVectorValid(
pArg->lengths_, pArg->outStridesArray_[I.value], OutScalarPerVectorSeq::At(I)))
valid = false;
});
return valid;
};
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::array<index_t, NumDim> lengths,
const std::array<std::array<index_t, NumDim>, NumInput> inStridesArray,
const std::array<std::array<index_t, NumDim>, NumOutput> outStridesArray,
const std::array<const void*, NumInput> in_dev_buffers,
const std::array<void*, NumOutput> out_dev_buffers,
ElementwiseOperation elementwise_op) override
{
return std::make_unique<Argument>(lengths,
inStridesArray,
outStridesArray,
in_dev_buffers,
out_dev_buffers,
elementwise_op);
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
}; // namespace device
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <memory>
#include <array>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename InDataTypeTuple,
typename OutDataTypeTuple,
typename ElementwiseOperation,
index_t NumDim>
struct DeviceElementwiseBase : public BaseOperator
{
static constexpr int NumInput = InDataTypeTuple::Size();
static constexpr int NumOutput = OutDataTypeTuple::Size();
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::array<index_t, NumDim> lengths,
const std::array<std::array<index_t, NumDim>, NumInput> inStridesArray,
const std::array<std::array<index_t, NumDim>, NumOutput> outStridesArray,
const std::array<const void*, NumInput> in_dev_buffers,
const std::array<void*, NumOutput> out_dev_buffers,
ElementwiseOperation elementwise_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; // namespace device
template <typename InDataTypeTuple,
typename OutDataTypeTuple,
typename ElementwiseOperation,
index_t NumDim>
using DeviceElementwiseBasePtr = std::unique_ptr<
DeviceElementwiseBase<InDataTypeTuple, OutDataTypeTuple, ElementwiseOperation, NumDim>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include <array>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/utility/reduction_enums.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <index_t Rank,
index_t NumReduceDim,
index_t NumReduction,
typename InElementwiseOperationTuple,
typename AccElementwiseOperationTuple>
struct DeviceMultipleReduce : public BaseOperator
{
static constexpr index_t NumInputDim = Rank;
static constexpr index_t NumOutputDim = (Rank - NumReduceDim > 1) ? Rank - NumReduceDim : 1;
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(
const std::array<index_t, NumInputDim> inLengths,
const std::array<index_t, NumInputDim> inStrides,
const std::array<index_t, NumOutputDim> outLengths,
const std::array<std::array<index_t, NumOutputDim>, NumReduction> outStrides,
const std::array<int, NumReduceDim> reduceDims,
const std::array<const void*, NumReduction> alphas,
const std::array<const void*, NumReduction> betas,
const void* in_dev,
const std::array<void*, NumReduction> out_dev_buffers,
const InElementwiseOperationTuple in_elementwise_op_tuple,
const AccElementwiseOperationTuple acc_elementwise_op_tuple) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <index_t Rank,
index_t NumReduceDim,
index_t NumReduction,
typename InElementwiseOperationTuple,
typename AccElementwiseOperationTuple>
using DeviceMultipleReducePtr = std::unique_ptr<DeviceMultipleReduce<Rank,
NumReduceDim,
NumReduction,
InElementwiseOperationTuple,
AccElementwiseOperationTuple>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/sequence.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_multiple_reduce.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_2d_multiple_reduction_threadwise.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <index_t NumReduction,
typename InDataType,
typename AccDataType,
typename OutDataTypeTuple,
index_t Rank,
index_t NumReduceDim,
typename ReduceOperation,
typename InElementwiseOperationTuple,
typename AccElementwiseOperationTuple,
bool PropagateNan,
index_t BlockSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t InSrcVectorDim,
index_t InSrcVectorSize,
typename OutDstVectorSizeSeq>
struct DeviceMultipleReduceThreadWise : public DeviceMultipleReduce<Rank,
NumReduceDim,
NumReduction,
InElementwiseOperationTuple,
AccElementwiseOperationTuple>
{
static_assert(Rank <= 6, "Bigger Rank size is not supported!");
static_assert((InSrcVectorDim == 0 && MThreadSliceSize % InSrcVectorSize == 0) ||
(InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static_assert(NumReduction == OutDataTypeTuple::Size() &&
NumReduction == InElementwiseOperationTuple::Size() &&
NumReduction == AccElementwiseOperationTuple::Size() &&
NumReduction == OutDstVectorSizeSeq::Size(),
"All tuple should have the same size as the number of Reductions!");
static_assert(sequence_all_of(OutDstVectorSizeSeq{},
[](auto vectorSize) {
return (MThreadSliceSize % vectorSize == 0);
}),
"The OutDstVectorSize should completely divide the MThreadSliceSize!");
static constexpr index_t NumInvariantDim = Rank - NumReduceDim;
static constexpr index_t NumInputDim = Rank;
static constexpr index_t NumOutputDim = (NumInvariantDim == 0) ? 1 : NumInvariantDim;
static constexpr bool reduceAllDim = (NumInvariantDim == 0);
static constexpr index_t M_BlockTileSize = BlockSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = 1 * KThreadSliceSize;
static auto GenerateOutDataTypePointerTuple()
{
return generate_tuple(
[&](auto I) {
using DataType = remove_cvref_t<decltype(OutDataTypeTuple{}[I])>;
return static_cast<DataType*>(nullptr);
},
Number<NumReduction>{});
};
using OutDataTypePointerTuple = decltype(GenerateOutDataTypePointerTuple());
static auto MakeSrc2dDescriptor(const std::array<index_t, NumInputDim>& inLengths,
const std::array<index_t, NumInputDim>& inStrides)
{
const auto tupleSrcLengths =
generate_tuple([&](auto I) { return inLengths[I]; }, Number<NumInputDim>{});
const auto tupleSrcStrides =
generate_tuple([&](auto I) { return inStrides[I]; }, Number<NumInputDim>{});
const auto inDesc = make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto in_grid_desc_m_k = [&]() {
if constexpr(reduceAllDim)
{
const auto one_dim_inDesc = transform_tensor_descriptor(
inDesc,
make_tuple(make_merge_transform(tupleSrcLengths)),
make_tuple(typename arithmetic_sequence_gen<0, NumInputDim, 1>::type{}),
make_tuple(Sequence<0>{}));
return transform_tensor_descriptor(one_dim_inDesc,
make_tuple(make_unmerge_transform(make_tuple(
1, one_dim_inDesc.GetLength(Number<0>{})))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1>{}));
}
else
{
using InvariantDims = typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type;
using ReduceDims = typename arithmetic_sequence_gen<NumInvariantDim, Rank, 1>::type;
const auto reduceDimLengths = generate_tuple(
[&](auto I) { return inLengths[NumInvariantDim + I]; }, Number<NumReduceDim>{});
const auto invariantDimLengths =
generate_tuple([&](auto I) { return inLengths[I]; }, Number<NumInvariantDim>{});
return transform_tensor_descriptor(
inDesc,
make_tuple(make_merge_transform(invariantDimLengths),
make_merge_transform(reduceDimLengths)),
make_tuple(InvariantDims{}, ReduceDims{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
}();
const auto invariantLength = in_grid_desc_m_k.GetLength(Number<0>{});
const auto reduceLength = in_grid_desc_m_k.GetLength(Number<1>{});
const auto inPad_M =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto inPad_K =
math::integer_least_multiple(reduceLength, K_BlockTileSize) - reduceLength;
auto in_grid_desc_m_k_padded = transform_tensor_descriptor(
in_grid_desc_m_k,
make_tuple(make_right_pad_transform(invariantLength, inPad_M),
make_right_pad_transform(reduceLength, inPad_K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return (in_grid_desc_m_k_padded);
};
static auto MakeDst1dDescriptor(const std::array<index_t, NumOutputDim>& outLengths,
const std::array<index_t, NumOutputDim>& outStrides)
{
const auto tupleDstLengths =
generate_tuple([&](auto I) { return outLengths[I]; }, Number<NumOutputDim>{});
const auto tupleDstStrides =
generate_tuple([&](auto I) { return outStrides[I]; }, Number<NumOutputDim>{});
auto outDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
auto out_grid_desc_m = transform_tensor_descriptor(
outDesc,
make_tuple(make_merge_transform(tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, NumOutputDim, 1>::type{}),
make_tuple(Sequence<0>{}));
const auto invariantLength = out_grid_desc_m.GetLength(Number<0>{});
const auto outPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto out_grid_desc_m_padded = transform_tensor_descriptor(
out_grid_desc_m,
make_tuple(make_right_pad_transform(invariantLength, outPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return (out_grid_desc_m_padded);
};
static auto GenerateOutGrid1dDescTuple()
{
return generate_tuple(
[&](auto I) {
(void)I;
return MakeDst1dDescriptor(std::array<index_t, NumOutputDim>{},
std::array<index_t, NumOutputDim>{});
},
Number<NumReduction>{});
};
using InGridDesc_M_K = decltype(MakeSrc2dDescriptor(std::array<index_t, NumInputDim>{},
std::array<index_t, NumInputDim>{}));
using OutGridDesc_M_Tuple = decltype(GenerateOutGrid1dDescTuple());
struct Argument : public BaseArgument
{
Argument(const std::array<index_t, NumInputDim>& inLengths,
const std::array<index_t, NumInputDim>& inStrides,
const std::array<index_t, NumOutputDim>& outLengths,
const std::array<std::array<index_t, NumOutputDim>, NumReduction>& outStridesArray,
const std::array<int, NumReduceDim>& reduceDims,
const std::array<const void*, NumReduction>& alphas,
const std::array<const void*, NumReduction>& betas,
const void* in_dev,
const std::array<void*, NumReduction>& out_dev_buffers,
const InElementwiseOperationTuple in_elementwise_op_tuple,
const AccElementwiseOperationTuple acc_elementwise_op_tuple)
: outLengths_{outLengths},
outStridesArray_{outStridesArray},
in_elementwise_op_tuple_{in_elementwise_op_tuple},
acc_elementwise_op_tuple_{acc_elementwise_op_tuple}
{
inLengths_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inLengths, reduceDims);
inStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inStrides, reduceDims);
for(size_t i = 0; i < NumReduction; i++)
{
alpha_values_(i) = *static_cast<const AccDataType*>(alphas[i]);
beta_values_(i) = *static_cast<const AccDataType*>(betas[i]);
};
in_dev_ = static_cast<const InDataType*>(in_dev);
out_dev_buffers_ = generate_tuple(
[&](auto iR) {
using OutDataTypePointer =
remove_cvref_t<decltype(OutDataTypePointerTuple{}[iR])>;
using OutDataType = remove_cvref_t<remove_pointer_t<OutDataTypePointer>>;
return static_cast<OutDataType*>(out_dev_buffers[iR]);
},
Number<NumReduction>{});
std::tie(invariant_total_length, reduce_total_length) =
get_2d_lengths<Rank, NumReduceDim>(inLengths_);
in_grid_desc_m_k = MakeSrc2dDescriptor(inLengths_, inStrides_);
out_grid_desc_m_tuple = generate_tuple(
[&](auto I) { return MakeDst1dDescriptor(outLengths, outStridesArray[I]); },
Number<NumReduction>{});
gridSize = math::integer_least_multiple(invariant_total_length, M_BlockTileSize) /
M_BlockTileSize;
}
std::array<index_t, NumInputDim> inLengths_;
std::array<index_t, NumInputDim> inStrides_;
std::array<index_t, NumOutputDim> outLengths_;
std::array<std::array<index_t, NumOutputDim>, NumReduction> outStridesArray_;
Array<AccDataType, NumReduction> alpha_values_;
Array<AccDataType, NumReduction> beta_values_;
const InDataType* in_dev_;
OutDataTypePointerTuple out_dev_buffers_;
InGridDesc_M_K in_grid_desc_m_k;
OutGridDesc_M_Tuple out_grid_desc_m_tuple;
InElementwiseOperationTuple in_elementwise_op_tuple_;
AccElementwiseOperationTuple acc_elementwise_op_tuple_;
long_index_t invariant_total_length;
long_index_t reduce_total_length;
size_t gridSize;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
using GridwiseMultipleReduce =
GridwiseMultipleReduction_mk_to_m_threadwise<NumReduction,
InDataType,
OutDataTypePointerTuple,
AccDataType,
InGridDesc_M_K,
OutGridDesc_M_Tuple,
ReduceOperation,
InElementwiseOperationTuple,
AccElementwiseOperationTuple,
InMemoryDataOperationEnum::Set,
PropagateNan,
BlockSize,
MThreadSliceSize,
KThreadSliceSize,
InSrcVectorDim,
InSrcVectorSize,
OutDstVectorSizeSeq>;
const auto kernel_main =
kernel_multiple_reduce_threadwise<GridwiseMultipleReduce,
NumReduction,
InDataType,
OutDataTypePointerTuple,
AccDataType,
InGridDesc_M_K,
OutGridDesc_M_Tuple,
InElementwiseOperationTuple,
AccElementwiseOperationTuple>;
float avg_time = 0;
avg_time += launch_and_time_kernel(stream_config,
kernel_main,
dim3(arg.gridSize),
dim3(BlockSize),
0,
arg.in_grid_desc_m_k,
arg.out_grid_desc_m_tuple,
arg.in_elementwise_op_tuple_,
arg.acc_elementwise_op_tuple_,
arg.alpha_values_,
arg.in_dev_,
arg.beta_values_,
arg.out_dev_buffers_);
return (avg_time);
};
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
};
};
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* pArg = dynamic_cast<const Argument*>(p_arg);
if constexpr(InSrcVectorDim == 0)
{
if constexpr(NumInvariantDim == 0)
{
return (false);
}
else
{
if(pArg->inStrides_[NumInvariantDim - 1] != 1 && InSrcVectorSize != 1)
return (false);
if(pArg->inLengths_[NumInvariantDim - 1] % InSrcVectorSize != 0)
return (false);
};
}
else
{
if(pArg->inStrides_[Rank - 1] != 1 && InSrcVectorSize != 1)
return (false);
if(pArg->inLengths_[Rank - 1] % InSrcVectorSize != 0)
return (false);
};
// To improve
bool valid = true;
static_for<0, NumReduction, 1>{}([&](auto I) {
if(pArg->outStridesArray_[I.value][NumOutputDim - 1] != 1 &&
OutDstVectorSizeSeq::At(I) != 1)
valid = false;
if(pArg->outLengths_[NumOutputDim - 1] % OutDstVectorSizeSeq::At(I) != 0)
valid = false;
});
if(!valid)
return (false);
return (true);
};
std::unique_ptr<BaseArgument> MakeArgumentPointer(
const std::array<index_t, NumInputDim> inLengths,
const std::array<index_t, NumInputDim> inStrides,
const std::array<index_t, NumOutputDim> outLengths,
const std::array<std::array<index_t, NumOutputDim>, NumReduction> outStridesArray,
const std::array<int, NumReduceDim> reduceDims,
const std::array<const void*, NumReduction> alphas,
const std::array<const void*, NumReduction> betas,
const void* in_dev,
const std::array<void*, NumReduction> out_dev_buffers,
const InElementwiseOperationTuple in_elementwise_op_tuple,
const AccElementwiseOperationTuple acc_elementwise_op_tuple) override
{
return std::make_unique<Argument>(inLengths,
inStrides,
outLengths,
outStridesArray,
reduceDims,
alphas,
betas,
in_dev,
out_dev_buffers,
in_elementwise_op_tuple,
acc_elementwise_op_tuple);
};
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceMultipleReduceThreadwise<" << BlockSize << ",";
str << "M_C" << BlockSize << "_S" << MThreadSliceSize << ",";
str << "K_C" << 1 << "_S" << KThreadSliceSize << ",";
str << "InSrcVectorDim_" << InSrcVectorDim << "_InSrcVectorSize_" << InSrcVectorSize << ",";
str << "OutDstVectorSize";
static_for<0, OutDstVectorSizeSeq::Size(), 1>{}([&](auto I) {str << "_" << OutDstVectorSizeSeq::At(I); });
str << ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment