Commit 53a74710 authored by letaoqin's avatar letaoqin
Browse files

add bias to batched gemm

parent b8f08e67
......@@ -19,7 +19,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_mha_fwd_xdl_cshuffle_v2r2.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_mha_fwd_xdl_cshuffle_v2.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
......@@ -80,7 +80,7 @@ static constexpr bool Deterministic = false;
#if(DIM <= 32)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2R2<
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
......@@ -153,7 +153,7 @@ using DeviceGemmInstance =
Deterministic>;
#elif(DIM <= 64)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2R2<
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
......@@ -226,7 +226,7 @@ using DeviceGemmInstance =
Deterministic>;
#elif(DIM <= 128)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2R2<
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
......
......@@ -25,6 +25,7 @@ namespace device {
template <typename GridwiseGemm,
typename FloatAB,
typename D0sPointer,
typename FloatC,
typename ZDataType,
typename FloatLSE,
......@@ -36,6 +37,7 @@ template <typename GridwiseGemm,
typename CElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
typename B1GridDesc_BK0_N_BK1,
typename CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
......@@ -54,6 +56,7 @@ __global__ void
kernel_batched_multiheadattention_forward_xdl_cshuffle_v2(
const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
D0sPointer p_d0s_grid,
const FloatAB* __restrict__ p_b1_grid,
FloatC* __restrict__ p_c_grid,
ZDataType* __restrict__ p_z_grid,
......@@ -65,6 +68,8 @@ __global__ void
const CElementwiseOperation c_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
const B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
......@@ -102,6 +107,11 @@ __global__ void
static_cast<long_index_t>(compute_base_ptr_of_batch.GetZBasePtr(g_idx)));
const long_index_t lse_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_base_ptr_of_batch.GetLSEBasePtr(g_idx)));
static_for<0, p_d0s_grid.Size(), 1>{}([&](auto In) {
const long_index_t d0_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_base_ptr_of_batch.GetD0BasePtr(g_idx, In)));
p_d0s_grid(In) = p_d0s_grid(In) + d0_batch_offset;
});
// const index_t global_thread_id = get_thread_global_1d_id();
ck::philox ph(seed, 0, offset);
......@@ -115,6 +125,7 @@ __global__ void
GridwiseGemm::template Run<HasMainKBlockLoop, IsDropout, IsLseStoring>(
p_a_grid + a_batch_offset,
p_b_grid + b_batch_offset,
p_d0s_grid,
p_b1_grid + b1_batch_offset,
p_c_grid + c_batch_offset,
p_z_grid == nullptr ? nullptr : p_z_grid + z_batch_offset,
......@@ -127,6 +138,7 @@ __global__ void
c_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
......@@ -146,6 +158,7 @@ __global__ void
GridwiseGemm::template Run<HasMainKBlockLoop, IsDropout, IsLseStoring>(
p_a_grid + a_batch_offset,
p_b_grid + b_batch_offset,
p_d0s_grid,
p_b1_grid + b1_batch_offset,
p_c_grid + c_batch_offset,
p_z_grid == nullptr ? nullptr : p_z_grid + z_batch_offset,
......@@ -158,6 +171,7 @@ __global__ void
c_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
......@@ -174,6 +188,7 @@ __global__ void
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_d0s_grid;
ignore = p_b1_grid;
ignore = p_c_grid;
ignore = p_z_grid;
......@@ -185,6 +200,7 @@ __global__ void
ignore = c_element_op;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5;
ignore = b1_grid_desc_bk0_n_bk1;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5;
......@@ -261,6 +277,7 @@ template <index_t NumDimG,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t Acc0BiasTransferSrcScalarPerVector,
typename B1BlockTransferThreadClusterLengths_BK0_N_BK1,
typename B1BlockTransferThreadClusterArrangeOrder,
typename B1BlockTransferSrcAccessOrder,
......@@ -272,6 +289,7 @@ template <index_t NumDimG,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
index_t Acc1BiasTransferSrcScalarPerVector,
MaskingSpecialization MaskingSpec,
bool Deterministic,
LoopScheduler LoopSched = LoopScheduler::Default>
......@@ -299,11 +317,11 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
static_assert(NumDimG > 0 && NumDimM > 0 && NumDimN > 0 && NumDimK > 0 && NumDimO > 0,
"Number of dimension must be greater than 0");
static constexpr index_t NumAcc0Bias = Acc0BiasDataType::Size();
static constexpr index_t NumAcc1Bias = Acc1BiasDataType::Size();
static constexpr index_t NumD0Tensor = Acc0BiasDataType::Size();
static constexpr index_t NumD1Tensor = Acc1BiasDataType::Size();
// TODO ANT: implement bias combination
static_assert(NumAcc0Bias == 0 && NumAcc0Bias == 0, "Bias addition is unimplemented");
static_assert(NumD1Tensor == 0, "Acc1 Bias addition is unimplemented");
#if 0
// TODO ANT: use alias
......@@ -387,14 +405,40 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
}
}
static auto MakeD0sGridDescriptor_M_N(
const std::array<std::vector<ck::index_t>, NumD0Tensor>& acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor>& acc0_biases_gs_ms_ns_strides)
{
return generate_tuple(
[&](auto i) {
return Transform::MakeCGridDescriptor_M_N(acc0_biases_gs_ms_ns_lengths[i],
acc0_biases_gs_ms_ns_strides[i]);
},
Number<NumD0Tensor>{});
}
static auto MakeD0sGridDescriptor_G_M_N(
const std::array<std::vector<ck::index_t>, NumD0Tensor>& acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor>& acc0_biases_gs_ms_ns_strides)
{
return generate_tuple(
[&](auto i) {
return Transform::MakeCGridDescriptor_G_M_N(acc0_biases_gs_ms_ns_lengths[i],
acc0_biases_gs_ms_ns_strides[i]);
},
Number<NumD0Tensor>{});
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1({}, {}));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1({}, {}));
using D0sGridDesc_M_N = decltype(MakeD0sGridDescriptor_M_N({}, {}));
using B1GridDesc_BK0_N_BK1 = decltype(MakeB1GridDescriptor_BK0_N_BK1({}, {}));
using CGridDesc_M_N = decltype(Transform::MakeCGridDescriptor_M_N({}, {}));
using ZGridDesc_M_N = decltype(MakeZGridDescriptor_M_N({}, {}));
using LSEGridDesc_M = decltype(MakeLSEGridDescriptor_M(1));
using AGridDesc_G_M_K = decltype(Transform::MakeAGridDescriptor_G_M_K({}, {}));
using BGridDesc_G_N_K = decltype(Transform::MakeB0GridDescriptor_G_N_K({}, {}));
using D0sGridDesc_G_M_N = decltype(MakeD0sGridDescriptor_G_M_N({}, {}));
using B1GridDesc_G_N_K = decltype(Transform::MakeB1GridDescriptor_G_N_K({}, {}));
using CGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
using ZGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
......@@ -420,12 +464,14 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
{
ComputeBasePtrOfStridedBatch(const AGridDesc_G_M_K& a_grid_desc_g_m_k,
const BGridDesc_G_N_K& b_grid_desc_g_n_k,
const D0sGridDesc_G_M_N& d0s_grid_desc_g_m_n,
const B1GridDesc_G_N_K& b1_grid_desc_g_n_k,
const CGridDesc_G_M_N& c_grid_desc_g_m_n,
const ZGridDesc_G_M_N& z_grid_desc_g_m_n,
index_t BatchStrideLSE)
: a_grid_desc_g_m_k_(a_grid_desc_g_m_k),
b_grid_desc_g_n_k_(b_grid_desc_g_n_k),
d0s_grid_desc_g_m_n_(d0s_grid_desc_g_m_n),
b1_grid_desc_g_n_k_(b1_grid_desc_g_n_k),
c_grid_desc_g_m_n_(c_grid_desc_g_m_n),
z_grid_desc_g_m_n_(z_grid_desc_g_m_n),
......@@ -443,6 +489,13 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
return b_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
template <index_t I>
__host__ __device__ constexpr long_index_t GetD0BasePtr(index_t g_idx,
Number<I> d0_idx) const
{
return d0s_grid_desc_g_m_n_[d0_idx].CalculateOffset(make_multi_index(g_idx, 0, 0));
}
__host__ __device__ constexpr long_index_t GetB1BasePtr(index_t g_idx) const
{
return b1_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
......@@ -466,6 +519,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
private:
AGridDesc_G_M_K a_grid_desc_g_m_k_;
BGridDesc_G_N_K b_grid_desc_g_n_k_;
D0sGridDesc_G_M_N d0s_grid_desc_g_m_n_;
B1GridDesc_G_N_K b1_grid_desc_g_n_k_;
CGridDesc_G_M_N c_grid_desc_g_m_n_;
ZGridDesc_G_M_N z_grid_desc_g_m_n_;
......@@ -475,6 +529,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
// GridwiseGemm
using GridwiseGemm = GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2<
ADataType, // TODO: distinguish A/B datatype
Acc0BiasDataType,
ZDataType,
GemmDataType,
GemmAccDataType,
......@@ -489,6 +544,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
D0sGridDesc_M_N,
B1GridDesc_BK0_N_BK1,
CGridDesc_M_N,
ZGridDesc_M_N,
......@@ -524,6 +580,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
BBlockTransferDstScalarPerVector_BK1,
true,
BBlockLdsExtraN,
Acc0BiasTransferSrcScalarPerVector,
B1BlockTransferThreadClusterLengths_BK0_N_BK1,
B1BlockTransferThreadClusterArrangeOrder,
B1BlockTransferSrcAccessOrder,
......@@ -536,6 +593,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
Acc1BiasTransferSrcScalarPerVector,
LoopSched,
Transform::matrix_padder.PadN,
MaskingSpec != MaskingSpecialization::MaskDisabled,
......@@ -552,8 +610,8 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
CDataType* p_c_grid,
ZDataType* p_z_grid,
LSEDataType* p_lse_grid,
const std::array<void*, NumAcc0Bias> p_acc0_biases,
const std::array<void*, NumAcc1Bias> p_acc1_biases,
const std::array<void*, NumD0Tensor> p_acc0_biases,
const std::array<void*, NumD1Tensor> p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
......@@ -565,11 +623,11 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
const std::vector<index_t>& z_gs_ms_ns_lengths,
const std::vector<index_t>& z_gs_ms_ns_strides,
const std::vector<index_t>& lse_gs_ms_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumD1Tensor>
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
const std::array<std::vector<ck::index_t>, NumD1Tensor>
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
......@@ -598,6 +656,8 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
Transform::MakeAGridDescriptor_G_M_K(a_gs_ms_ks_lengths, a_gs_ms_ks_strides)},
b_grid_desc_g_n_k_{
Transform::MakeB0GridDescriptor_G_N_K(b_gs_ns_ks_lengths, b_gs_ns_ks_strides)},
d0s_grid_desc_g_m_n_{DeviceOp::MakeD0sGridDescriptor_G_M_N(
acc0_biases_gs_ms_ns_lengths, acc0_biases_gs_ms_ns_strides)},
b1_grid_desc_g_n_k_{Transform::MakeB1GridDescriptor_G_N_K(
b1_gs_gemm1ns_gemm1ks_lengths, b1_gs_gemm1ns_gemm1ks_strides)},
c_grid_desc_g_m_n_{Transform::MakeCGridDescriptor_G_M_N(c_gs_ms_gemm1ns_lengths,
......@@ -628,16 +688,14 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
compute_base_ptr_of_batch_{
a_grid_desc_g_m_k_,
b_grid_desc_g_n_k_,
d0s_grid_desc_g_m_n_,
b1_grid_desc_g_n_k_,
c_grid_desc_g_m_n_,
z_grid_desc_g_m_n_,
type_convert<index_t>(lse_grid_desc_m_.GetElementSpaceSize())}
{
// TODO ANT: implement bias addition
ignore = p_acc0_biases;
ignore = p_acc1_biases;
ignore = acc0_biases_gs_ms_ns_lengths;
ignore = acc0_biases_gs_ms_ns_strides;
ignore = acc1_biases_gs_ms_gemm1ns_lengths;
ignore = acc1_biases_gs_ms_gemm1ns_strides;
......@@ -650,8 +708,24 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n_);
D0sGridDesc_M_N d0s_grid_desc_m_n{DeviceOp::MakeD0sGridDescriptor_M_N(
acc0_biases_gs_ms_ns_lengths, acc0_biases_gs_ms_ns_strides)};
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_ =
GridwiseGemm::MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(
d0s_grid_desc_m_n);
}
static_for<0, NumD0Tensor, 1>{}([&](auto i) {
using D0DataType = remove_cvref_t<tuple_element_t<i.value, Acc0BiasDataType>>;
// D0 pointer
p_d0s_grid_(i) = static_cast<const D0DataType*>(p_acc0_biases[i]);
// for check
d0s_nl_ns_lengths_strides_[i].push_back(
acc0_biases_gs_ms_ns_lengths[i][NumDimG + NumDimM]);
d0s_nl_ns_lengths_strides_[i].push_back(
acc0_biases_gs_ms_ns_strides[i][NumDimG + NumDimM]);
});
is_dropout_ = p_dropout > 0.0; //
p_dropout_ = 1.f - p_dropout;
p_dropout_in_16bits_ = uint16_t(std::floor(p_dropout_ * 65535.0));
......@@ -692,6 +766,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
// pointers
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
typename GridwiseGemm::D0sGridPointer p_d0s_grid_;
const B1DataType* p_b1_grid_;
CDataType* p_c_grid_;
ZDataType* p_z_grid_;
......@@ -707,6 +782,9 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
AGridDesc_G_M_K a_grid_desc_g_m_k_;
BGridDesc_G_N_K b_grid_desc_g_n_k_;
D0sGridDesc_G_M_N d0s_grid_desc_g_m_n_;
typename GridwiseGemm::D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_;
B1GridDesc_G_N_K b1_grid_desc_g_n_k_;
CGridDesc_G_M_N c_grid_desc_g_m_n_;
ZGridDesc_G_M_N z_grid_desc_g_m_n_;
......@@ -750,6 +828,9 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
index_t m_raw_padded_;
index_t n_raw_padded_;
// raw data
std::array<std::vector<ck::index_t>, NumD0Tensor> d0s_nl_ns_lengths_strides_;
};
// Invoker
......@@ -780,6 +861,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
const auto kernel = kernel_batched_multiheadattention_forward_xdl_cshuffle_v2<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
typename GridwiseGemm::D0sGridPointer,
CDataType,
ZDataType,
LSEDataType,
......@@ -791,6 +873,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
CElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
DeviceOp::B1GridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
......@@ -811,6 +894,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_d0s_grid_,
arg.p_b1_grid_,
arg.p_c_grid_,
arg.p_z_grid_,
......@@ -822,6 +906,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg.b1_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
......@@ -952,6 +1037,18 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
return false;
}
for(int i = 0; i < NumD0Tensor; i++)
{
if(arg.d0s_nl_ns_lengths_strides_[i][1] == 1 &&
arg.d0s_nl_ns_lengths_strides_[i][0] % Acc0BiasTransferSrcScalarPerVector != 0)
{
return false;
}
if(arg.d0s_nl_ns_lengths_strides_[i][1] != 1 && Acc0BiasTransferSrcScalarPerVector != 1)
{
return false;
}
}
// Note: we need raw lengths since threadwise copy can not handle vector load when part of
// vector is out of bounds
// Note: need lowest dim in Ms/Ns/Ks/Os, not merged M/N/K/O
......@@ -1010,8 +1107,8 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
CDataType* p_c,
ZDataType* p_z,
LSEDataType* p_lse,
const std::array<void*, NumAcc0Bias> p_acc0_biases,
const std::array<void*, NumAcc1Bias> p_acc1_biases,
const std::array<void*, NumD0Tensor> p_acc0_biases,
const std::array<void*, NumD1Tensor> p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
......@@ -1023,11 +1120,11 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
const std::vector<index_t>& z_gs_ms_ns_lengths,
const std::vector<index_t>& z_gs_ms_ns_strides,
const std::vector<index_t>& lse_gs_ms_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumD1Tensor>
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
const std::array<std::vector<ck::index_t>, NumD1Tensor>
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
......@@ -1080,8 +1177,8 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
void* p_c,
void* p_z,
void* p_lse,
const std::array<void*, NumAcc0Bias> p_acc0_biases,
const std::array<void*, NumAcc1Bias> p_acc1_biases,
const std::array<void*, NumD0Tensor> p_acc0_biases,
const std::array<void*, NumD1Tensor> p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
......@@ -1093,11 +1190,11 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
const std::vector<index_t>& z_gs_ms_ns_lengths,
const std::vector<index_t>& z_gs_ms_ns_strides,
const std::vector<index_t>& lse_gs_ms_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumD1Tensor>
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<ck::index_t>, NumAcc1Bias>
const std::array<std::vector<ck::index_t>, NumD1Tensor>
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
......
......@@ -346,14 +346,6 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2R2
BSpec,
B1Spec,
CSpec>;
using RawTransform = TransformBatchedContractionContractionToBatchedGemmGemm<
Sequence<NumDimG, NumDimM, NumDimN, NumDimK, NumDimO>,
Sequence<MPerBlock, NPerBlock, KPerBlock, Gemm1NPerBlock>,
GemmSpecialization::Default,
ASpec,
BSpec,
B1Spec,
CSpec>;
static auto MakeAGridDescriptor_AK0_M_AK1(const std::vector<index_t>& a_gs_ms_ks_lengths_vec,
const std::vector<index_t>& a_gs_ms_ks_strides_vec)
......
......@@ -25,6 +25,7 @@ namespace ck {
*
*/
template <typename FloatAB,
typename D0sDataType,
typename ZDataType,
typename FloatGemm,
typename FloatGemmAcc,
......@@ -39,6 +40,7 @@ template <typename FloatAB,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename D0sGridDesc_M_N,
typename B1GridDesc_BK0_N_BK1,
typename CGridDesc_M_N,
typename ZGridDesc_M_N,
......@@ -74,6 +76,7 @@ template <typename FloatAB,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BThreadTransferSrcResetCoordinateAfterRun, // ignored
index_t BBlockLdsExtraN,
index_t D0BlockTransferSrcScalarPerVector,
typename B1BlockTransferThreadClusterLengths_BK0_N_BK1,
typename B1BlockTransferThreadClusterArrangeOrder,
typename B1BlockTransferSrcAccessOrder,
......@@ -86,6 +89,7 @@ template <typename FloatAB,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
index_t D1BlockTransferSrcScalarPerVector,
LoopScheduler LoopSched,
bool PadN,
bool MaskOutUpperTriangle,
......@@ -93,6 +97,11 @@ template <typename FloatAB,
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
{
static_assert(D0BlockTransferSrcScalarPerVector == 1 ||
D0BlockTransferSrcScalarPerVector == 2 ||
D0BlockTransferSrcScalarPerVector == 4,
"D0BlockTransferSrcScalarPerVector must be 1 or 2 or 4");
static constexpr index_t NumD0Tensor = D0sDataType::Size();
static_assert(LoopSched == LoopScheduler::Default,
"Non-default loop scheduler is currently not supported");
......@@ -407,6 +416,52 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
c_grid_desc_m_n);
}
static constexpr auto MakeD0sGridPointer()
{
return generate_tuple(
[&](auto i) {
using D0DataType = remove_cvref_t<tuple_element_t<i.value, D0sDataType>>;
return static_cast<const D0DataType*>(nullptr);
},
Number<NumD0Tensor>{});
}
// D0 desc for source in blockwise copy
template <typename D0GridDesc_M_N>
__host__ __device__ static constexpr auto
MakeGemm0D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(const D0GridDesc_M_N& d0_grid_desc_m_n)
{
const auto M = d0_grid_desc_m_n.GetLength(I0);
const auto N = d0_grid_desc_m_n.GetLength(I1);
constexpr auto mfma = MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto N3 = mfma.num_groups_per_blk;
constexpr auto N4 = mfma.num_input_blks;
constexpr auto N5 = mfma.group_size;
return transform_tensor_descriptor(
d0_grid_desc_m_n,
make_tuple(make_unmerge_transform(
make_tuple(M / MPerBlock, MXdlPerWave, Gemm0MWaves, MPerXdl)),
make_unmerge_transform(
make_tuple(N / NPerBlock, NXdlPerWave, Gemm0NWaves, N3, N4, N5))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2, 4, 6>{}, Sequence<1, 3, 5, 7, 8, 9>{}));
}
// D0s desc for source in blockwise copy
__host__ __device__ static constexpr auto
MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(const D0sGridDesc_M_N& ds_grid_desc_m_n)
{
return generate_tuple(
[&](auto i) {
return MakeGemm0D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(ds_grid_desc_m_n[i]);
},
Number<NumD0Tensor>{});
}
using D0sGridPointer = decltype(MakeD0sGridPointer());
using D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5 = remove_cvref_t<decltype(
MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(D0sGridDesc_M_N{}))>;
using CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{}))>;
......@@ -465,6 +520,7 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
typename C0MatrixMask>
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
D0sGridPointer p_d0s_grid,
const FloatAB* __restrict__ p_b1_grid,
FloatC* __restrict__ p_c_grid,
ZDataType* __restrict__ p_z_grid,
......@@ -477,6 +533,8 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
const CElementwiseOperation& c_element_op,
const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5&
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
const B1GridDesc_BK0_N_BK1& b1_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
c_grid_desc_mblock_mperblock_nblock_nperblock,
......@@ -891,6 +949,65 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
// gemm1 K loop
index_t gemm1_k_block_outer_index = 0;
const auto wave_id = GetGemm0WaveIdx();
const auto wave_m_n_id = GetGemm0WaveMNIdx(wave_id[I2]); // I2: 0~63
// bias (d matrix)
constexpr auto d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
make_naive_tensor_descriptor_packed(make_tuple(I1, // MBlockId
I1, // NBlockId
m0, // MRepeat
n0, // NRepeat
m1, // MWaveId
n1, // NWaveId
m2, // MPerXdl
n2, // NGroupNum
n3, // NInputNum
n4)); // RegisterNum
auto d0s_threadwise_copy = generate_tuple(
[&](auto i) {
using D0DataType = remove_cvref_t<tuple_element_t<i.value, D0sDataType>>;
return ThreadwiseTensorSliceTransfer_v2<
D0DataType,
D0DataType,
decltype(d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i]),
decltype(d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5),
Sequence<I1, // MBlockId
I1, // NBlockID
m0, // MRepeat
n0, // NRepeat
m1, // MWaveId
n1, // NWaveId
m2, // MPerXdl
n2, // NGroupNum
n3, // NInputNum
n4>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7, 8, 9>,
9,
D0BlockTransferSrcScalarPerVector,
1,
false>(d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
make_multi_index(block_work_idx_m, // MBlockId
0, // NBlockId
0, // mrepeat
0, // nrepeat
wave_id[I0], // MWaveId
wave_id[I1], // NWaveId
wave_m_n_id[I1], // MPerXdl
0, // group
wave_m_n_id[I0], // NInputIndex
0)); // register number
},
Number<NumD0Tensor>{});
const auto d0s_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_d0s_grid[i],
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i].GetElementSpaceSize());
},
Number<NumD0Tensor>{});
// z is random number matrix for dropout verify
//
// z vgpr copy to global
......@@ -983,9 +1100,6 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
static_cast<ushort*>(p_shared),
z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetElementSpaceSize());
const auto wave_id = GetGemm0WaveIdx();
const auto wave_m_n_id = GetGemm0WaveMNIdx(wave_id[I2]); // I2: 0~63
auto z_tmp_thread_copy_vgpr_to_lds = ThreadwiseTensorSliceTransfer_v1r3<
ushort,
ushort,
......@@ -1163,6 +1277,31 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
block_sync_lds(); // wait for lds read in gemm0 blockwise gemm
// add bias
static_for<0, NumD0Tensor, 1>{}([&](auto i) {
// get register
using D0DataType = remove_cvref_t<tuple_element_t<i.value, D0sDataType>>;
StaticBuffer<AddressSpaceEnum::Vgpr,
D0DataType,
d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetElementSpaceSize(),
true>
d0_thread_buf;
// load data from global
d0s_threadwise_copy(i).Run(d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
d0s_grid_buf[i],
d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
d0_thread_buf);
// acc add bias
static_for<0, m0 * n0 * n2 * n4, 1>{}(
[&](auto j) { acc_thread_buf(j) += d0_thread_buf[j]; });
d0s_threadwise_copy(i).MoveSrcSliceWindow(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
make_multi_index(0, 1, 0, 0, 0, 0, 0, 0, 0, 0));
});
// softmax
SoftmaxBuf& max = blockwise_softmax.max_value_buf;
SoftmaxBuf& sum = blockwise_softmax.sum_value_buf;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment