Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
5387d422
Unverified
Commit
5387d422
authored
Jul 27, 2023
by
zjing14
Committed by
GitHub
Jul 27, 2023
Browse files
Merge branch 'develop' into grouped_gemm_dev_args_splitk
parents
d84022d4
7761e523
Changes
96
Hide whitespace changes
Inline
Side-by-side
Showing
16 changed files
with
1207 additions
and
32 deletions
+1207
-32
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/CMakeLists.txt
...ion_instance/gpu/grouped_conv3d_bwd_weight/CMakeLists.txt
+3
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
...v3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
+47
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
...nv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
+47
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
...nv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
+47
-0
library/src/utility/device_memory.cpp
library/src/utility/device_memory.cpp
+41
-4
profiler/README.md
profiler/README.md
+2
-2
profiler/include/profiler/profile_gemm_streamk_impl.hpp
profiler/include/profiler/profile_gemm_streamk_impl.hpp
+265
-0
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+8
-2
profiler/src/profile_gemm_streamk.cpp
profiler/src/profile_gemm_streamk.cpp
+155
-0
profiler/src/profile_grouped_conv_bwd_weight.cpp
profiler/src/profile_grouped_conv_bwd_weight.cpp
+17
-13
script/profile_batched_gemm.sh
script/profile_batched_gemm.sh
+0
-7
test/batched_gemm_multi_d/CMakeLists.txt
test/batched_gemm_multi_d/CMakeLists.txt
+3
-3
test/block_swizzle_test/block_swizzle_test.cpp
test/block_swizzle_test/block_swizzle_test.cpp
+406
-0
test/block_swizzle_test/rebuild.sh
test/block_swizzle_test/rebuild.sh
+3
-0
test/block_swizzle_test/simple_args.h
test/block_swizzle_test/simple_args.h
+159
-0
test/grouped_convnd_bwd_weight/test_grouped_convnd_bwd_weight.cpp
...uped_convnd_bwd_weight/test_grouped_convnd_bwd_weight.cpp
+4
-1
No files found.
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/CMakeLists.txt
View file @
5387d422
...
...
@@ -2,4 +2,7 @@ add_instance_library(device_grouped_conv3d_bwd_weight_instance
device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_instance.cpp
device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_instance.cpp
device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_instance.cpp
device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
)
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
0 → 100644
View file @
5387d422
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
0 → 100644
View file @
5387d422
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
0 → 100644
View file @
5387d422
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f32_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f32_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/utility/device_memory.cpp
View file @
5387d422
...
...
@@ -10,13 +10,31 @@ DeviceMem::DeviceMem(std::size_t mem_size) : mMemSize(mem_size)
hip_check_error
(
hipMalloc
(
static_cast
<
void
**>
(
&
mpDeviceBuf
),
mMemSize
));
}
void
DeviceMem
::
Realloc
(
std
::
size_t
mem_size
)
{
if
(
mpDeviceBuf
)
{
hip_check_error
(
hipFree
(
mpDeviceBuf
));
}
mMemSize
=
mem_size
;
hip_check_error
(
hipMalloc
(
static_cast
<
void
**>
(
&
mpDeviceBuf
),
mMemSize
));
}
void
*
DeviceMem
::
GetDeviceBuffer
()
const
{
return
mpDeviceBuf
;
}
std
::
size_t
DeviceMem
::
GetBufferSize
()
const
{
return
mMemSize
;
}
void
DeviceMem
::
ToDevice
(
const
void
*
p
)
const
{
hip_check_error
(
hipMemcpy
(
mpDeviceBuf
,
const_cast
<
void
*>
(
p
),
mMemSize
,
hipMemcpyHostToDevice
));
if
(
mpDeviceBuf
)
{
hip_check_error
(
hipMemcpy
(
mpDeviceBuf
,
const_cast
<
void
*>
(
p
),
mMemSize
,
hipMemcpyHostToDevice
));
}
else
{
throw
std
::
runtime_error
(
"ToDevice with an empty pointer"
);
}
}
void
DeviceMem
::
ToDevice
(
const
void
*
p
,
const
std
::
size_t
cpySize
)
const
...
...
@@ -26,7 +44,14 @@ void DeviceMem::ToDevice(const void* p, const std::size_t cpySize) const
void
DeviceMem
::
FromDevice
(
void
*
p
)
const
{
hip_check_error
(
hipMemcpy
(
p
,
mpDeviceBuf
,
mMemSize
,
hipMemcpyDeviceToHost
));
if
(
mpDeviceBuf
)
{
hip_check_error
(
hipMemcpy
(
p
,
mpDeviceBuf
,
mMemSize
,
hipMemcpyDeviceToHost
));
}
else
{
throw
std
::
runtime_error
(
"FromDevice with an empty pointer"
);
}
}
void
DeviceMem
::
FromDevice
(
void
*
p
,
const
std
::
size_t
cpySize
)
const
...
...
@@ -34,6 +59,18 @@ void DeviceMem::FromDevice(void* p, const std::size_t cpySize) const
hip_check_error
(
hipMemcpy
(
p
,
mpDeviceBuf
,
cpySize
,
hipMemcpyDeviceToHost
));
}
void
DeviceMem
::
SetZero
()
const
{
hip_check_error
(
hipMemset
(
mpDeviceBuf
,
0
,
mMemSize
));
}
void
DeviceMem
::
SetZero
()
const
{
if
(
mpDeviceBuf
)
{
hip_check_error
(
hipMemset
(
mpDeviceBuf
,
0
,
mMemSize
));
}
}
DeviceMem
::~
DeviceMem
()
{
hip_check_error
(
hipFree
(
mpDeviceBuf
));
}
DeviceMem
::~
DeviceMem
()
{
if
(
mpDeviceBuf
)
{
hip_check_error
(
hipFree
(
mpDeviceBuf
));
}
}
profiler/README.md
View file @
5387d422
...
...
@@ -144,7 +144,7 @@ GB/s: 127.947
## Profile grouped convolution backward weight kernels
```bash
# arg1: tensor operation (grouped_conv_bwd_
data
: Grouped Convolution Backward
Data
)
# arg1: tensor operation (grouped_conv_bwd_
weight
: Grouped Convolution Backward
Weight
)
# arg2: data type (0: Input fp32, Weight fp32, Output fp32
# 1: Input fp16, Weight fp16, Output fp16
# 2: Input bf16, Weight fp32, Output bf16)
...
...
@@ -167,7 +167,7 @@ GB/s: 127.947
# SplitK
################ op datatype layout verify init log time Ndims G N K C Y X Hi Wi Sy Sx Dy Dx LeftPy LeftPx RightPy RightPx SplitK
./bin/ckProfiler grouped_conv_bwd_
data
1 0 1 1 0 1 2 32 256 256 512 3 3 28 28 1 1 1 1 1 0 0 0 1
./bin/ckProfiler grouped_conv_bwd_
weight
1 0 1 1 0 1 2 32 256 256 512 3 3 28 28 1 1 1 1 1 0 0 0 1
```
...
...
profiler/include/profiler/profile_gemm_streamk_impl.hpp
0 → 100644
View file @
5387d422
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_streamk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_streamk.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
bool
profile_gemm_streamk_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
uint32_t
NumSKBlocks
=
0xffffffff
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_device_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
3
,
3
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
c_device_buf
.
ToDevice
(
c_m_n_device_result
.
mData
.
data
());
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmStreamK
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances, "
<<
(
do_verification
?
"with verification"
:
"without verification"
)
<<
std
::
endl
;
// Run reference GEMM
if
(
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
,
NumSKBlocks
);
DeviceMem
workspace
;
std
::
size_t
workspace_size
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
if
(
workspace_size
!=
0
)
{
workspace
.
Realloc
(
workspace_size
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
}
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
constexpr
(
is_same
<
CDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
int8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" ALayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" BLayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideC = "
<<
StrideC
<<
" : "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/src/CMakeLists.txt
View file @
5387d422
...
...
@@ -3,6 +3,7 @@ set(PROFILER_SOURCES
profiler.cpp
profile_gemm.cpp
profile_gemm_splitk.cpp
profile_gemm_streamk.cpp
profile_gemm_bilinear.cpp
profile_gemm_bias_add_reduce.cpp
profile_gemm_add_add_fastgelu.cpp
...
...
@@ -34,9 +35,11 @@ set(PROFILER_SOURCES
profile_grouped_gemm_fastgelu.cpp
profile_contraction_bilinear.cpp
profile_contraction_scale.cpp
profile_batched_gemm_multi_d.cpp
profile_grouped_conv_bwd_data.cpp
)
if
(
DL_KERNELS
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp
)
endif
()
set
(
PROFILER_EXECUTABLE ckProfiler
)
...
...
@@ -46,6 +49,7 @@ target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE utility
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_splitk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_streamk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_bilinear_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_add_fastgelu_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_multiply_instance
)
...
...
@@ -79,7 +83,9 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgel
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_bilinear_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_scale_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_pool_fwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_multi_d_instance
)
if
(
DL_KERNELS
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_multi_d_instance
)
endif
()
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_data_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv3d_bwd_data_instance
)
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
profiler/src/profile_gemm_streamk.cpp
0 → 100644
View file @
5387d422
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_streamk_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
INT8_INT8_INT8
,
// 3
};
#define OP_NAME "gemm_streamk"
#define OP_DESC "StreamK GEMM"
int
profile_gemm_streamk
(
int
argc
,
char
*
argv
[])
{
if
(
argc
<
14
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 13: M, N, K, StrideA, StrideB, StrideC
\n
"
);
printf
(
"arg14: num_sk_blocks (optional)
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideC
=
std
::
stoi
(
argv
[
13
]);
const
uint32_t
NumSKBlocks
=
argc
>=
15
?
static_cast
<
uint32_t
>
(
std
::
stoul
(
std
::
string
(
argv
[
14
])))
:
0xffffffff
;
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
acc_type
,
auto
c_type
,
auto
a_layout
,
auto
b_layout
,
auto
c_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
CDataType
=
decltype
(
c_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
CLayout
=
decltype
(
c_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
N
:
M
;
bool
pass
=
ck
::
profiler
::
profile_gemm_streamk_impl
<
ADataType
,
BDataType
,
AccDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<=
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<=
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideC
<=
0
)
?
DefaultStrideC
:
StrideC
,
NumSKBlocks
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
GemmDataType
::
F32_F32_F32
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F32
{},
F32
{},
F32
{},
F32
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F32_F32_F32
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F32
{},
F32
{},
F32
{},
F32
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F32_F32_F32
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
return
profile
(
F32
{},
F32
{},
F32
{},
F32
{},
Col
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F32_F32_F32
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
return
profile
(
F32
{},
F32
{},
F32
{},
F32
{},
Col
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Col
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Col
{},
Col
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_gemm_streamk
);
profiler/src/profile_grouped_conv_bwd_weight.cpp
View file @
5387d422
...
...
@@ -83,19 +83,7 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
GNWC
=
ck
::
tensor_layout
::
convolution
::
GNWC
;
using
GNHWC
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
NHWGC
=
ck
::
tensor_layout
::
convolution
::
NHWGC
;
using
GNDHWC
=
ck
::
tensor_layout
::
convolution
::
GNDHWC
;
using
GKXC
=
ck
::
tensor_layout
::
convolution
::
GKXC
;
using
GKYXC
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
GKZYXC
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
GNWK
=
ck
::
tensor_layout
::
convolution
::
GNWK
;
using
GNHWK
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
NHWGK
=
ck
::
tensor_layout
::
convolution
::
NHWGK
;
using
GNDHWK
=
ck
::
tensor_layout
::
convolution
::
GNDHWK
;
using
namespace
ck
::
tensor_layout
::
convolution
;
constexpr
auto
I1
=
ck
::
Number
<
1
>
{};
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
...
...
@@ -194,6 +182,22 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
return
profile
(
I3
,
GNDHWC
{},
GKZYXC
{},
GNDHWK
{},
BF16
{},
F32
{},
BF16
{});
}
}
else
if
(
num_dim_spatial
==
3
&&
layout
==
ConvLayout
::
NHWGC_GKYXC_NHWGK
)
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
{
return
profile
(
I3
,
NDHWGC
{},
GKZYXC
{},
NDHWGK
{},
F32
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
{
return
profile
(
I3
,
NDHWGC
{},
GKZYXC
{},
NDHWGK
{},
F16
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
ConvDataType
::
BF16_F32_BF16
)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return
profile
(
I3
,
NDHWGC
{},
GKZYXC
{},
NDHWGK
{},
BF16
{},
F32
{},
BF16
{});
}
}
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
...
...
script/profile_batched_gemm.sh
View file @
5387d422
...
...
@@ -3,13 +3,6 @@
## GPU visibility
export
HIP_VISIBLE_DEVICES
=
0
DRIVER
=
"../build/bin/ckProfiler"
OP
=
$1
DATATYPE
=
$2
LAYOUT
=
$3
VERIFY
=
$4
INIT
=
$5
LOG
=
$6
TIME
=
$7
OP
=
$1
DATATYPE
=
$2
...
...
test/batched_gemm_multi_d/CMakeLists.txt
View file @
5387d422
# TODO: Enable for gfx90a after complier fix
if
(
NOT GPU_TARGETS MATCHES
"gfx90a"
)
add_gtest_executable
(
test_batched_gemm_multi_d test_batched_gemm_multi_d.cpp
)
target_link_libraries
(
test_batched_gemm_multi_d PRIVATE utility device_batched_gemm_multi_d_instance
)
if
(
DL_KERNELS
)
add_gtest_executable
(
test_batched_gemm_multi_d test_batched_gemm_multi_d.cpp
)
target_link_libraries
(
test_batched_gemm_multi_d PRIVATE utility device_batched_gemm_multi_d_instance
)
endif
()
test/block_swizzle_test/block_swizzle_test.cpp
0 → 100644
View file @
5387d422
#include <stdio.h>
#include <string>
#include <algorithm>
#include <vector>
#include <limits>
#include "simple_args.h"
simple_args_t
create_arg
(
int
argc
,
char
**
argv
)
{
simple_args_t
args
;
args
.
insert
(
"m"
,
"1024"
,
"matrix m"
)
.
insert
(
"n"
,
"1024"
,
"matrix n"
)
.
insert
(
"k"
,
"1024"
,
"matrix k"
)
.
insert
(
"m_per_block"
,
"128"
,
"m_per_block"
)
.
insert
(
"n_per_block"
,
"128"
,
"n_per_block"
)
.
insert
(
"k_per_block"
,
"32"
,
"k_per_block"
)
.
insert
(
"num_cu"
,
"104"
,
"num cu"
)
.
insert
(
"occupancy"
,
"2"
,
"occupancy"
)
.
parse
(
argc
,
argv
);
return
args
;
}
namespace
impl
{
template
<
typename
T
>
T
integer_divide_ceil
(
T
n
,
T
d
)
{
return
(
n
+
d
-
1
)
/
d
;
}
template
<
typename
T
>
T
min
(
T
a
,
T
b
)
{
return
a
>
b
?
b
:
a
;
}
template
<
typename
T
>
T
max
(
T
a
,
T
b
)
{
return
a
>
b
?
a
:
b
;
}
}
// namespace impl
struct
block_dispatcher_t
{
public:
uint32_t
m_per_block
;
uint32_t
n_per_block
;
uint32_t
k_per_block
;
uint32_t
num_cu
;
uint32_t
occupancy
;
uint32_t
m
;
uint32_t
n
;
uint32_t
k
;
//--------------------------------------
uint32_t
sk_num_blocks
;
uint32_t
sk_num_big_blocks
;
uint32_t
sk_total_iters
;
// uint32_t sk_num_blocks_per_tile; // how many
uint32_t
dp_start_block_idx
;
uint32_t
dp_iters_per_block
;
uint32_t
dp_num_blocks
;
uint32_t
k_iters_per_tile
;
uint32_t
k_iters_per_big_block
;
//--------------------------------------
static
constexpr
uint32_t
min_k_iters_per_sk_block
=
1
;
void
dump
()
{
printf
(
"%dx%dx%d(%dx%dx%d), cu:%d, occ:%d, grids:%d, sk_num_big_blocks:%d, "
"sk_num_blocks:%d, sk_total_iters:%d, dp_start_block_idx:%d, dp_iters_per_block:%d, "
"dp_num_blocks:%d, k_iters_per_tile:%d, k_iters_per_big_block:%d
\n
"
,
m
,
n
,
k
,
m_per_block
,
n_per_block
,
k_per_block
,
num_cu
,
occupancy
,
get_grid_dims_x
(),
sk_num_big_blocks
,
sk_num_blocks
,
sk_total_iters
,
dp_start_block_idx
,
dp_iters_per_block
,
dp_num_blocks
,
k_iters_per_tile
,
k_iters_per_big_block
);
}
block_dispatcher_t
(
uint32_t
m_per_block_
,
uint32_t
n_per_block_
,
uint32_t
k_per_block_
,
uint32_t
num_cu_
,
uint32_t
occupancy_
,
uint32_t
m_
,
uint32_t
n_
,
uint32_t
k_
)
:
m_per_block
(
m_per_block_
),
n_per_block
(
n_per_block_
),
k_per_block
(
k_per_block_
),
num_cu
(
num_cu_
),
occupancy
(
occupancy_
),
m
(
m_
),
n
(
n_
),
k
(
k_
)
{
init
();
}
uint32_t
get_grid_dims_x
()
{
return
dp_start_block_idx
+
dp_num_blocks
;
}
uint32_t
get_block_idx
(
uint32_t
bid
)
{
// block id is linearily allocated along sk blocks (dp blocks are fine)
// this function will compute blockIdx.x and the linear sk block mapping
// uint32_t block_idx = 0;
// if(bid < sk_num_big_blocks) {
// uint32_t current_k_iter = bid * k_iters_per_big_block;
// tile_idx = current_k_iter / k_iters_per_tile;
// }
return
bid
;
}
uint32_t
get_current_itr
(
uint32_t
block_idx
)
{
uint32_t
current_itr
=
0
;
if
(
block_idx
<
sk_num_big_blocks
)
{
current_itr
=
block_idx
*
k_iters_per_big_block
;
}
else
if
(
block_idx
<
sk_num_blocks
)
{
current_itr
=
(
sk_num_big_blocks
*
k_iters_per_big_block
)
+
(
block_idx
-
sk_num_big_blocks
)
*
(
k_iters_per_big_block
-
1
);
}
else
if
(
block_idx
>=
dp_start_block_idx
)
{
current_itr
=
sk_total_iters
+
(
block_idx
-
dp_start_block_idx
)
*
dp_iters_per_block
;
}
return
current_itr
;
}
void
get_block_itr
(
uint32_t
block_idx
,
uint32_t
&
iter_start
,
uint32_t
&
iter_end
)
{
if
(
block_idx
<
sk_num_big_blocks
)
{
iter_start
=
block_idx
*
k_iters_per_big_block
;
iter_end
=
iter_start
+
k_iters_per_big_block
;
}
else
if
(
block_idx
<
sk_num_blocks
)
{
iter_start
=
(
sk_num_big_blocks
*
k_iters_per_big_block
)
+
(
block_idx
-
sk_num_big_blocks
)
*
(
k_iters_per_big_block
-
1
);
iter_end
=
iter_start
+
(
k_iters_per_big_block
-
1
);
}
else
if
(
block_idx
>=
dp_start_block_idx
)
{
iter_start
=
sk_total_iters
+
(
block_idx
-
dp_start_block_idx
)
*
dp_iters_per_block
;
iter_end
=
iter_start
+
dp_iters_per_block
;
}
}
private:
void
init
()
{
uint32_t
num_tiles
=
impl
::
integer_divide_ceil
(
m
,
m_per_block
)
*
impl
::
integer_divide_ceil
(
n
,
n_per_block
);
k_iters_per_tile
=
impl
::
integer_divide_ceil
(
k
,
k_per_block
);
// one cu can hold one wg at one time, from the whole chip's point of view
// if number of wg is same as num_cu, we call it 1 dispatch
// if number of wg is 2x num_cu, we call it 2 dispatches.
// one dispatch can deliever wg same as num_cu (full dispatch), or less than num_cu (partial
// dispatch)
//
uint32_t
full_dispatches
=
num_tiles
/
num_cu
;
uint32_t
full_dispatch_tiles
=
full_dispatches
*
num_cu
;
uint32_t
partial_dispatche_tiles
=
num_tiles
-
full_dispatch_tiles
;
uint32_t
sk_occupancy
=
occupancy
;
uint32_t
dp_tiles
=
full_dispatch_tiles
;
uint32_t
sk_tiles
=
partial_dispatche_tiles
;
if
(
full_dispatches
<
occupancy
)
{
// in this case, we allocate all blocks as sk blocks
// sk_occupancy = occupancy - full_dispatches;
sk_occupancy
=
1
;
// TODO: single occ seems better
dp_tiles
=
full_dispatch_tiles
;
sk_tiles
=
partial_dispatche_tiles
;
}
else
if
((
occupancy
>
1
)
&&
(
full_dispatches
%
occupancy
==
occupancy
-
1
))
{
// e.g. occupancy = 2, full_dispatches = 3, 5, 7 ...
// occupancy = 3, full_dispatches = 5, 8, 11 ...
// occupancy = 4, full_dispatches = 7, 11 ...
sk_occupancy
=
1
;
// left 1 slot for sk occupancy
dp_tiles
=
full_dispatch_tiles
;
sk_tiles
=
partial_dispatche_tiles
;
}
else
{
// others, we reduce 1 dispatch from dp, together with partial dispatch,
// to construct sk dispatch
sk_occupancy
=
occupancy
-
((
full_dispatches
-
1
)
%
occupancy
);
dp_tiles
=
full_dispatch_tiles
-
num_cu
;
sk_tiles
=
partial_dispatche_tiles
+
num_cu
;
}
// dp_num_blocks = dp_tiles;
// dp_start_block_idx = num_cu * sk_occupancy;
dp_iters_per_block
=
k_iters_per_tile
;
sk_total_iters
=
k_iters_per_tile
*
sk_tiles
;
// printf("num_tiles:%d, full_dispatches:%d, full_dispatch_tiles:%d,
// partial_dispatche_tiles:%d\n",
// num_tiles, full_dispatches, full_dispatch_tiles, partial_dispatche_tiles);
{
uint32_t
min_sk_tiles
=
(
sk_tiles
>=
num_cu
)
?
num_cu
:
(
sk_tiles
+
1
);
uint32_t
max_sk_tiles
=
(
sk_tiles
>=
num_cu
)
?
num_cu
*
sk_occupancy
:
impl
::
min
(
num_cu
,
sk_total_iters
/
min_k_iters_per_sk_block
);
// if use dp for sk-block, how many iters do we need
uint32_t
dp_for_sk_iters
=
k_iters_per_tile
;
uint32_t
best_sk_score
=
std
::
numeric_limits
<
int
>::
max
();
// we need to find the smallest sk iters
for
(
uint32_t
tentative_sk_blocks
=
min_sk_tiles
;
tentative_sk_blocks
<
max_sk_tiles
;
tentative_sk_blocks
++
)
{
uint32_t
tentative_sk_iters_per_block
=
(
sk_total_iters
+
tentative_sk_blocks
-
1
)
/
tentative_sk_blocks
;
uint32_t
tentative_sk_iters
=
tentative_sk_iters_per_block
;
uint32_t
sk_blocks_per_tile
=
(
tentative_sk_blocks
+
sk_tiles
-
1
)
/
sk_tiles
;
// TODO: carefully adjust this parameter
// the more sk_blocks_per_tile, the worse the overhead
uint32_t
cross_sk_blocks_overhead
=
sk_blocks_per_tile
;
if
(
tentative_sk_blocks
%
sk_tiles
!=
0
)
{
// penalty for uneven divide
cross_sk_blocks_overhead
+=
sk_blocks_per_tile
*
tentative_sk_iters_per_block
/
50
;
}
uint32_t
tentative_sk_score
=
tentative_sk_iters
+
cross_sk_blocks_overhead
;
if
(
tentative_sk_score
<
best_sk_score
)
{
best_sk_score
=
tentative_sk_score
;
sk_num_blocks
=
tentative_sk_blocks
;
}
}
if
(
best_sk_score
>=
dp_for_sk_iters
)
{
sk_num_blocks
=
0
;
}
if
(
sk_num_blocks
==
0
)
{
sk_num_big_blocks
=
0
;
k_iters_per_big_block
=
0
;
dp_num_blocks
=
num_tiles
;
// all tile to be dp block
dp_start_block_idx
=
0
;
sk_total_iters
=
0
;
// clear this tiles
}
else
{
uint32_t
k_iters_per_sk_block
=
sk_total_iters
/
sk_num_blocks
;
sk_num_big_blocks
=
sk_total_iters
-
k_iters_per_sk_block
*
sk_num_blocks
;
k_iters_per_big_block
=
k_iters_per_sk_block
+
1
;
dp_num_blocks
=
dp_tiles
;
dp_start_block_idx
=
(
sk_num_blocks
+
num_cu
-
1
)
/
num_cu
*
num_cu
;
}
}
}
};
struct
tile_work_t
{
uint32_t
tile_idx
;
uint32_t
iter_begin
;
uint32_t
k_begin
;
uint32_t
k_end
;
uint32_t
k_iters_remaining
;
};
int
main
(
int
argc
,
char
**
argv
)
{
simple_args_t
arg
=
create_arg
(
argc
,
argv
);
block_dispatcher_t
block_dispatcher
{
arg
.
get_uint32
(
"m_per_block"
),
arg
.
get_uint32
(
"n_per_block"
),
arg
.
get_uint32
(
"k_per_block"
),
arg
.
get_uint32
(
"num_cu"
),
arg
.
get_uint32
(
"occupancy"
),
arg
.
get_uint32
(
"m"
),
arg
.
get_uint32
(
"n"
),
arg
.
get_uint32
(
"k"
)};
block_dispatcher
.
dump
();
// simulate actual kernel launch
uint32_t
dim_x
=
block_dispatcher
.
get_grid_dims_x
();
uint32_t
total_k_iters
=
impl
::
integer_divide_ceil
(
arg
.
get_uint32
(
"k"
),
arg
.
get_uint32
(
"k_per_block"
));
uint32_t
num_tiles
=
impl
::
integer_divide_ceil
(
arg
.
get_uint32
(
"m"
),
arg
.
get_uint32
(
"m_per_block"
))
*
impl
::
integer_divide_ceil
(
arg
.
get_uint32
(
"n"
),
arg
.
get_uint32
(
"n_per_block"
));
std
::
vector
<
int
>
valid_tile_record
(
num_tiles
*
total_k_iters
);
for
(
uint32_t
bid
=
0
;
bid
<
dim_x
;
bid
++
)
{
uint32_t
block_idx
=
block_dispatcher
.
get_block_idx
(
bid
);
bool
is_sk_block
=
block_idx
<
(
block_dispatcher
.
sk_num_blocks
);
bool
is_dp_block
=
block_idx
>=
block_dispatcher
.
dp_start_block_idx
;
uint32_t
iter_start
,
iter_end
;
block_dispatcher
.
get_block_itr
(
block_idx
,
iter_start
,
iter_end
);
uint32_t
total_iter_length
=
iter_end
-
iter_start
;
while
(
true
)
{
uint32_t
iter_length_mod
=
iter_end
%
block_dispatcher
.
k_iters_per_tile
;
uint32_t
current_iter_length
=
impl
::
min
(
iter_length_mod
==
0
?
(
iter_end
-
iter_start
)
:
iter_length_mod
,
total_iter_length
);
uint32_t
tile_idx
=
(
iter_end
-
1
)
/
block_dispatcher
.
k_iters_per_tile
;
uint32_t
tile_iter_start
=
((
iter_end
-
1
)
%
block_dispatcher
.
k_iters_per_tile
)
-
current_iter_length
+
1
;
if
(
is_sk_block
)
{
printf
(
"[sk_block] bid:%3d, block_idx:%3d, tile_idx:%3d, iter_start:%d(%d | %d), "
"iter_end:%d (len:%d)
\n
"
,
bid
,
block_idx
,
tile_idx
,
iter_end
-
current_iter_length
,
tile_iter_start
,
iter_start
,
iter_end
,
current_iter_length
);
}
else
if
(
is_dp_block
)
{
printf
(
"[dp_block] bid:%3d, block_idx:%3d, tile_idx:%3d, iter_start:%d(%d | %d), "
"iter_end:%d (len:%d)
\n
"
,
bid
,
block_idx
,
tile_idx
,
iter_end
-
current_iter_length
,
tile_iter_start
,
iter_start
,
iter_end
,
current_iter_length
);
}
else
{
printf
(
"[other ] bid:%3d, block_idx:%3d
\n
"
,
bid
,
block_idx
);
}
// some validation check
for
(
auto
i
=
iter_end
-
current_iter_length
;
i
<
iter_end
;
i
++
)
{
if
(
i
>=
valid_tile_record
.
size
())
{
printf
(
"unexpected, current iter:%d larger than max:%d
\n
"
,
i
,
valid_tile_record
.
size
());
return
-
1
;
}
valid_tile_record
[
i
]
=
1
;
}
iter_end
-=
current_iter_length
;
if
(
iter_end
<=
iter_start
)
break
;
}
}
int
untouched
=
0
;
for
(
auto
i
=
0
;
i
<
valid_tile_record
.
size
();
i
++
)
{
if
(
valid_tile_record
[
i
]
!=
1
)
{
printf
(
"untouched at %d (%d)
\n
"
,
i
,
valid_tile_record
.
size
());
untouched
++
;
}
}
printf
(
"untouched %d/%d, %s
\n
"
,
untouched
,
valid_tile_record
.
size
(),
untouched
==
0
?
"valid"
:
"fail"
);
}
test/block_swizzle_test/rebuild.sh
0 → 100644
View file @
5387d422
CC
=
g++
$CC
-Wall
-std
=
c++17
-Iinclude
-O3
block_swizzle_test.cpp
-o
block_swizzle_test.exe
\ No newline at end of file
test/block_swizzle_test/simple_args.h
0 → 100644
View file @
5387d422
#pragma once
#include <iomanip>
#include <iostream>
#include <stdlib.h>
#include <string>
#include <unordered_map>
#include <vector>
#include <assert.h>
struct
arg_content_t
{
std
::
string
name
;
// key
std
::
string
value
;
std
::
string
help_text
;
};
class
simple_args_t
{
public:
simple_args_t
()
{}
simple_args_t
&
insert
(
const
std
::
string
&
name_
,
const
std
::
string
&
default_value_
,
const
std
::
string
&
help_text_
)
{
arg_content_t
arg
{
name_
,
default_value_
,
help_text_
};
if
(
arg_map
.
count
(
arg
.
name
)
!=
0
)
{
std
::
cout
<<
"arg:"
<<
arg
.
name
<<
"already exist"
<<
std
::
endl
;
}
else
{
arg_map
[
arg
.
name
]
=
arg
;
}
return
*
this
;
}
void
usage
()
{
for
(
auto
&
content
:
arg_map
)
{
std
::
vector
<
std
::
string
>
help_text_lines
;
size_t
pos
=
0
;
for
(
size_t
next_pos
=
content
.
second
.
help_text
.
find
(
'\n'
,
pos
);
next_pos
!=
std
::
string
::
npos
;)
{
help_text_lines
.
push_back
(
std
::
string
(
content
.
second
.
help_text
.
begin
()
+
pos
,
content
.
second
.
help_text
.
begin
()
+
next_pos
++
));
pos
=
next_pos
;
next_pos
=
content
.
second
.
help_text
.
find
(
'\n'
,
pos
);
}
help_text_lines
.
push_back
(
std
::
string
(
content
.
second
.
help_text
.
begin
()
+
pos
,
content
.
second
.
help_text
.
end
()));
int
arg_name_width
=
16
-
content
.
second
.
name
.
length
();
arg_name_width
=
arg_name_width
>
0
?
arg_name_width
:
2
;
std
::
cout
<<
std
::
setw
(
4
)
<<
"-"
<<
content
.
second
.
name
<<
std
::
setw
(
arg_name_width
)
<<
" "
<<
help_text_lines
[
0
]
<<
std
::
endl
;
for
(
auto
help_next_line
=
std
::
next
(
help_text_lines
.
begin
());
help_next_line
!=
help_text_lines
.
end
();
++
help_next_line
)
{
std
::
cout
<<
std
::
setw
(
28
)
<<
" "
<<
*
help_next_line
<<
std
::
endl
;
}
}
}
bool
parse
(
int
argc
,
char
*
argv
[],
int
start_index
=
1
)
{
if
(
argc
<=
start_index
)
{
// std::cout << "not enough args (" << argc << ") with starting index " << start_index
// << std::endl;
return
true
;
}
for
(
int
i
=
start_index
;
i
<
argc
;
i
++
)
{
std
::
string
cur_arg
=
std
::
string
(
argv
[
i
]);
if
(
cur_arg
[
0
]
!=
'-'
)
{
std
::
cout
<<
"illegal input"
<<
std
::
endl
;
usage
();
return
false
;
}
else
if
(
cur_arg
[
0
]
==
'-'
&&
cur_arg
[
1
]
==
'?'
)
{
usage
();
return
false
;
}
else
{
size_t
found_equal
=
cur_arg
.
find
(
'='
);
if
(
found_equal
==
std
::
string
::
npos
||
found_equal
==
(
cur_arg
.
length
()
-
1
))
{
std
::
cout
<<
"failed while parsing
\"
"
<<
cur_arg
<<
"
\"
, "
<<
"arg must be in the form
\"
-name=value
\"
"
<<
std
::
endl
;
return
false
;
}
std
::
string
arg_name
=
cur_arg
.
substr
(
1
,
found_equal
-
1
);
std
::
string
arg_value
=
cur_arg
.
substr
(
found_equal
+
1
);
if
(
arg_map
.
count
(
arg_name
)
==
0
)
{
std
::
cout
<<
"no such arg
\"
"
<<
arg_name
<<
"
\"
registered"
<<
std
::
endl
;
return
false
;
}
arg_map
[
arg_name
].
value
=
arg_value
;
}
}
return
true
;
}
std
::
string
get
(
const
std
::
string
&
name
)
const
{
return
get_str
(
name
);
}
std
::
string
get_str
(
const
std
::
string
&
name
)
const
{
assert
(
arg_map
.
count
(
name
)
!=
0
);
std
::
string
value
=
arg_map
.
at
(
name
).
value
;
return
value
;
}
int
get_int
(
const
std
::
string
&
name
)
const
{
assert
(
arg_map
.
count
(
name
)
!=
0
);
int
value
=
atoi
(
arg_map
.
at
(
name
).
value
.
c_str
());
return
value
;
}
uint32_t
get_uint32
(
const
std
::
string
&
name
)
const
{
assert
(
arg_map
.
count
(
name
)
!=
0
);
uint32_t
value
=
strtoul
(
arg_map
.
at
(
name
).
value
.
c_str
(),
nullptr
,
10
);
return
value
;
}
uint64_t
get_uint64
(
const
std
::
string
&
name
)
const
{
assert
(
arg_map
.
count
(
name
)
!=
0
);
uint64_t
value
=
strtoull
(
arg_map
.
at
(
name
).
value
.
c_str
(),
nullptr
,
10
);
return
value
;
}
double
get_double
(
const
std
::
string
&
name
)
const
{
assert
(
arg_map
.
count
(
name
)
!=
0
);
double
value
=
atof
(
arg_map
.
at
(
name
).
value
.
c_str
());
return
value
;
}
float
get_float
(
const
std
::
string
&
name
)
const
{
assert
(
arg_map
.
count
(
name
)
!=
0
);
float
value
=
atof
(
arg_map
.
at
(
name
).
value
.
c_str
());
return
value
;
}
private:
std
::
unordered_map
<
std
::
string
,
arg_content_t
>
arg_map
;
};
test/grouped_convnd_bwd_weight/test_grouped_convnd_bwd_weight.cpp
View file @
5387d422
...
...
@@ -85,7 +85,10 @@ using KernelTypes2d = ::testing::Types<
using
KernelTypes3d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
float
,
float
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ck
::
Number
<
3
>>
,
std
::
tuple
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ck
::
Number
<
3
>>
,
std
::
tuple
<
ck
::
bhalf_t
,
float
,
ck
::
bhalf_t
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ck
::
Number
<
3
>>>
;
std
::
tuple
<
ck
::
bhalf_t
,
float
,
ck
::
bhalf_t
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ck
::
Number
<
3
>>
,
std
::
tuple
<
float
,
float
,
float
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ck
::
Number
<
3
>>
,
std
::
tuple
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ck
::
Number
<
3
>>
,
std
::
tuple
<
ck
::
bhalf_t
,
float
,
ck
::
bhalf_t
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ck
::
Number
<
3
>>>
;
TYPED_TEST_SUITE
(
TestGroupedConvndBwdWeight1d
,
KernelTypes1d
);
TYPED_TEST_SUITE
(
TestGroupedConvndBwdWeight2d
,
KernelTypes2d
);
...
...
Prev
1
2
3
4
5
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment