Commit 52423948 authored by Jehandad Khan's avatar Jehandad Khan
Browse files

Merge branch 'master' into jd_redux

parents b97af4ec 98a2cfcc
#pragma once
#include <unistd.h>
#include "device.hpp"
#include "tensor.hpp"
#include "gridwise_convolution_kernel_wrapper.hpp"
//#include "gridwise_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw_padded.hpp"
#include "gridwise_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw_padded_lds_double_buffer.hpp"
template <typename T,
typename InDesc,
typename WeiDesc,
typename OutDesc,
typename ConvStrides,
typename ConvDilations,
typename LeftPads,
typename RightPads>
void device_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw_padded(InDesc,
const Tensor<T>& in_nchw,
WeiDesc,
const Tensor<T>& wei_kcyx,
OutDesc,
Tensor<T>& out_nkhw,
ConvStrides,
ConvDilations,
LeftPads,
RightPads,
index_t nrepeat)
{
using namespace ck;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto in_nchw_desc =
make_native_tensor_descriptor(InDesc::GetLengths(), InDesc::GetStrides());
constexpr auto wei_kcyx_desc =
make_native_tensor_descriptor(WeiDesc::GetLengths(), WeiDesc::GetStrides());
constexpr auto out_nkhw_desc =
make_native_tensor_descriptor(OutDesc::GetLengths(), OutDesc::GetStrides());
constexpr index_t N = out_nkhw_desc.GetLength(I0);
constexpr index_t K = out_nkhw_desc.GetLength(I1);
constexpr index_t Ho = out_nkhw_desc.GetLength(I2);
constexpr index_t Wo = out_nkhw_desc.GetLength(I3);
std::size_t data_sz = sizeof(T);
DeviceMem in_nchw_device_buf(data_sz * in_nchw.mDesc.GetElementSpace());
DeviceMem wei_kcyx_device_buf(data_sz * wei_kcyx.mDesc.GetElementSpace());
DeviceMem out_nkhw_device_buf(data_sz * out_nkhw.mDesc.GetElementSpace());
in_nchw_device_buf.ToDevice(in_nchw.mData.data());
wei_kcyx_device_buf.ToDevice(wei_kcyx.mData.data());
out_nkhw_device_buf.ToDevice(out_nkhw.mData.data());
#if 1
// BlockSize = 256, each thread hold 64 data
constexpr index_t BlockSize = 256;
constexpr index_t BPerBlock = 16;
constexpr index_t KPerBlock = 128;
constexpr index_t EPerBlock = 8;
constexpr index_t GemmNRepeat = 2;
constexpr index_t GemmMPerThreadSubC = 4;
constexpr index_t GemmNPerThreadSubC = 4;
constexpr index_t GemmMLevel0Cluster = 4;
constexpr index_t GemmNLevel0Cluster = 4;
constexpr index_t GemmMLevel1Cluster = 4;
constexpr index_t GemmNLevel1Cluster = 4;
constexpr index_t GemmKPerThreadLoop = 1;
constexpr index_t GemmDataPerReadA = 4;
constexpr index_t GemmDataPerReadB = 4;
using InBlockCopySubLengths_E_N1_B_N2 = Sequence<1, 1, 1, 4>;
using InBlockCopyClusterLengths_E_N1_B_N2 = Sequence<8, 2, 16, 1>;
using InBlockCopyThreadClusterArrangeOrder = Sequence<0, 1, 3, 2>; // [E, N1, N2, B]
using InBlockCopySrcAccessOrder = Sequence<0, 2, 1, 3>; // [E, B, N1, N2]
using InBlockCopyDstAccessOrder = Sequence<0, 1, 2, 3>; // [E, N1, B, N2]
constexpr index_t InBlockCopySrcDataPerRead_B = 1;
constexpr index_t InBlockCopyDstDataPerWrite_N2 = 4;
using WeiBlockCopySubLengths_E_K = Sequence<4, 1>;
using WeiBlockCopyClusterLengths_E_K = Sequence<2, 128>;
using WeiBlockCopyThreadClusterArrangeOrder = Sequence<1, 0>; // [K, E]
using WeiBlockCopySrcAccessOrder = Sequence<1, 0>; // [K, E]
using WeiBlockCopyDstAccessOrder = Sequence<0, 1>; // [E, K]
constexpr index_t WeiBlockCopySrcDataPerRead_E = 4;
constexpr index_t WeiBlockCopyDstDataPerWrite_K = 1;
#elif 0
// BlockSize = 64, each thread hold 64 data
constexpr index_t BlockSize = 64;
constexpr index_t BPerBlock = 8;
constexpr index_t KPerBlock = 64;
constexpr index_t EPerBlock = 8;
constexpr index_t GemmNRepeat = 2;
constexpr index_t GemmMPerThreadSubC = 4;
constexpr index_t GemmNPerThreadSubC = 4;
constexpr index_t GemmMLevel0Cluster = 4;
constexpr index_t GemmNLevel0Cluster = 4;
constexpr index_t GemmMLevel1Cluster = 2;
constexpr index_t GemmNLevel1Cluster = 2;
constexpr index_t GemmKPerThreadLoop = 1;
constexpr index_t GemmDataPerReadA = 4;
constexpr index_t GemmDataPerReadB = 4;
using InBlockCopySubLengths_E_N1_B_N2 = Sequence<1, 2, 1, 4>;
using InBlockCopyClusterLengths_E_N1_B_N2 = Sequence<8, 1, 8, 1>;
using InBlockCopyThreadClusterArrangeOrder = Sequence<0, 1, 3, 2>; // [E, N1, N2, B]
using InBlockCopySrcAccessOrder = Sequence<0, 2, 1, 3>; // [E, B, N1, N2]
using InBlockCopyDstAccessOrder = Sequence<0, 1, 2, 3>; // [E, N1, B, N2]
constexpr index_t InBlockCopySrcDataPerRead_B = 1;
constexpr index_t InBlockCopyDstDataPerWrite_N2 = 4;
using WeiBlockCopySubLengths_E_K = Sequence<4, 2>;
using WeiBlockCopyClusterLengths_E_K = Sequence<2, 32>;
using WeiBlockCopyThreadClusterArrangeOrder = Sequence<1, 0>; // [K, E]
using WeiBlockCopySrcAccessOrder = Sequence<1, 0>; // [K, E]
using WeiBlockCopyDstAccessOrder = Sequence<0, 1>; // [E, K]
constexpr index_t WeiBlockCopySrcDataPerRead_E = 4;
constexpr index_t WeiBlockCopyDstDataPerWrite_K = 1;
#elif 0
// BlockSize = 256, blockwise-GEMM 64x128, each thread hold 32 data
constexpr index_t BlockSize = 256;
constexpr index_t BPerBlock = 16;
constexpr index_t KPerBlock = 64;
constexpr index_t EPerBlock = 8;
constexpr index_t GemmNRepeat = 2;
constexpr index_t GemmMPerThreadSubC = 2;
constexpr index_t GemmNPerThreadSubC = 4;
constexpr index_t GemmMLevel0Cluster = 4;
constexpr index_t GemmNLevel0Cluster = 4;
constexpr index_t GemmMLevel1Cluster = 4;
constexpr index_t GemmNLevel1Cluster = 4;
constexpr index_t GemmKPerThreadLoop = 1;
constexpr index_t GemmDataPerReadA = 2;
constexpr index_t GemmDataPerReadB = 4;
using InBlockCopySubLengths_E_N1_B_N2 = Sequence<1, 1, 1, 4>;
using InBlockCopyClusterLengths_E_N1_B_N2 = Sequence<8, 2, 16, 1>;
using InBlockCopyThreadClusterArrangeOrder = Sequence<0, 1, 3, 2>; // [E, N1, N2, B]
using InBlockCopySrcAccessOrder = Sequence<0, 2, 1, 3>; // [E, B, N1, N2]
using InBlockCopyDstAccessOrder = Sequence<0, 1, 2, 3>; // [E, N1, B, N2]
constexpr index_t InBlockCopySrcDataPerRead_B = 1;
constexpr index_t InBlockCopyDstDataPerWrite_N2 = 4;
using WeiBlockCopySubLengths_E_K = Sequence<2, 1>;
using WeiBlockCopyClusterLengths_E_K = Sequence<4, 64>;
using WeiBlockCopyThreadClusterArrangeOrder = Sequence<1, 0>; // [K, E]
using WeiBlockCopySrcAccessOrder = Sequence<1, 0>; // [K, E]
using WeiBlockCopyDstAccessOrder = Sequence<0, 1>; // [E, K]
constexpr index_t WeiBlockCopySrcDataPerRead_E = 2;
constexpr index_t WeiBlockCopyDstDataPerWrite_K = 1;
#endif
constexpr index_t N1 = GemmNRepeat;
constexpr index_t N2 = GemmNPerThreadSubC;
constexpr index_t B = (N * Ho * Wo) / (N1 * N2);
constexpr index_t GridSize =
((B + BPerBlock - 1) / BPerBlock) * ((K + KPerBlock - 1) / KPerBlock);
printf("%s: BlockSize %u, GridSize %u \n", __func__, BlockSize, GridSize);
constexpr auto gridwise_conv =
#if 0
GridwiseConvolutionImplicitGemm_v4r1_nchw_kcyx_nkhw_padded
#else
GridwiseConvolutionImplicitGemm_v4r1_nchw_kcyx_nkhw_padded_lds_double_buffer
#endif
<GridSize,
BlockSize,
T,
decltype(in_nchw_desc),
decltype(wei_kcyx_desc),
decltype(out_nkhw_desc),
ConvStrides,
ConvDilations,
LeftPads,
RightPads,
BPerBlock,
KPerBlock,
EPerBlock,
GemmNRepeat,
GemmMPerThreadSubC,
GemmNPerThreadSubC,
GemmMLevel0Cluster,
GemmNLevel0Cluster,
GemmMLevel1Cluster,
GemmNLevel1Cluster,
GemmKPerThreadLoop,
GemmDataPerReadA,
GemmDataPerReadB,
InBlockCopySubLengths_E_N1_B_N2,
InBlockCopyClusterLengths_E_N1_B_N2,
InBlockCopyThreadClusterArrangeOrder,
InBlockCopySrcAccessOrder,
InBlockCopyDstAccessOrder,
InBlockCopySrcDataPerRead_B,
InBlockCopyDstDataPerWrite_N2,
WeiBlockCopySubLengths_E_K,
WeiBlockCopyClusterLengths_E_K,
WeiBlockCopyThreadClusterArrangeOrder,
WeiBlockCopySrcAccessOrder,
WeiBlockCopyDstAccessOrder,
WeiBlockCopySrcDataPerRead_E,
WeiBlockCopyDstDataPerWrite_K>{};
for(index_t i = 0; i < nrepeat; ++i)
{
float time = launch_kernel(run_gridwise_convolution_kernel<decltype(gridwise_conv), T>,
dim3(GridSize),
dim3(BlockSize),
0,
static_cast<T*>(in_nchw_device_buf.GetDeviceBuffer()),
static_cast<T*>(wei_kcyx_device_buf.GetDeviceBuffer()),
static_cast<T*>(out_nkhw_device_buf.GetDeviceBuffer()));
printf("Elapsed time : %f ms, %f TFlop/s\n",
time,
(float)calculate_convolution_flops(InDesc{}, WeiDesc{}, OutDesc{}) /
(std::size_t(1000) * 1000 * 1000) / time);
usleep(std::min(time * 1000, float(10000)));
}
out_nkhw_device_buf.FromDevice(out_nkhw.mData.data());
}
...@@ -33,18 +33,11 @@ void device_convolution_implicit_gemm_v4r4_nchw_kcyx_nkhw(InDesc, ...@@ -33,18 +33,11 @@ void device_convolution_implicit_gemm_v4r4_nchw_kcyx_nkhw(InDesc,
constexpr auto wei_kcyx_desc = WeiDesc{}; constexpr auto wei_kcyx_desc = WeiDesc{};
constexpr auto out_nkhw_desc = OutDesc{}; constexpr auto out_nkhw_desc = OutDesc{};
constexpr index_t Hi = in_nchw_desc.GetLength(I2);
constexpr index_t Wi = in_nchw_desc.GetLength(I3);
constexpr index_t N = out_nkhw_desc.GetLength(I0); constexpr index_t N = out_nkhw_desc.GetLength(I0);
constexpr index_t K = out_nkhw_desc.GetLength(I1);
constexpr index_t Ho = out_nkhw_desc.GetLength(I2); constexpr index_t Ho = out_nkhw_desc.GetLength(I2);
constexpr index_t Wo = out_nkhw_desc.GetLength(I3); constexpr index_t Wo = out_nkhw_desc.GetLength(I3);
constexpr index_t K = wei_kcyx_desc.GetLength(I0);
constexpr index_t C = wei_kcyx_desc.GetLength(I1);
constexpr index_t Y = wei_kcyx_desc.GetLength(I2);
constexpr index_t X = wei_kcyx_desc.GetLength(I3);
std::size_t data_sz = sizeof(T); std::size_t data_sz = sizeof(T);
DeviceMem in_nchw_device_buf(data_sz * in_nchw.mDesc.GetElementSpace()); DeviceMem in_nchw_device_buf(data_sz * in_nchw.mDesc.GetElementSpace());
DeviceMem wei_kcyx_device_buf(data_sz * wei_kcyx.mDesc.GetElementSpace()); DeviceMem wei_kcyx_device_buf(data_sz * wei_kcyx.mDesc.GetElementSpace());
...@@ -54,7 +47,7 @@ void device_convolution_implicit_gemm_v4r4_nchw_kcyx_nkhw(InDesc, ...@@ -54,7 +47,7 @@ void device_convolution_implicit_gemm_v4r4_nchw_kcyx_nkhw(InDesc,
wei_kcyx_device_buf.ToDevice(wei_kcyx.mData.data()); wei_kcyx_device_buf.ToDevice(wei_kcyx.mData.data());
out_nkhw_device_buf.ToDevice(out_nkhw.mData.data()); out_nkhw_device_buf.ToDevice(out_nkhw.mData.data());
#if 0 #if 1
constexpr index_t BlockSize = 256; constexpr index_t BlockSize = 256;
constexpr index_t BPerBlock = 128; constexpr index_t BPerBlock = 128;
......
#pragma once
#include <unistd.h>
#include "device.hpp"
#include "tensor.hpp"
#include "gridwise_convolution_kernel_wrapper.hpp"
//#include "gridwise_convolution_implicit_gemm_v4r4_nchw_kcyx_nkhw_padded.hpp"
#include "gridwise_convolution_implicit_gemm_v4r4_nchw_kcyx_nkhw_padded_lds_double_buffer.hpp"
template <class T,
class InDesc,
class WeiDesc,
class OutDesc,
class ConvStrides,
class ConvDilations,
class LeftPads,
class RightPads>
void device_convolution_implicit_gemm_v4r4_nchw_kcyx_nkhw_padded(InDesc,
const Tensor<T>& in_nchw,
WeiDesc,
const Tensor<T>& wei_kcyx,
OutDesc,
Tensor<T>& out_nkhw,
ConvStrides,
ConvDilations,
LeftPads,
RightPads,
index_t nrepeat)
{
using namespace ck;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto in_nchw_desc = InDesc{};
constexpr auto wei_kcyx_desc = WeiDesc{};
constexpr auto out_nkhw_desc = OutDesc{};
constexpr index_t N = out_nkhw_desc.GetLength(I0);
constexpr index_t K = out_nkhw_desc.GetLength(I1);
constexpr index_t Ho = out_nkhw_desc.GetLength(I2);
constexpr index_t Wo = out_nkhw_desc.GetLength(I3);
std::size_t data_sz = sizeof(T);
DeviceMem in_nchw_device_buf(data_sz * in_nchw.mDesc.GetElementSpace());
DeviceMem wei_kcyx_device_buf(data_sz * wei_kcyx.mDesc.GetElementSpace());
DeviceMem out_nkhw_device_buf(data_sz * out_nkhw.mDesc.GetElementSpace());
in_nchw_device_buf.ToDevice(in_nchw.mData.data());
wei_kcyx_device_buf.ToDevice(wei_kcyx.mData.data());
out_nkhw_device_buf.ToDevice(out_nkhw.mData.data());
#if 1
constexpr index_t BlockSize = 256;
constexpr index_t BPerBlock = 128;
constexpr index_t KPerBlock = 128;
constexpr index_t EPerBlock = 8;
constexpr index_t GemmMPerThreadSubC = 4;
constexpr index_t GemmNPerThreadSubC = 4;
constexpr index_t GemmMLevel0Cluster = 4;
constexpr index_t GemmNLevel0Cluster = 4;
constexpr index_t GemmMLevel1Cluster = 4;
constexpr index_t GemmNLevel1Cluster = 4;
constexpr index_t GemmKPerThreadLoop = 1;
constexpr index_t GemmDataPerReadA = 4;
constexpr index_t GemmDataPerReadB = 4;
using InBlockCopySubLengths_E_B = Sequence<4, 1>;
using InBlockCopyClusterLengths_E_B = Sequence<2, 128>;
using InBlockCopyThreadClusterArrangeOrder = Sequence<0, 1>; // [E, B]
using InBlockCopySrcAccessOrder = Sequence<0, 1>; // [E, B]
using InBlockCopyDstAccessOrder = Sequence<0, 1>; // [E, B]
constexpr index_t InBlockCopyDataPerAccess_B = 1;
using WeiBlockCopySubLengths_E_K = Sequence<4, 1>;
using WeiBlockCopyClusterLengths_E_K = Sequence<2, 128>;
using WeiBlockCopyThreadClusterArrangeOrder = Sequence<1, 0>; // [K, E]
using WeiBlockCopySrcAccessOrder = Sequence<1, 0>; // [K, E]
using WeiBlockCopyDstAccessOrder = Sequence<0, 1>; // [E, K]
constexpr index_t WeiBlockCopySrcDataPerRead_E = 4;
constexpr index_t WeiBlockCopyDstDataPerWrite_K = 1;
constexpr index_t OutThreadCopyDataPerAccess_B = 1;
#elif 1
// 1x1 filter, 8x8 image
constexpr index_t BlockSize = 256;
constexpr index_t BPerBlock = 128;
constexpr index_t KPerBlock = 128;
constexpr index_t EPerBlock = 8;
constexpr index_t GemmMPerThreadSubC = 4;
constexpr index_t GemmNPerThreadSubC = 4;
constexpr index_t GemmMLevel0Cluster = 4;
constexpr index_t GemmNLevel0Cluster = 4;
constexpr index_t GemmMLevel1Cluster = 4;
constexpr index_t GemmNLevel1Cluster = 4;
constexpr index_t GemmKPerThreadLoop = 1;
constexpr index_t GemmDataPerReadA = 4;
constexpr index_t GemmDataPerReadB = 4;
using InBlockCopySubLengths_E_B = Sequence<1, 4>;
using InBlockCopyClusterLengths_E_B = Sequence<8, 32>;
using InBlockCopyThreadClusterArrangeOrder = Sequence<0, 1>; // [E, B]
using InBlockCopySrcAccessOrder = Sequence<0, 1>; // [E, B]
using InBlockCopyDstAccessOrder = Sequence<0, 1>; // [E, B]
constexpr index_t InBlockCopyDataPerAccess_B = 4;
using WeiBlockCopySubLengths_E_K = Sequence<4, 1>;
using WeiBlockCopyClusterLengths_E_K = Sequence<2, 128>;
using WeiBlockCopyThreadClusterArrangeOrder = Sequence<1, 0>; // [K, E]
using WeiBlockCopySrcAccessOrder = Sequence<1, 0>; // [K, E]
using WeiBlockCopyDstAccessOrder = Sequence<0, 1>; // [E, K]
constexpr index_t WeiBlockCopySrcDataPerRead_E = 4;
constexpr index_t WeiBlockCopyDstDataPerWrite_K = 1;
constexpr index_t OutThreadCopyDataPerAccess_B = 4;
#elif 0
// 1x1 filter, 14x14 image
constexpr index_t BlockSize = 256;
constexpr index_t BPerBlock = 128;
constexpr index_t KPerBlock = 128;
constexpr index_t EPerBlock = 8;
constexpr index_t GemmMPerThreadSubC = 4;
constexpr index_t GemmNPerThreadSubC = 4;
constexpr index_t GemmMLevel0Cluster = 4;
constexpr index_t GemmNLevel0Cluster = 4;
constexpr index_t GemmMLevel1Cluster = 4;
constexpr index_t GemmNLevel1Cluster = 4;
constexpr index_t GemmKPerThreadLoop = 1;
constexpr index_t GemmDataPerReadA = 4;
constexpr index_t GemmDataPerReadB = 4;
using InBlockCopySubLengths_E_B = Sequence<2, 2>;
using InBlockCopyClusterLengths_E_B = Sequence<4, 64>;
using InBlockCopyThreadClusterArrangeOrder = Sequence<0, 1>; // [E, B]
using InBlockCopySrcAccessOrder = Sequence<0, 1>; // [E, B]
using InBlockCopyDstAccessOrder = Sequence<0, 1>; // [E, B]
constexpr index_t InBlockCopyDataPerAccess_B = 2;
using WeiBlockCopySubLengths_E_K = Sequence<4, 1>;
using WeiBlockCopyClusterLengths_E_K = Sequence<2, 128>;
using WeiBlockCopyThreadClusterArrangeOrder = Sequence<1, 0>; // [K, E]
using WeiBlockCopySrcAccessOrder = Sequence<1, 0>; // [K, E]
using WeiBlockCopyDstAccessOrder = Sequence<0, 1>; // [E, K]
constexpr index_t WeiBlockCopySrcDataPerRead_E = 4;
constexpr index_t WeiBlockCopyDstDataPerWrite_K = 1;
constexpr index_t OutThreadCopyDataPerAccess_B = 2;
#endif
constexpr index_t B = N * Ho * Wo;
constexpr index_t GridSize =
((B + BPerBlock - 1) / BPerBlock) * ((K + KPerBlock - 1) / KPerBlock);
printf("%s: BlockSize %u, GridSize %u \n", __func__, BlockSize, GridSize);
constexpr auto gridwise_conv =
#if 0
GridwiseConvolutionImplicitGemm_v4r4_nchw_kcyx_nkhw_padded
#else
GridwiseConvolutionImplicitGemm_v4r4_nchw_kcyx_nkhw_padded_lds_double_buffer
#endif
<GridSize,
BlockSize,
T,
decltype(in_nchw_desc),
decltype(wei_kcyx_desc),
decltype(out_nkhw_desc),
ConvStrides,
ConvDilations,
LeftPads,
RightPads,
BPerBlock,
KPerBlock,
EPerBlock,
GemmMPerThreadSubC,
GemmNPerThreadSubC,
GemmMLevel0Cluster,
GemmNLevel0Cluster,
GemmMLevel1Cluster,
GemmNLevel1Cluster,
GemmKPerThreadLoop,
GemmDataPerReadA,
GemmDataPerReadB,
InBlockCopySubLengths_E_B,
InBlockCopyClusterLengths_E_B,
InBlockCopyThreadClusterArrangeOrder,
InBlockCopySrcAccessOrder,
InBlockCopyDstAccessOrder,
InBlockCopyDataPerAccess_B,
WeiBlockCopySubLengths_E_K,
WeiBlockCopyClusterLengths_E_K,
WeiBlockCopyThreadClusterArrangeOrder,
WeiBlockCopySrcAccessOrder,
WeiBlockCopyDstAccessOrder,
WeiBlockCopySrcDataPerRead_E,
WeiBlockCopyDstDataPerWrite_K,
OutThreadCopyDataPerAccess_B>{};
for(index_t i = 0; i < nrepeat; ++i)
{
float time = launch_kernel(run_gridwise_convolution_kernel<decltype(gridwise_conv), T>,
dim3(GridSize),
dim3(BlockSize),
0,
static_cast<T*>(in_nchw_device_buf.GetDeviceBuffer()),
static_cast<T*>(wei_kcyx_device_buf.GetDeviceBuffer()),
static_cast<T*>(out_nkhw_device_buf.GetDeviceBuffer()));
printf("Elapsed time : %f ms, %f TFlop/s\n",
time,
(float)calculate_convolution_flops(InDesc{}, WeiDesc{}, OutDesc{}) /
(std::size_t(1000) * 1000 * 1000) / time);
usleep(std::min(time * 1000, float(10000)));
}
out_nkhw_device_buf.FromDevice(out_nkhw.mData.data());
}
...@@ -65,9 +65,6 @@ void host_direct_convolution(const Tensor<TIn>& in_nchw, ...@@ -65,9 +65,6 @@ void host_direct_convolution(const Tensor<TIn>& in_nchw,
index_t h_pad_low = LowerPads{}.Get(Number<0>{}); index_t h_pad_low = LowerPads{}.Get(Number<0>{});
index_t w_pad_low = LowerPads{}.Get(Number<1>{}); index_t w_pad_low = LowerPads{}.Get(Number<1>{});
index_t h_pad_up = UpperPads{}.Get(Number<0>{});
index_t w_pad_up = UpperPads{}.Get(Number<1>{});
auto f = [&](auto n, auto k, auto ho, auto wo) { auto f = [&](auto n, auto k, auto ho, auto wo) {
double v = 0; double v = 0;
for(int c = 0; c < wei_kcyx.mDesc.GetLengths()[1]; ++c) for(int c = 0; c < wei_kcyx.mDesc.GetLengths()[1]; ++c)
...@@ -125,9 +122,6 @@ void host_winograd_3x3_convolution(const Tensor<TIn>& in_nchw, ...@@ -125,9 +122,6 @@ void host_winograd_3x3_convolution(const Tensor<TIn>& in_nchw,
index_t h_pad_low = LowerPads{}.Get(Number<0>{}); index_t h_pad_low = LowerPads{}.Get(Number<0>{});
index_t w_pad_low = LowerPads{}.Get(Number<1>{}); index_t w_pad_low = LowerPads{}.Get(Number<1>{});
index_t h_pad_up = UpperPads{}.Get(Number<0>{});
index_t w_pad_up = UpperPads{}.Get(Number<1>{});
std::size_t HiPerTile = HoPerTile + Y - 1; std::size_t HiPerTile = HoPerTile + Y - 1;
std::size_t WiPerTile = WoPerTile + X - 1; std::size_t WiPerTile = WoPerTile + X - 1;
......
#!/bin/bash #!/bin/bash
export KMDUMPISA=1 export KMDUMPISA=1
export KMDUMPLLVM=1 export KMDUMPLLVM=1
export KMOPTLLC="-mattr=+enable-ds128" #export KMOPTLLC="-mattr=+enable-ds128"
#export KMOPTLLC="-mattr=+enable-ds128 -amdgpu-enable-global-sgpr-addr" export KMOPTLLC="-mattr=+enable-ds128 -amdgpu-enable-global-sgpr-addr"
make -j driver make -j driver
/opt/rocm/hcc/bin/llvm-objdump -mcpu=gfx906 -source -line-numbers driver/dump-gfx906.isabin > driver/dump-gfx906.isabin.asm /opt/rocm/hcc/bin/llvm-objdump -mcpu=gfx906 -source -line-numbers driver/dump-gfx906.isabin > driver/dump-gfx906.isabin.asm
# step 1: GET ISA DUMP
#cd /root/workspace/mlopen/modular_convolution/build/hipcc/build.dir/driver && KMDUMPISA=1 /opt/rocm/hip/bin/hipcc -I/root/workspace/mlopen/modular_convolution/build/hipcc/build.dir/composable_kernel/include/utility -I/root/workspace/mlopen/modular_convolution/driver/include -I/root/workspace/mlopen/modular_convolution/composable_kernel/include/kernel_algorithm -I/root/workspace/mlopen/modular_convolution/composable_kernel/include/tensor_operation -I/root/workspace/mlopen/modular_convolution/composable_kernel/include/tensor_description -I/root/workspace/mlopen/modular_convolution/composable_kernel/include/utility -I/root/workspace/mlopen/modular_convolution/composable_kernel/include -gline-tables-only --amdgpu-target=gfx906 -fopenmp=libomp -O3 -DNDEBUG -std=c++14 -o CMakeFiles/driver.dir/src/driver.cpp.o -c /root/workspace/mlopen/modular_convolution/driver/src/driver.cpp -fno-gpu-rdc
# step 2: HACK ISA
#cd /root/workspace/mlopen/modular_convolution/build/hipcc/build.dir/driver && KMHACKISA=1 /opt/rocm/hip/bin/hipcc -I/root/workspace/mlopen/modular_convolution/build/hipcc/build.dir/composable_kernel/include/utility -I/root/workspace/mlopen/modular_convolution/driver/include -I/root/workspace/mlopen/modular_convolution/composable_kernel/include/kernel_algorithm -I/root/workspace/mlopen/modular_convolution/composable_kernel/include/tensor_operation -I/root/workspace/mlopen/modular_convolution/composable_kernel/include/tensor_description -I/root/workspace/mlopen/modular_convolution/composable_kernel/include/utility -I/root/workspace/mlopen/modular_convolution/composable_kernel/include -gline-tables-only --amdgpu-target=gfx906 -fopenmp=libomp -O3 -DNDEBUG -std=c++14 -o CMakeFiles/driver.dir/src/driver.cpp.o -c /root/workspace/mlopen/modular_convolution/driver/src/driver.cpp -fno-gpu-rdc
# step 3: LINK
#/opt/rocm/hip/bin/hipcc -gline-tables-only --amdgpu-target=gfx906 -fopenmp=libomp -O3 -DNDEBUG CMakeFiles/driver.dir/src/driver.cpp.o -o driver -rdynamic libhost.so -Wl,-rpath,/root/workspace/mlopen/modular_convolution/build/hipcc/build.dir/driver
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment