Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
50540084
Commit
50540084
authored
Aug 07, 2023
by
Adam Osewski
Browse files
Merge branch 'develop' into aosewski/gemm_tile_loop
parents
9c4d265f
2474dddb
Changes
176
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
3123 additions
and
503 deletions
+3123
-503
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_streamk.hpp
...ensor_operation/gpu/grid/gridwise_gemm_xdlops_streamk.hpp
+1183
-0
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v6r1r2.hpp
...on/gpu/thread/threadwise_tensor_slice_transfer_v6r1r2.hpp
+213
-0
include/ck/tensor_operation/operator_transform/transform_conv_bwd_data_to_gemm_v1.hpp
...operator_transform/transform_conv_bwd_data_to_gemm_v1.hpp
+719
-252
include/ck/utility/amd_buffer_addressing.hpp
include/ck/utility/amd_buffer_addressing.hpp
+15
-1
include/ck/utility/inner_product.hpp
include/ck/utility/inner_product.hpp
+13
-5
include/ck/utility/magic_division.hpp
include/ck/utility/magic_division.hpp
+72
-0
include/ck/utility/math.hpp
include/ck/utility/math.hpp
+16
-0
include/ck/utility/type_convert.hpp
include/ck/utility/type_convert.hpp
+0
-18
include/ck/utility/workgroup_barrier.hpp
include/ck/utility/workgroup_barrier.hpp
+73
-0
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_multi_d.hpp
...ry/tensor_operation_instance/gpu/batched_gemm_multi_d.hpp
+2
-0
library/include/ck/library/tensor_operation_instance/gpu/convolution_backward_data.hpp
...nsor_operation_instance/gpu/convolution_backward_data.hpp
+14
-7
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
...include/ck/library/tensor_operation_instance/gpu/gemm.hpp
+76
-43
library/include/ck/library/tensor_operation_instance/gpu/gemm_streamk.hpp
...ck/library/tensor_operation_instance/gpu/gemm_streamk.hpp
+121
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_xdl_instance.hpp
...nv_bwd_data/device_grouped_conv_bwd_data_xdl_instance.hpp
+80
-80
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp
...wd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp
+119
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp
...ration_instance/gpu/grouped_convolution_backward_data.hpp
+171
-33
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_weight.hpp
...tion_instance/gpu/grouped_convolution_backward_weight.hpp
+178
-46
library/include/ck/library/utility/device_memory.hpp
library/include/ck/library/utility/device_memory.hpp
+2
-1
library/src/tensor_operation_instance/gpu/CMakeLists.txt
library/src/tensor_operation_instance/gpu/CMakeLists.txt
+40
-3
library/src/tensor_operation_instance/gpu/batched_gemm_add_relu_gemm_add/device_batched_gemm_add_relu_gemm_add_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
...xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
+16
-14
No files found.
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_streamk.hpp
0 → 100644
View file @
50540084
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1r2.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v3.hpp"
#include "ck/utility/workgroup_barrier.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
namespace
ck
{
template
<
typename
GridwiseGemm
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_xdlops_streamk
(
const
typename
GridwiseGemm
::
FloatAB
*
p_a_grid
,
const
typename
GridwiseGemm
::
FloatAB
*
p_b_grid
,
typename
GridwiseGemm
::
FloatC
*
p_c_grid
,
void
*
p_workspace
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
typename
GridwiseGemm
::
Block2CTileMap
block_mapping
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
constexpr
index_t
shared_size
=
GridwiseGemm
::
GetSharedMemoryNumberOfByte
();
__shared__
uint8_t
p_shared
[
shared_size
];
GridwiseGemm
::
Run
(
p_a_grid
,
p_b_grid
,
p_c_grid
,
p_workspace
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
block_mapping
,
static_cast
<
void
*>
(
p_shared
));
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_c_grid
;
ignore
=
p_workspace
;
ignore
=
M
;
ignore
=
N
;
ignore
=
K
;
ignore
=
StrideA
;
ignore
=
StrideB
;
ignore
=
StrideC
;
ignore
=
block_mapping
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template
<
index_t
BlockSize
,
typename
Block2CTileMap_
,
typename
FloatAB_
,
typename
FloatAcc_
,
typename
FloatC_
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
K0PerBlock
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
K1Value
,
index_t
MRepeat
,
index_t
NRepeat
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMRepeatPerShuffle
,
index_t
CShuffleNRepeatPerShuffle
,
index_t
CBlockTransferScalarPerVector_NWaveNPerXDL
,
typename
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
>
struct
GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_streamk
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
// K1 should be Number<...>
static
constexpr
auto
K1
=
Number
<
K1Value
>
{};
static
constexpr
auto
M01
=
1
;
static
constexpr
auto
N01
=
1
;
static
constexpr
auto
KPerBlock
=
K0PerBlock
*
K1
;
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
using
FloatAcc
=
FloatAcc_
;
using
FloatCShuffle
=
FloatAcc
;
using
Block2CTileMap
=
Block2CTileMap_
;
using
FloatAB
=
FloatAB_
;
using
FloatC
=
FloatC_
;
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
const
FloatAB
*
p_a_grid
;
const
FloatAB
*
p_b_grid
;
FloatC
*
p_c_grid
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
StrideA
;
index_t
StrideB
;
index_t
StrideC
;
Block2CTileMap
block_mapping
;
Argument
(
const
FloatAB
*
p_a_grid_
,
const
FloatAB
*
p_b_grid_
,
FloatC
*
p_c_grid_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
index_t
StrideC_
,
uint32_t
num_cu
,
uint32_t
occupancy
,
uint32_t
num_sk_blocks_
)
:
p_a_grid
(
p_a_grid_
),
p_b_grid
(
p_b_grid_
),
p_c_grid
(
p_c_grid_
),
M
(
M_
),
N
(
N_
),
K
(
K_
),
StrideA
(
StrideA_
),
StrideB
(
StrideB_
),
StrideC
(
StrideC_
),
block_mapping
(
M
,
N
,
K
,
num_cu
,
occupancy
,
num_sk_blocks_
)
{
}
void
Print
()
const
{
std
::
cout
<<
"arg {"
<<
"M:"
<<
M
<<
", "
<<
"N:"
<<
N
<<
", "
<<
"K:"
<<
K
<<
", "
<<
"SA:"
<<
StrideA
<<
", "
<<
"SB:"
<<
StrideB
<<
", "
<<
"SC:"
<<
StrideC
<<
std
::
endl
;
}
};
__host__
__device__
static
auto
CalculateGridSize
(
const
Argument
&
karg
)
{
return
std
::
make_tuple
(
math
::
integer_divide_ceil
(
karg
.
N
,
NPerBlock
),
math
::
integer_divide_ceil
(
karg
.
M
,
MPerBlock
),
karg
.
k_batch
);
}
__host__
__device__
static
auto
CalculateK0
(
index_t
KPad
)
{
return
KPad
/
K1
;
}
__host__
__device__
static
auto
MakeAGridDescriptor_K0_M_K1
(
index_t
M
,
index_t
MPad
,
index_t
K
,
index_t
KPad
,
index_t
StrideA
)
{
const
index_t
K0
=
CalculateK0
(
KPad
);
const
auto
a_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
const
auto
a_grid_desc_m_kpad
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
transform_tensor_descriptor
(
a_grid_desc_m_kpad
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
__host__
__device__
static
auto
MakeBGridDescriptor_K0_N_K1
(
index_t
K
,
index_t
KPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideB
)
{
const
index_t
K0
=
CalculateK0
(
KPad
);
const
auto
b_grid_desc_k_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
StrideB
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
I1
,
StrideB
));
}
}();
const
auto
b_grid_desc_kpad_n
=
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_right_pad_transform
(
K
,
KPad
-
K
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
transform_tensor_descriptor
(
b_grid_desc_kpad_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
__host__
__device__
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideC
)
{
const
auto
c_grid_desc_m_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
}
}();
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
MPerBlock
>
{},
K1
),
make_tuple
(
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
K1
,
K1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// B matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
NPerBlock
>
{},
K1
),
make_tuple
(
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
K1
,
K1
,
I1
));
}
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
constexpr
auto
max_lds_align
=
K1
;
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_k0_m_k1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
constexpr
auto
b_block_desc_k0_n_k1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_k0_m_k1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size_aligned
=
math
::
integer_least_multiple
(
b_block_desc_k0_n_k1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
c_block_size
=
GetCBlockDescriptor_MBlock_MPerShuffle_NBlock_NPerShuffle
().
GetElementSpaceSize
();
return
math
::
max
((
a_block_space_size_aligned
+
b_block_space_size_aligned
)
*
sizeof
(
FloatAB
),
c_block_size
*
sizeof
(
FloatCShuffle
));
}
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
Argument
&
karg
)
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
if
(
karg
.
K
%
ABlockTransferSrcScalarPerVector
!=
0
)
return
false
;
}
else
{
if
(
karg
.
M
%
ABlockTransferSrcScalarPerVector
!=
0
)
return
false
;
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
if
(
karg
.
N
%
BBlockTransferSrcScalarPerVector
!=
0
)
return
false
;
}
else
{
if
(
karg
.
K
%
BBlockTransferSrcScalarPerVector
!=
0
)
return
false
;
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
if
(
karg
.
N
%
CBlockTransferScalarPerVector_NWaveNPerXDL
!=
0
)
return
false
;
}
else
{
if
(
karg
.
M
%
CBlockTransferScalarPerVector_NWaveNPerXDL
!=
0
)
return
false
;
}
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainK0BlockLoop
(
index_t
K0
)
{
const
bool
has_main_k0_block_loop
=
K0
>
K0PerBlock
;
return
has_main_k0_block_loop
;
}
template
<
typename
CGridDesc
>
__host__
__device__
static
constexpr
auto
MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
(
const
CGridDesc
&
c_m_n_grid_desc
)
{
const
auto
M
=
c_m_n_grid_desc
.
GetLength
(
I0
);
const
auto
N
=
c_m_n_grid_desc
.
GetLength
(
I1
);
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
NBlock
=
N
/
NPerBlock
;
return
transform_tensor_descriptor
(
c_m_n_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
}
// return block_id to C matrix tile idx (m0, n0) mapping
template
<
typename
CGridDesc
>
__host__
__device__
static
constexpr
auto
MakeCBlockClusterAdaptor
(
const
CGridDesc
&
c_m_n_grid_desc
,
index_t
/* M01 */
,
index_t
/* N01 */
,
index_t
KBatch
)
{
return
BlockToCTileMap_KSplit_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
CGridDesc
>
(
c_m_n_grid_desc
,
8
,
KBatch
);
}
__host__
__device__
static
constexpr
auto
GetCBlockDescriptor_MBlock_MPerShuffle_NBlock_NPerShuffle
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MRepeat
*
MPerXDL
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NRepeat
*
NPerXDL
);
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMRepeatPerShuffle
*
MWave
*
MPerXDL
>
{},
I1
,
Number
<
CShuffleNRepeatPerShuffle
*
NWave
*
NPerXDL
>
{}));
}
__host__
__device__
static
constexpr
auto
GetCBlockDescriptor_MShuffleRepeat_MPerShuffle_NShuffleRepeat_NPerShuffle
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MRepeat
*
MPerXDL
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NRepeat
*
NPerXDL
);
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MRepeat
/
CShuffleMRepeatPerShuffle
>
{},
Number
<
CShuffleMRepeatPerShuffle
*
MWave
*
MPerXDL
>
{},
Number
<
NRepeat
/
CShuffleNRepeatPerShuffle
>
{},
Number
<
CShuffleNRepeatPerShuffle
*
NWave
*
NPerXDL
>
{}));
}
__host__
__device__
static
constexpr
auto
GetClusterLengthReduction
()
{
// TODO: assume C is row major
// TODO: we always first loop over N, then M
constexpr
auto
NPerBlockPow2
=
math
::
next_power_of_two
<
NPerBlock
>
();
constexpr
auto
NPerBlockReduction
=
NPerBlockPow2
/
CBlockTransferScalarPerVector_NWaveNPerXDL
;
constexpr
auto
MPerBlockReduction
=
(
BlockSize
+
NPerBlockReduction
-
1
)
/
NPerBlockReduction
;
return
Sequence
<
MPerBlockReduction
,
NPerBlockReduction
>
{};
}
__host__
__device__
static
constexpr
auto
GetPartialAccBlockDescriptor
()
{
const
auto
c_partial_acc_block_m_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MPerBlock
,
NPerBlock
),
make_tuple
(
NPerBlock
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MPerBlock
,
NPerBlock
),
make_tuple
(
I1
,
MPerBlock
));
}
}();
return
c_partial_acc_block_m_n
;
}
using
CGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_M_N
(
1
,
1
,
1
,
1
,
1
))
>
;
__device__
static
void
Run
(
const
FloatAB
*
p_a_grid
,
const
FloatAB
*
p_b_grid
,
FloatC
*
p_c_grid
,
void
*
p_workspace
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
Block2CTileMap
block_mapping
,
void
*
__restrict__
p_shared_block
)
{
uint32_t
m
=
M
;
uint32_t
n
=
N
;
uint32_t
k
=
K
;
uint32_t
pad_m
=
(
m
+
MPerBlock
-
1
)
/
MPerBlock
*
MPerBlock
;
uint32_t
pad_n
=
(
n
+
NPerBlock
-
1
)
/
NPerBlock
*
NPerBlock
;
uint32_t
pad_k
=
(
k
+
KPerBlock
-
1
)
/
KPerBlock
*
KPerBlock
;
uint32_t
stride_a
=
StrideA
;
uint32_t
stride_b
=
StrideB
;
uint32_t
stride_c
=
StrideC
;
const
auto
a_k0_m_k1_grid_desc
=
MakeAGridDescriptor_K0_M_K1
(
m
,
pad_m
,
k
,
pad_k
,
stride_a
);
const
auto
b_k0_n_k1_grid_desc
=
MakeBGridDescriptor_K0_N_K1
(
k
,
pad_k
,
n
,
pad_n
,
stride_b
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
(
m
,
pad_m
,
n
,
pad_n
,
stride_c
);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n
);
const
AElementwiseOperation
a_element_op
=
AElementwiseOperation
{};
const
BElementwiseOperation
b_element_op
=
BElementwiseOperation
{};
const
CElementwiseOperation
c_element_op
=
CElementwiseOperation
{};
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_k0_m_k1_grid_desc
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_k0_n_k1_grid_desc
.
GetElementSpaceSize
());
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// lds max alignment
constexpr
auto
max_lds_align
=
K1
;
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_k0_m_k1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_k0_n_k1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
<
BlockSize
,
FloatAB
,
FloatAcc
,
decltype
(
a_block_desc_k0_m_k1
),
decltype
(
b_block_desc_k0_n_k1
),
MPerXDL
,
NPerXDL
,
MRepeat
,
NRepeat
,
K1
>
{};
auto
c_thread_buf
=
blockwise_gemm
.
GetCThreadBuffer
();
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size
=
math
::
integer_least_multiple
(
a_block_desc_k0_m_k1
.
GetElementSpaceSize
(),
max_lds_align
);
FloatAB
*
p_a_block
=
static_cast
<
FloatAB
*>
(
p_shared_block
);
FloatAB
*
p_b_block
=
static_cast
<
FloatAB
*>
(
p_shared_block
)
+
a_block_space_size
;
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
K0PerBlock
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
K0PerBlock
,
0
,
0
);
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_a_block
,
a_block_desc_k0_m_k1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_b_block
,
b_block_desc_k0_n_k1
.
GetElementSpaceSize
());
// gridwise GEMM pipeline
const
auto
gridwise_gemm_pipeline
=
GridwiseGemmPipeline_v3
();
uint32_t
block_idx
=
block_mapping
.
get_block_idx
();
bool
is_sk_block
=
block_idx
<
block_mapping
.
sk_num_blocks
;
bool
is_dp_block
=
block_idx
>=
block_mapping
.
dp_start_block_idx
&&
block_idx
<
block_mapping
.
reduction_start_block_idx
;
bool
is_reduction_block
=
block_idx
>=
block_mapping
.
reduction_start_block_idx
;
bool
is_padding_block
=
block_idx
>=
block_mapping
.
sk_num_blocks
&&
block_idx
<
block_mapping
.
dp_start_block_idx
;
uint32_t
iter_start
,
iter_end
;
block_mapping
.
get_block_itr
(
block_idx
,
iter_start
,
iter_end
);
uint32_t
total_iter_length
=
iter_end
-
iter_start
;
if
(
is_padding_block
)
return
;
uint32_t
*
p_semaphore
=
reinterpret_cast
<
uint32_t
*>
(
reinterpret_cast
<
char
*>
(
p_workspace
)
+
block_mapping
.
get_workspace_size_for_acc
(
sizeof
(
FloatAcc
)));
if
constexpr
(
Block2CTileMap
::
ReductionStrategy
==
StreamKReductionStrategy
::
Reduction
)
{
if
(
is_reduction_block
)
{
// descriptors
constexpr
auto
cluster_length_reduce
=
GetClusterLengthReduction
();
constexpr
auto
reduce_desc
=
make_cluster_descriptor
(
cluster_length_reduce
);
const
auto
reduce_thread_cluster_idx
=
reduce_desc
.
CalculateBottomIndex
(
make_multi_index
(
get_thread_local_1d_id
()));
const
auto
thread_m_cluster_id
=
reduce_thread_cluster_idx
[
I0
];
const
auto
thread_n_cluster_id
=
reduce_thread_cluster_idx
[
I1
];
constexpr
auto
MReduceIters
=
math
::
integer_divide_ceil
(
Number
<
MPerBlock
>
{},
cluster_length_reduce
.
At
(
I0
));
constexpr
auto
NReduceIters
=
math
::
integer_divide_ceil
(
Number
<
NPerBlock
>
{},
cluster_length_reduce
.
At
(
I1
)
*
Number
<
CBlockTransferScalarPerVector_NWaveNPerXDL
>
{});
constexpr
auto
acc_thread_buf_load_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CBlockTransferScalarPerVector_NWaveNPerXDL
>
{}));
constexpr
auto
acc_thread_buf_store_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
I1
,
I1
,
Number
<
CBlockTransferScalarPerVector_NWaveNPerXDL
>
{}));
constexpr
auto
c_partial_acc_block_m_n
=
GetPartialAccBlockDescriptor
();
constexpr
auto
partial_acc_load_step_n
=
make_multi_index
(
0
,
cluster_length_reduce
.
At
(
I1
)
*
CBlockTransferScalarPerVector_NWaveNPerXDL
);
constexpr
auto
partial_acc_load_step_n_reverse
=
make_multi_index
(
0
,
-
1
*
cluster_length_reduce
.
At
(
I1
).
value
*
(
NReduceIters
-
1
)
*
CBlockTransferScalarPerVector_NWaveNPerXDL
);
constexpr
auto
partial_acc_load_step_m
=
make_multi_index
(
cluster_length_reduce
.
At
(
I0
),
0
);
constexpr
auto
partial_acc_store_step_n
=
make_multi_index
(
0
,
0
,
0
,
cluster_length_reduce
.
At
(
I1
)
*
CBlockTransferScalarPerVector_NWaveNPerXDL
);
constexpr
auto
partial_acc_store_step_n_reverse
=
make_multi_index
(
0
,
0
,
0
,
-
1
*
cluster_length_reduce
.
At
(
I1
).
value
*
(
NReduceIters
-
1
)
*
CBlockTransferScalarPerVector_NWaveNPerXDL
);
constexpr
auto
partial_acc_store_step_m
=
make_multi_index
(
0
,
cluster_length_reduce
.
At
(
I0
),
0
,
0
);
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
FloatAcc
,
CBlockTransferScalarPerVector_NWaveNPerXDL
,
true
>
parcial_acc_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
FloatAcc
,
CBlockTransferScalarPerVector_NWaveNPerXDL
,
true
>
acc_buf
;
// start to compute
auto
reduction_idx
=
blockIdx
.
x
-
block_mapping
.
reduction_start_block_idx
;
auto
spatial_idx
=
block_mapping
.
tile_to_spatial
(
reduction_idx
,
m
,
n
);
workgroup_barrier
wg_barrier
(
p_semaphore
);
uint32_t
tile_acc_offset_start
=
block_mapping
.
get_acc_buffer_offset_from_tile
(
reduction_idx
);
uint32_t
tile_acc_offset_end
=
block_mapping
.
get_acc_buffer_offset_from_tile
(
reduction_idx
+
1
);
auto
acc_load
=
ThreadwiseTensorSliceTransfer_v2
<
FloatAcc
,
// SrcData,
FloatAcc
,
// DstData,
decltype
(
c_partial_acc_block_m_n
),
// SrcDesc,
decltype
(
acc_thread_buf_load_desc
),
// DstDesc,
Sequence
<
1
,
CBlockTransferScalarPerVector_NWaveNPerXDL
>
,
// SliceLengths,
Sequence
<
0
,
1
>
,
// DimAccessOrder,
1
,
// SrcVectorDim,
CBlockTransferScalarPerVector_NWaveNPerXDL
,
// SrcScalarPerVector,
1
,
// SrcScalarStrideInVector,
false
// SrcResetCoordinateAfterRun,
>
{
c_partial_acc_block_m_n
,
make_multi_index
(
thread_m_cluster_id
,
thread_n_cluster_id
*
CBlockTransferScalarPerVector_NWaveNPerXDL
)};
auto
acc_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatAcc
,
// SrcData,
FloatC
,
// DstData,
decltype
(
acc_thread_buf_store_desc
),
// SrcDesc,
decltype
(
c_grid_desc_mblock_mperblock_nblock_nperblock
),
// DstDesc,
CElementwiseOperation
,
// ElementwiseOperation,
Sequence
<
1
,
1
,
1
,
CBlockTransferScalarPerVector_NWaveNPerXDL
>
,
// SliceLengths,
Sequence
<
0
,
1
,
2
,
3
>
,
// DimAccessOrder,
3
,
// DstVectorDim,
CBlockTransferScalarPerVector_NWaveNPerXDL
,
// DstScalarPerVector,
InMemoryDataOperationEnum
::
Set
,
// InMemoryDataOperationEnum DstInMemOp,
1
,
// DstScalarStrideInVector,
false
// DstResetCoordinateAfterRun,
>
{
c_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
__builtin_amdgcn_readfirstlane
(
spatial_idx
[
I0
]),
thread_m_cluster_id
,
__builtin_amdgcn_readfirstlane
(
spatial_idx
[
I1
]),
thread_n_cluster_id
*
CBlockTransferScalarPerVector_NWaveNPerXDL
),
CElementwiseOperation
{}};
// block synchronization
wg_barrier
.
wait_eq
(
reduction_idx
,
tile_acc_offset_end
-
tile_acc_offset_start
);
#if 0
if(threadIdx.x == 0) {
printf("bid:%d, rid:%d, os:%d,%d, spatial:%d,%d\n", static_cast<int>(blockIdx.x),
reduction_idx, __builtin_amdgcn_readfirstlane(tile_acc_offset_start), __builtin_amdgcn_readfirstlane(tile_acc_offset_end),
__builtin_amdgcn_readfirstlane(spatial_idx[I0]),
__builtin_amdgcn_readfirstlane(spatial_idx[I1]));
}
#endif
using
Accumulation
=
ck
::
detail
::
AccumulateWithNanCheck
<
false
/*PropagateNan*/
,
reduce
::
Add
,
FloatAcc
>
;
for
(
int
i_m
=
0
;
i_m
<
MReduceIters
;
i_m
++
)
{
static_for
<
0
,
NReduceIters
,
1
>
{}([
&
](
auto
i_n_reduce
)
{
acc_buf
.
Clear
();
for
(
auto
i
=
tile_acc_offset_start
;
i
<
tile_acc_offset_end
;
i
++
)
{
auto
c_partial_acc_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
,
AmdBufferCoherenceEnum
::
GLC
>
(
reinterpret_cast
<
FloatAcc
*>
(
p_workspace
)
+
i
*
c_partial_acc_block_m_n
.
GetElementSpaceSize
(),
c_partial_acc_block_m_n
.
GetElementSpaceSize
());
acc_load
.
Run
(
c_partial_acc_block_m_n
,
c_partial_acc_buf
,
acc_thread_buf_load_desc
,
make_tuple
(
I0
,
I0
),
parcial_acc_buf
);
static_for
<
0
,
CBlockTransferScalarPerVector_NWaveNPerXDL
,
1
>
{}(
[
&
](
auto
i_vec
)
{
constexpr
auto
offset
=
acc_thread_buf_load_desc
.
CalculateOffset
(
make_tuple
(
0
,
i_vec
));
Accumulation
::
Calculate
(
acc_buf
(
Number
<
offset
>
{}),
parcial_acc_buf
[
Number
<
offset
>
{}]);
});
}
if
(
thread_n_cluster_id
*
CBlockTransferScalarPerVector_NWaveNPerXDL
<
NPerBlock
)
{
acc_store
.
Run
(
acc_thread_buf_store_desc
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
acc_buf
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_grid_buf
);
}
if
constexpr
(
NReduceIters
!=
1
)
{
if
constexpr
(
i_n_reduce
!=
(
NReduceIters
-
1
))
{
acc_load
.
MoveSrcSliceWindow
(
c_partial_acc_block_m_n
,
partial_acc_load_step_n
);
acc_store
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
partial_acc_store_step_n
);
}
else
{
acc_load
.
MoveSrcSliceWindow
(
c_partial_acc_block_m_n
,
partial_acc_load_step_n_reverse
);
acc_store
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
partial_acc_store_step_n_reverse
);
}
}
});
{
acc_load
.
MoveSrcSliceWindow
(
c_partial_acc_block_m_n
,
partial_acc_load_step_m
);
acc_store
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
partial_acc_store_step_m
);
}
}
return
;
}
}
// offset for last acc buffer of this block
uint32_t
block_acc_offset
=
(
block_mapping
.
get_acc_buffer_offset_from_block
(
block_idx
+
1
)
-
1
)
*
MPerBlock
*
NPerBlock
;
while
(
true
)
{
uint32_t
current_iter_length
=
__builtin_amdgcn_readfirstlane
(
block_mapping
.
get_current_iter_length
(
iter_start
,
iter_end
,
total_iter_length
));
uint32_t
tile_idx
,
iter_offset
;
block_mapping
.
get_tile_idx_with_offset
(
iter_end
-
1
,
tile_idx
,
iter_offset
);
iter_offset
=
__builtin_amdgcn_readfirstlane
(
iter_offset
-
current_iter_length
+
1
);
auto
spatial_idx
=
block_mapping
.
tile_to_spatial
(
tile_idx
,
m
,
n
);
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
spatial_idx
[
I0
]
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
spatial_idx
[
I1
]
*
NPerBlock
);
const
index_t
k0_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
iter_offset
*
K0PerBlock
);
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
K0PerBlock
,
MPerBlock
,
K1
>
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
decltype
(
a_k0_m_k1_grid_desc
),
decltype
(
a_block_desc_k0_m_k1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
1
,
0
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
a_k0_m_k1_grid_desc
,
make_multi_index
(
k0_block_data_idx_on_grid
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_k0_m_k1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
K0PerBlock
,
NPerBlock
,
K1
>
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
decltype
(
b_k0_n_k1_grid_desc
),
decltype
(
b_block_desc_k0_n_k1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
1
,
0
,
2
>
,
BBlockTransferSrcVectorDim
,
2
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
b_k0_n_k1_grid_desc
,
make_multi_index
(
k0_block_data_idx_on_grid
,
n_block_data_idx_on_grid
,
0
),
b_element_op
,
b_block_desc_k0_n_k1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
const
index_t
num_k_block_main_loop
=
current_iter_length
;
gridwise_gemm_pipeline
.
Run
(
a_k0_m_k1_grid_desc
,
a_block_desc_k0_m_k1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_k0_n_k1_grid_desc
,
b_block_desc_k0_n_k1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
blockwise_gemm
,
c_thread_buf
,
num_k_block_main_loop
);
// output: register to global memory
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MRepeat
*
MPerXDL
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NRepeat
*
NPerXDL
);
constexpr
auto
c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc
=
blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc
=
blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc
.
GetLength
(
I7
);
constexpr
auto
c_block_desc_mblock_mpershuffle_nblock_npershuffle
=
GetCBlockDescriptor_MBlock_MPerShuffle_NBlock_NPerShuffle
();
constexpr
auto
c_block_desc_mshuffle_mpershuffle_nshuffle_npershuffle
=
GetCBlockDescriptor_MShuffleRepeat_MPerShuffle_NShuffleRepeat_NPerShuffle
();
auto
c_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
reinterpret_cast
<
FloatCShuffle
*>
(
p_shared_block
),
c_block_desc_mblock_mpershuffle_nblock_npershuffle
.
GetElementSpaceSize
());
auto
c_partial_acc_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
,
AmdBufferCoherenceEnum
::
GLC
>
(
reinterpret_cast
<
FloatAcc
*>
(
p_workspace
)
+
block_acc_offset
,
c_block_desc_mshuffle_mpershuffle_nshuffle_npershuffle
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_block_desc_mblock_mpershuffle_nblock_npershuffle
,
make_tuple
(
make_freeze_transform
(
I0
),
// freeze mblock
make_unmerge_transform
(
make_tuple
(
CShuffleMRepeatPerShuffle
,
M1
,
M2
,
M3
,
M4
)),
// M1 = MWave, M2 * M3 * M4 = MPerXDL
make_freeze_transform
(
I0
),
// freeze nblock
make_unmerge_transform
(
make_tuple
(
CShuffleNRepeatPerShuffle
,
N1
,
N2
))),
// M1 = MWave, M2 * M3 * M4 = MPerXDL
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatAcc
,
FloatCShuffle
,
decltype
(
c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMRepeatPerShuffle
,
CShuffleNRepeatPerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
// LDS to global
auto
c_block_copy_lds_to_global
=
ThreadGroupTensorSliceTransfer_v6r1r2
<
ThisThreadBlock
,
// index_t BlockSize,
CElementwiseOperation
,
// ElementwiseOperation,
// InMemoryDataOperationEnum::Set, // DstInMemOp,
Sequence
<
1
,
CShuffleMRepeatPerShuffle
*
MWave
*
MPerXDL
,
1
,
CShuffleNRepeatPerShuffle
*
NWave
*
NPerXDL
>
,
// BlockSliceLengths,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
FloatCShuffle
,
// typename SrcData,
FloatC
,
// typename DstData,
decltype
(
c_block_desc_mblock_mpershuffle_nblock_npershuffle
),
decltype
(
c_grid_desc_mblock_mperblock_nblock_nperblock
),
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CBlockTransferScalarPerVector_NWaveNPerXDL
,
// index_t ScalarPerVector,
false
,
// bool ThreadTransferSrcResetCoordinateAfterRun,
false
>
// bool ThreadTransferDstResetCoordinateAfterRun
{
c_block_desc_mblock_mpershuffle_nblock_npershuffle
,
make_multi_index
(
0
,
0
,
0
,
0
),
c_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
__builtin_amdgcn_readfirstlane
(
spatial_idx
[
I0
]),
0
,
__builtin_amdgcn_readfirstlane
(
spatial_idx
[
I1
]),
0
),
c_element_op
};
// LDS to global partial acc
auto
c_block_copy_lds_to_partial_acc
=
ThreadGroupTensorSliceTransfer_v6r1r2
<
ThisThreadBlock
,
// index_t BlockSize,
CElementwiseOperation
,
// ElementwiseOperation,
// InMemoryDataOperationEnum::Set, // DstInMemOp,
Sequence
<
1
,
CShuffleMRepeatPerShuffle
*
MWave
*
MPerXDL
,
1
,
CShuffleNRepeatPerShuffle
*
NWave
*
NPerXDL
>
,
// BlockSliceLengths,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
FloatCShuffle
,
// typename SrcData,
FloatCShuffle
,
// typename DstData,
decltype
(
c_block_desc_mblock_mpershuffle_nblock_npershuffle
),
decltype
(
c_block_desc_mshuffle_mpershuffle_nshuffle_npershuffle
),
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CBlockTransferScalarPerVector_NWaveNPerXDL
,
// index_t ScalarPerVector,
false
,
// bool ThreadTransferSrcResetCoordinateAfterRun, => need to be false,
// othre wise has scratch
false
>
// bool ThreadTransferDstResetCoordinateAfterRun, => need to be false,
// othre wise has scratch
{
c_block_desc_mblock_mpershuffle_nblock_npershuffle
,
make_multi_index
(
0
,
0
,
0
,
0
),
c_block_desc_mshuffle_mpershuffle_nshuffle_npershuffle
,
make_multi_index
(
0
,
0
,
0
,
0
),
c_element_op
};
constexpr
auto
mxdlperwave_forward_step
=
make_multi_index
(
0
,
CShuffleMRepeatPerShuffle
*
MWave
*
MPerXDL
,
0
,
0
);
constexpr
auto
nxdlperwave_forward_step
=
make_multi_index
(
0
,
0
,
0
,
CShuffleNRepeatPerShuffle
*
NWave
*
NPerXDL
);
constexpr
auto
nxdlperwave_backward_step
=
make_multi_index
(
0
,
0
,
0
,
-
CShuffleNRepeatPerShuffle
*
NWave
*
NPerXDL
);
static_for
<
0
,
MRepeat
,
CShuffleMRepeatPerShuffle
>
{}([
&
](
auto
mxdlperwave_iter
)
{
constexpr
auto
mxdlperwave
=
mxdlperwave_iter
;
static_for
<
0
,
NRepeat
,
CShuffleNRepeatPerShuffle
>
{}([
&
](
auto
nxdlperwave_iter
)
{
constexpr
bool
nxdlperwave_forward_sweep
=
(
mxdlperwave
%
(
2
*
CShuffleMRepeatPerShuffle
)
==
0
);
constexpr
index_t
nxdlperwave_value
=
nxdlperwave_forward_sweep
?
nxdlperwave_iter
:
(
NRepeat
-
nxdlperwave_iter
-
CShuffleNRepeatPerShuffle
);
constexpr
auto
nxdlperwave
=
Number
<
nxdlperwave_value
>
{};
// make sure it's safe to do ds_write
block_sync_lds
();
// VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc
,
make_tuple
(
mxdlperwave
,
nxdlperwave
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_block_buf
);
// make sure it's safe to do ds_read
block_sync_lds
();
c_block_copy_lds_to_global
.
SetSrcSliceOrigin
(
c_block_desc_mblock_mpershuffle_nblock_npershuffle
,
make_tuple
(
0
,
0
,
0
,
0
));
// LDS to global
if
(
is_dp_block
)
c_block_copy_lds_to_global
.
template
Run
<
decltype
(
c_block_buf
),
decltype
(
c_grid_buf
),
InMemoryDataOperationEnum
::
Set
>(
c_block_desc_mblock_mpershuffle_nblock_npershuffle
,
c_block_buf
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_grid_buf
);
else
if
(
is_sk_block
)
{
if
constexpr
(
Block2CTileMap
::
ReductionStrategy
==
StreamKReductionStrategy
::
Reduction
)
{
// constexpr offset
c_block_copy_lds_to_partial_acc
.
SetSrcSliceOrigin
(
c_block_desc_mblock_mpershuffle_nblock_npershuffle
,
make_tuple
(
0
,
0
,
0
,
0
));
c_block_copy_lds_to_partial_acc
.
SetDstSliceOrigin
(
c_block_desc_mshuffle_mpershuffle_nshuffle_npershuffle
,
make_tuple
(
mxdlperwave
.
value
,
0
,
nxdlperwave
.
value
,
0
));
c_block_copy_lds_to_partial_acc
.
template
Run
<
decltype
(
c_block_buf
),
decltype
(
c_partial_acc_buf
),
InMemoryDataOperationEnum
::
Set
>(
c_block_desc_mblock_mpershuffle_nblock_npershuffle
,
c_block_buf
,
c_block_desc_mshuffle_mpershuffle_nshuffle_npershuffle
,
c_partial_acc_buf
);
}
else
if
constexpr
(
Block2CTileMap
::
ReductionStrategy
==
StreamKReductionStrategy
::
Atomic
)
{
c_block_copy_lds_to_global
.
template
Run
<
decltype
(
c_block_buf
),
decltype
(
c_grid_buf
),
InMemoryDataOperationEnum
::
AtomicAdd
>(
c_block_desc_mblock_mpershuffle_nblock_npershuffle
,
c_block_buf
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_grid_buf
);
}
}
// move on nxdlperwave dimension
if
constexpr
(
nxdlperwave_forward_sweep
&&
(
nxdlperwave
<
NRepeat
-
CShuffleNRepeatPerShuffle
))
{
c_block_copy_lds_to_global
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
nxdlperwave_forward_step
);
}
else
if
constexpr
((
!
nxdlperwave_forward_sweep
)
&&
(
nxdlperwave
>
0
))
{
c_block_copy_lds_to_global
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
nxdlperwave_backward_step
);
}
});
// move on mxdlperwave dimension
if
constexpr
(
mxdlperwave
<
MRepeat
-
CShuffleMRepeatPerShuffle
)
{
c_block_copy_lds_to_global
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
mxdlperwave_forward_step
);
}
});
if
constexpr
(
Block2CTileMap
::
ReductionStrategy
==
StreamKReductionStrategy
::
Reduction
)
{
if
(
is_sk_block
)
{
// increase the counter for this tile
workgroup_barrier
wg_barrier
(
p_semaphore
);
wg_barrier
.
inc
(
tile_idx
);
}
}
}
// exit condition
iter_end
-=
current_iter_length
;
if
(
iter_end
<=
iter_start
)
break
;
if
constexpr
(
Block2CTileMap
::
ReductionStrategy
==
StreamKReductionStrategy
::
Reduction
)
{
block_acc_offset
-=
MPerBlock
*
NPerBlock
;
}
// make sure next loop LDS is ready for use
block_sync_lds
();
}
}
template
<
typename
Layout
>
struct
LStr
{
static
std
::
string
Get
()
{
return
""
;
}
};
template
<
>
struct
LStr
<
ck
::
tensor_layout
::
gemm
::
RowMajor
>
{
static
std
::
string
Get
()
{
return
"R"
;
}
};
template
<
>
struct
LStr
<
ck
::
tensor_layout
::
gemm
::
ColumnMajor
>
{
static
std
::
string
Get
()
{
return
"C"
;
}
};
static
std
::
string
GetTypeString
()
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"GemmXdlStreamK_"
<<
std
::
string
(
ALayout
::
name
)[
0
]
<<
std
::
string
(
BLayout
::
name
)[
0
]
<<
std
::
string
(
CLayout
::
name
)[
0
]
<<
"_"
<<
"B"
<<
BlockSize
<<
"_"
<<
"Vec"
<<
ABlockTransferSrcScalarPerVector
<<
"x"
<<
BBlockTransferSrcScalarPerVector
<<
"x"
<<
CBlockTransferScalarPerVector_NWaveNPerXDL
<<
"_"
<<
MPerBlock
<<
"x"
<<
NPerBlock
<<
"x"
<<
K0PerBlock
<<
"x"
<<
K1
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v6r1r2.hpp
0 → 100644
View file @
50540084
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/tensor_space_filling_curve.hpp"
namespace
ck
{
// Do following things to avoid "alloca" in LLVM-IR, which would cause scratch memory
// and sometimes useless instructions:
// 1. Don't save a reference to tensor descriptor in class, pass in tensor descriptor as argument
// instead
// 2. Don't construct a new tensor coordinate everytime when using it, update and reuse the same
// tensor coordinate instead
// 3. Don't use a pointer to VGPR buffer, use vector instead
// Assume:
// 1. src_desc and dst_desc are not known at compile-time
// 2. SrcBuffer and DstBuffer are DynamicBuffer
// 3. src_slice_origin and dst_slice_origin are not known at compile-time,
template
<
typename
SrcData
,
typename
DstData
,
typename
SrcDesc
,
typename
DstDesc
,
typename
ElementwiseOperation
,
typename
SliceLengths
,
typename
DimAccessOrder
,
index_t
VectorDim
,
index_t
ScalarPerVector
,
bool
SrcResetCoordinateAfterRun
,
bool
DstResetCoordinateAfterRun
>
struct
ThreadwiseTensorSliceTransfer_v6r1r2
{
static
constexpr
index_t
nDim
=
SliceLengths
::
Size
();
using
Index
=
MultiIndex
<
nDim
>
;
using
SrcCoord
=
decltype
(
make_tensor_coordinate
(
SrcDesc
{},
Index
{}));
using
DstCoord
=
decltype
(
make_tensor_coordinate
(
DstDesc
{},
Index
{}));
static
constexpr
auto
I0
=
Number
<
0
>
{};
__device__
constexpr
ThreadwiseTensorSliceTransfer_v6r1r2
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin
,
const
DstDesc
&
dst_desc
,
const
Index
&
dst_slice_origin
,
const
ElementwiseOperation
&
element_op
)
:
src_coord_
(
make_tensor_coordinate
(
src_desc
,
src_slice_origin
)),
dst_coord_
(
make_tensor_coordinate
(
dst_desc
,
dst_slice_origin
)),
element_op_
(
element_op
)
{
static_assert
(
SliceLengths
::
At
(
Number
<
VectorDim
>
{})
%
ScalarPerVector
==
0
,
"wrong! cannot evenly divide"
);
}
__device__
void
SetSrcSliceOrigin
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin_idx
)
{
src_coord_
=
make_tensor_coordinate
(
src_desc
,
src_slice_origin_idx
);
}
__device__
void
SetDstSliceOrigin
(
const
DstDesc
&
dst_desc
,
const
Index
&
dst_slice_origin_idx
)
{
dst_coord_
=
make_tensor_coordinate
(
dst_desc
,
dst_slice_origin_idx
);
}
template
<
typename
SrcBuffer
,
typename
DstBuffer
,
InMemoryDataOperationEnum
DstInMemOp
>
__device__
void
Run
(
const
SrcDesc
&
src_desc
,
const
SrcBuffer
&
src_buf
,
const
DstDesc
&
dst_desc
,
DstBuffer
&
dst_buf
)
{
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
VectorDim
,
ScalarPerVector
>
{},
Number
<
nDim
>
{});
using
SpaceFillingCurve
=
SpaceFillingCurve
<
SliceLengths
,
DimAccessOrder
,
remove_cv_t
<
decltype
(
scalar_per_access
)
>>
;
// loop over space-filling curve
constexpr
auto
num_access
=
SpaceFillingCurve
::
GetNumOfAccess
();
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
idx_1d
)
{
using
src_vector_type
=
vector_type_maker_t
<
SrcData
,
ScalarPerVector
>
;
using
src_vector_t
=
typename
src_vector_type
::
type
;
using
dst_vector_type
=
vector_type_maker_t
<
DstData
,
ScalarPerVector
>
;
using
dst_vector_t
=
typename
dst_vector_type
::
type
;
const
bool
is_src_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
src_desc
,
src_coord_
);
// copy data from src_buf into src_vector_container
auto
src_vector_container
=
src_vector_type
{
src_buf
.
template
Get
<
src_vector_t
>(
src_coord_
.
GetOffset
(),
is_src_valid
)};
auto
dst_vector_container
=
dst_vector_type
{};
// apply pointwise operation
static_for
<
0
,
ScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
SrcData
v
;
// apply element-wise operation
element_op_
(
v
,
src_vector_container
.
template
AsType
<
SrcData
>()[
i
]);
// apply type convert
dst_vector_container
.
template
AsType
<
DstData
>()(
i
)
=
type_convert
<
DstData
>
(
v
);
});
const
bool
is_dst_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
dst_desc
,
dst_coord_
);
// copy data from dst_vector into dst_buf
dst_buf
.
template
Update
<
DstInMemOp
,
dst_vector_t
>(
dst_coord_
.
GetOffset
(),
is_dst_valid
,
dst_vector_container
.
template
AsType
<
dst_vector_t
>()[
I0
]);
// move coordinate
if
constexpr
(
idx_1d
.
value
!=
num_access
-
1
)
{
constexpr
auto
forward_step
=
SpaceFillingCurve
::
GetForwardStep
(
idx_1d
);
move_tensor_coordinate
(
src_desc
,
src_coord_
,
make_tensor_coordinate_step
(
src_desc
,
forward_step
));
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
make_tensor_coordinate_step
(
dst_desc
,
forward_step
));
}
});
// move coordinate back to slice origin (or not)
if
constexpr
(
SrcResetCoordinateAfterRun
)
{
const
auto
src_reset_step
=
make_tensor_coordinate_step
(
src_desc
,
GetCoordinateResetStep
());
move_tensor_coordinate
(
src_desc
,
src_coord_
,
src_reset_step
);
}
if
constexpr
(
DstResetCoordinateAfterRun
)
{
const
auto
dst_reset_step
=
make_tensor_coordinate_step
(
dst_desc
,
GetCoordinateResetStep
());
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
dst_reset_step
);
}
}
__device__
static
constexpr
auto
GetCoordinateResetStep
()
{
constexpr
auto
scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
VectorDim
,
ScalarPerVector
>
{},
Number
<
nDim
>
{});
using
SpaceFillingCurve
=
SpaceFillingCurve
<
SliceLengths
,
DimAccessOrder
,
remove_cv_t
<
decltype
(
scalar_per_access
)
>>
;
constexpr
auto
num_access
=
SpaceFillingCurve
::
GetNumOfAccess
();
if
constexpr
(
num_access
==
0
)
{
return
typename
SpaceFillingCurve
::
Index
{};
}
else
{
constexpr
auto
reset_step
=
SpaceFillingCurve
::
GetStepBetween
(
Number
<
num_access
-
1
>
{},
Number
<
0
>
{});
return
reset_step
;
}
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__
void
MoveSrcSliceWindow
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin_step_idx
)
{
// if src coord was not reset by RunRead(), then need to adjust the step here
const
auto
adjusted_step_idx
=
SrcResetCoordinateAfterRun
?
src_slice_origin_step_idx
:
src_slice_origin_step_idx
+
GetCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
src_desc
,
adjusted_step_idx
);
move_tensor_coordinate
(
src_desc
,
src_coord_
,
adjusted_step
);
}
// dst_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__
void
MoveDstSliceWindow
(
const
DstDesc
&
dst_desc
,
const
Index
&
dst_slice_origin_step_idx
)
{
// if dst coord was not reset by Run(), then need to adjust the step here
const
auto
adjusted_step_idx
=
DstResetCoordinateAfterRun
?
dst_slice_origin_step_idx
:
dst_slice_origin_step_idx
+
GetCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
dst_desc
,
adjusted_step_idx
);
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
adjusted_step
);
}
private:
SrcCoord
src_coord_
;
DstCoord
dst_coord_
;
const
ElementwiseOperation
element_op_
;
};
}
// namespace ck
include/ck/tensor_operation/operator_transform/transform_conv_bwd_data_to_gemm_v1.hpp
View file @
50540084
...
...
@@ -18,32 +18,53 @@ template <
index_t
NDimSpatial
,
typename
ALayout
,
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
ConvBwdDataSpecialization
>
constexpr
auto
make_out_n_ho_wo_k_grid_desc
(
const
index_t
N
,
constexpr
auto
make_out_grid_desc
(
const
index_t
N
,
const
index_t
Do
,
const
index_t
Ho
,
const
index_t
Wo
,
const
index_t
K
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
out_g_n_k_wos_strides
)
{
const
auto
KStride
=
Number
<
1
>
{};
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
NHWGK
>
)
{
const
index_t
NStride
=
out_g_n_k_wos_strides
[
1
];
const
index_t
HiStride
=
out_g_n_k_wos_strides
[
3
];
const
index_t
WiStride
=
out_g_n_k_wos_strides
[
4
];
const
auto
CStride
=
Number
<
1
>
{};
if
constexpr
(
ConvBwdDataSpecialization
==
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
*
Ho
*
Wo
,
K
),
make_tuple
(
WiStride
,
C
Stride
));
make_tuple
(
WiStride
,
K
Stride
));
}
else
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Ho
,
Wo
,
K
),
make_tuple
(
NStride
,
HiStride
,
WiStride
,
CStride
));
make_tuple
(
NStride
,
HiStride
,
WiStride
,
KStride
));
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
NDHWGK
>
)
{
const
index_t
NStride
=
out_g_n_k_wos_strides
[
1
];
const
index_t
DoStride
=
out_g_n_k_wos_strides
[
3
];
const
index_t
HoStride
=
out_g_n_k_wos_strides
[
4
];
const
index_t
WoStride
=
out_g_n_k_wos_strides
[
5
];
if
constexpr
(
ConvBwdDataSpecialization
==
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
*
Do
*
Ho
*
Wo
,
K
),
make_tuple
(
WoStride
,
KStride
));
}
else
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Do
,
Ho
,
Wo
,
K
),
make_tuple
(
NStride
,
DoStride
,
HoStride
,
WoStride
,
KStride
));
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNHWK
>
)
...
...
@@ -60,12 +81,80 @@ make_out_n_ho_wo_k_grid_desc(const index_t N,
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Ho
,
Wo
,
K
));
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNDHWK
>
)
{
// assume packed
if
constexpr
(
ConvBwdDataSpecialization
==
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
)
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Do
*
Ho
*
Wo
,
K
));
}
else
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Do
,
Ho
,
Wo
,
K
));
}
}
else
{
throw
std
::
runtime_error
(
"wrong! unsupported layout: "
+
ALayout
::
name
());
}
}
template
<
typename
BLayout
>
constexpr
auto
make_wei_grid_desc
(
const
index_t
K
,
const
index_t
Z
,
const
index_t
Y
,
const
index_t
X
,
const
index_t
C
)
{
if
constexpr
(
is_same_v
<
BLayout
,
tensor_layout
::
convolution
::
GKYXC
>
)
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
,
X
,
C
));
}
else
if
constexpr
(
is_same_v
<
BLayout
,
tensor_layout
::
convolution
::
GKZYXC
>
)
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Z
,
Y
,
X
,
C
));
}
else
{
throw
std
::
runtime_error
(
"wrong! unsupported layout: "
+
BLayout
::
name
());
}
}
template
<
index_t
NDimSpatial
,
typename
CLayout
>
constexpr
auto
make_in_grid_desc
(
const
index_t
N
,
const
index_t
Di
,
const
index_t
Hi
,
const
index_t
Wi
,
const
index_t
C
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
in_g_n_c_wis_strides
)
{
if
constexpr
(
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
GNHWC
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
NHWGC
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
G_NHW_C
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Hi
,
Wi
,
C
),
make_tuple
(
in_g_n_c_wis_strides
[
1
],
in_g_n_c_wis_strides
[
3
],
in_g_n_c_wis_strides
[
4
],
in_g_n_c_wis_strides
[
2
]));
}
else
if
constexpr
(
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
GNDHWC
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
NDHWGC
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Di
,
Hi
,
Wi
,
C
),
make_tuple
(
in_g_n_c_wis_strides
[
1
],
in_g_n_c_wis_strides
[
3
],
in_g_n_c_wis_strides
[
4
],
in_g_n_c_wis_strides
[
5
],
in_g_n_c_wis_strides
[
2
]));
}
else
{
throw
std
::
runtime_error
(
"wrong! unsupported layout: "
+
CLayout
::
name
());
}
}
}
// namespace
template
<
...
...
@@ -82,10 +171,26 @@ struct TransformConvBwdDataToGemm_v1
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
NonSpatialDimsNum
=
Number
<
3
>
{};
static
constexpr
auto
DIdx
=
Number
<
NonSpatialDimsNum
>
{};
static
constexpr
auto
HIdx
=
NDimSpatial
==
2
?
Number
<
NonSpatialDimsNum
>
{}
:
Number
<
NonSpatialDimsNum
+
1
>
{};
static
constexpr
auto
WIdx
=
NDimSpatial
==
2
?
Number
<
NonSpatialDimsNum
+
1
>
{}
:
Number
<
NonSpatialDimsNum
+
2
>
{};
static
constexpr
auto
ZIdx
=
Number
<
NonSpatialDimsNum
>
{};
static
constexpr
auto
YIdx
=
NDimSpatial
==
2
?
Number
<
NonSpatialDimsNum
>
{}
:
Number
<
NonSpatialDimsNum
+
1
>
{};
static
constexpr
auto
XIdx
=
NDimSpatial
==
2
?
Number
<
NonSpatialDimsNum
+
1
>
{}
:
Number
<
NonSpatialDimsNum
+
2
>
{};
template
<
typename
ALayout
,
typename
std
::
enable_if
<
NDimSpatial
==
2
&&
typename
std
::
enable_if
<
(
NDimSpatial
==
2
||
NDimSpatial
==
3
)
&&
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNHWK
>
||
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
NHWGK
>
),
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNDHWK
>
||
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
NHWGK
>
||
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
NDHWGK
>
),
bool
>::
type
=
false
>
static
auto
MakeADescriptor_AK0_M_AK1
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
out_g_n_k_wos_lengths
,
...
...
@@ -100,35 +205,43 @@ struct TransformConvBwdDataToGemm_v1
const
std
::
array
<
index_t
,
NDimSpatial
>&
/* input_right_pads */
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
tildes
)
{
index_t
i_ytilde
=
tildes
[
0
];
index_t
i_xtilde
=
tildes
[
1
];
index_t
i_ztilde
=
tildes
[
ZIdx
-
NonSpatialDimsNum
];
index_t
i_ytilde
=
tildes
[
YIdx
-
NonSpatialDimsNum
];
index_t
i_xtilde
=
tildes
[
XIdx
-
NonSpatialDimsNum
];
const
index_t
N
=
in_g_n_c_wis_lengths
[
1
];
const
index_t
K
=
wei_g_k_c_xs_lengths
[
1
];
const
index_t
Hi
=
in_g_n_c_wis_lengths
[
3
];
const
index_t
Wi
=
in_g_n_c_wis_lengths
[
4
];
const
index_t
Di
=
NDimSpatial
==
3
?
in_g_n_c_wis_lengths
[
DIdx
]
:
1
;
const
index_t
Hi
=
in_g_n_c_wis_lengths
[
HIdx
];
const
index_t
Wi
=
in_g_n_c_wis_lengths
[
WIdx
];
const
index_t
Ho
=
out_g_n_k_wos_lengths
[
3
];
const
index_t
Wo
=
out_g_n_k_wos_lengths
[
4
];
const
index_t
Do
=
NDimSpatial
==
3
?
out_g_n_k_wos_lengths
[
DIdx
]
:
1
;
const
index_t
Ho
=
out_g_n_k_wos_lengths
[
HIdx
];
const
index_t
Wo
=
out_g_n_k_wos_lengths
[
WIdx
];
const
index_t
Y
=
wei_g_k_c_xs_lengths
[
3
];
const
index_t
X
=
wei_g_k_c_xs_lengths
[
4
];
const
index_t
Z
=
NDimSpatial
==
3
?
wei_g_k_c_xs_lengths
[
ZIdx
]
:
1
;
const
index_t
Y
=
wei_g_k_c_xs_lengths
[
YIdx
];
const
index_t
X
=
wei_g_k_c_xs_lengths
[
XIdx
];
const
index_t
InLeftPadH
=
input_left_pads
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
1
];
const
index_t
InLeftPadD
=
input_left_pads
[
DIdx
-
NonSpatialDimsNum
];
const
index_t
InLeftPadH
=
input_left_pads
[
HIdx
-
NonSpatialDimsNum
];
const
index_t
InLeftPadW
=
input_left_pads
[
WIdx
-
NonSpatialDimsNum
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
1
];
const
index_t
ConvStrideD
=
conv_filter_strides
[
DIdx
-
NonSpatialDimsNum
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
HIdx
-
NonSpatialDimsNum
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
WIdx
-
NonSpatialDimsNum
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
1
];
const
index_t
ConvDilationD
=
conv_filter_dilations
[
DIdx
-
NonSpatialDimsNum
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
HIdx
-
NonSpatialDimsNum
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
WIdx
-
NonSpatialDimsNum
];
const
index_t
AK0
=
K
/
AK1
;
const
auto
out_n_ho_wo_k_grid_desc
=
make_out_n_ho_wo_k_grid_desc
<
NDimSpatial
,
ALayout
,
ConvBwdDataSpecialization
>
(
N
,
Ho
,
Wo
,
K
,
out_g_n_k_wos_strides
);
// n_do_ho_wo_k for 3d or n_ho_wo_k for 2d
const
auto
out_grid_desc
=
make_out_grid_desc
<
NDimSpatial
,
ALayout
,
ConvBwdDataSpecialization
>
(
N
,
Do
,
Ho
,
Wo
,
K
,
out_g_n_k_wos_strides
);
if
constexpr
(
ConvBwdDataSpecialization
==
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
...
...
@@ -136,8 +249,8 @@ struct TransformConvBwdDataToGemm_v1
{
// A: output tensor
const
auto
out_gemmak0_gemmmraw_gemmak1_grid_desc
=
transform_tensor_descriptor
(
out_
n_ho_wo_k_
grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
out_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
*
Do
*
Ho
*
Wo
),
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}));
...
...
@@ -152,41 +265,54 @@ struct TransformConvBwdDataToGemm_v1
}
else
{
const
auto
GcdStrideDilationD
=
math
::
gcd
(
ConvStrideD
,
ConvDilationD
);
const
auto
GcdStrideDilationH
=
math
::
gcd
(
ConvStrideH
,
ConvDilationH
);
const
auto
GcdStrideDilationW
=
math
::
gcd
(
ConvStrideW
,
ConvDilationW
);
const
auto
ZTilde
=
ConvStrideD
/
GcdStrideDilationD
;
const
auto
YTilde
=
ConvStrideH
/
GcdStrideDilationH
;
const
auto
XTilde
=
ConvStrideW
/
GcdStrideDilationW
;
const
auto
ZDot
=
math
::
integer_divide_ceil
(
Z
,
ZTilde
);
const
auto
YDot
=
math
::
integer_divide_ceil
(
Y
,
YTilde
);
const
auto
XDot
=
math
::
integer_divide_ceil
(
X
,
XTilde
);
const
auto
DTilde
=
Do
+
math
::
integer_divide_ceil
(
ConvDilationD
*
(
Z
-
I1
),
ConvStrideD
);
const
auto
HTilde
=
Ho
+
math
::
integer_divide_ceil
(
ConvDilationH
*
(
Y
-
I1
),
ConvStrideH
);
const
auto
WTilde
=
Wo
+
math
::
integer_divide_ceil
(
ConvDilationW
*
(
X
-
I1
),
ConvStrideW
);
// only work on HTilde and WTilde that contribute to non-padding area of input tensor
const
auto
IDTildeSliceBegin
=
math
::
integer_divide_floor
(
math
::
max
(
I0
,
InLeftPadD
-
ConvDilationD
*
(
ZTilde
-
I1
)),
ConvStrideD
);
const
auto
IHTildeSliceBegin
=
math
::
integer_divide_floor
(
math
::
max
(
I0
,
InLeftPadH
-
ConvDilationH
*
(
YTilde
-
I1
)),
ConvStrideH
);
const
auto
IWTildeSliceBegin
=
math
::
integer_divide_floor
(
math
::
max
(
I0
,
InLeftPadW
-
ConvDilationW
*
(
XTilde
-
I1
)),
ConvStrideW
);
const
auto
IDTildeSliceEnd
=
math
::
min
(
DTilde
,
math
::
integer_divide_ceil
(
InLeftPadD
+
Di
-
I1
,
ConvStrideD
)
+
I1
);
const
auto
IHTildeSliceEnd
=
math
::
min
(
HTilde
,
math
::
integer_divide_ceil
(
InLeftPadH
+
Hi
-
I1
,
ConvStrideH
)
+
I1
);
const
auto
IWTildeSliceEnd
=
math
::
min
(
WTilde
,
math
::
integer_divide_ceil
(
InLeftPadW
+
Wi
-
I1
,
ConvStrideW
)
+
I1
);
const
auto
DTildeSlice
=
IDTildeSliceEnd
-
IDTildeSliceBegin
;
const
auto
HTildeSlice
=
IHTildeSliceEnd
-
IHTildeSliceBegin
;
const
auto
WTildeSlice
=
IWTildeSliceEnd
-
IWTildeSliceBegin
;
// GemmK is different for each GEMM
const
auto
ZDotSlice
=
math
::
integer_divide_ceil
(
Z
-
i_ztilde
,
ZTilde
);
const
auto
YDotSlice
=
math
::
integer_divide_ceil
(
Y
-
i_ytilde
,
YTilde
);
const
auto
XDotSlice
=
math
::
integer_divide_ceil
(
X
-
i_xtilde
,
XTilde
);
if
constexpr
(
NDimSpatial
==
2
)
{
// A: output tensor
const
auto
out_n_hop_wop_k_grid_desc
=
transform_tensor_descriptor
(
out_n_ho_wo_k
_grid_desc
,
out
_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Ho
,
I0
,
I0
),
make_pad_transform
(
Wo
,
I0
,
I0
),
...
...
@@ -244,11 +370,103 @@ struct TransformConvBwdDataToGemm_v1
return
out_gemmak0_gemmm_gemmak1_grid_desc
;
}
else
if
constexpr
(
NDimSpatial
==
3
)
{
// A: output tensor
const
auto
out_n_hop_wop_k_grid_desc
=
transform_tensor_descriptor
(
out_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Do
,
I0
,
I0
),
make_pad_transform
(
Ho
,
I0
,
I0
),
make_pad_transform
(
Wo
,
I0
,
I0
),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}));
const
auto
out_n_zdot_dtilde_ydot_htilde_xdot_wtilde_k_grid_desc
=
transform_tensor_descriptor
(
out_n_hop_wop_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
ZDot
,
DTilde
),
make_tuple
(
-
ConvDilationD
/
GcdStrideDilationD
,
I1
)),
make_embed_transform
(
make_tuple
(
YDot
,
HTilde
),
make_tuple
(
-
ConvDilationH
/
GcdStrideDilationH
,
I1
)),
make_embed_transform
(
make_tuple
(
XDot
,
WTilde
),
make_tuple
(
-
ConvDilationW
/
GcdStrideDilationW
,
I1
)),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
,
6
>
{},
Sequence
<
7
>
{}));
const
auto
out_n_zdotslice_dtildeslice_ydotslice_htildeslice_xdotslice_wtildeslice_ak0_ak1_grid_desc
=
transform_tensor_descriptor
(
out_n_zdot_dtilde_ydot_htilde_xdot_wtilde_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_slice_transform
(
ZDot
,
I0
,
ZDotSlice
),
make_slice_transform
(
DTilde
,
IDTildeSliceBegin
,
DTildeSlice
),
make_slice_transform
(
YDot
,
I0
,
YDotSlice
),
make_slice_transform
(
HTilde
,
IHTildeSliceBegin
,
HTildeSlice
),
make_slice_transform
(
XDot
,
I0
,
XDotSlice
),
make_slice_transform
(
WTilde
,
IWTildeSliceBegin
,
WTildeSlice
),
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{},
Sequence
<
6
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{},
Sequence
<
6
>
{},
Sequence
<
7
,
8
>
{}));
const
auto
out_gemmak0_gemmmraw_gemmak1_grid_desc
=
transform_tensor_descriptor
(
out_n_zdotslice_dtildeslice_ydotslice_htildeslice_xdotslice_wtildeslice_ak0_ak1_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
ZDotSlice
,
YDotSlice
,
XDotSlice
,
AK0
)),
make_merge_transform
(
make_tuple
(
N
,
DTildeSlice
,
HTildeSlice
,
WTildeSlice
)),
make_pass_through_transform
(
AK1
)),
make_tuple
(
Sequence
<
1
,
3
,
5
,
7
>
{},
Sequence
<
0
,
2
,
4
,
6
>
{},
Sequence
<
8
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
const
auto
out_gemmak0_gemmm_gemmak1_grid_desc
=
ck
::
tensor_operation
::
device
::
PadTensorDescriptor
(
out_gemmak0_gemmmraw_gemmak1_grid_desc
,
make_tuple
(
AK0
,
GemmMPerBlock
,
AK1
),
Sequence
<
false
,
DoPadGemmM
,
false
>
{});
return
out_gemmak0_gemmm_gemmak1_grid_desc
;
}
else
{
throw
std
::
runtime_error
(
"wrong! only implemented for 2D and 3D now"
);
}
}
}
template
<
typename
BLayout
,
typename
std
::
enable_if
<
NDimSpatial
==
2
&&
is_same_v
<
BLayout
,
tensor_layout
::
convolution
::
GKYXC
>,
typename
std
::
enable_if
<
(
NDimSpatial
==
2
||
NDimSpatial
==
3
)
&&
(
is_same_v
<
BLayout
,
tensor_layout
::
convolution
::
GKYXC
>
||
is_same_v
<
BLayout
,
tensor_layout
::
convolution
::
GKZYXC
>
),
bool
>::
type
=
false
>
static
auto
MakeBDescriptor_BK0_N_BK1
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
out_g_n_k_wos_lengths
,
...
...
@@ -263,30 +481,35 @@ struct TransformConvBwdDataToGemm_v1
const
std
::
array
<
index_t
,
NDimSpatial
>&
/* input_right_pads */
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
tildes
)
{
index_t
i_ytilde
=
tildes
[
0
];
index_t
i_xtilde
=
tildes
[
1
];
index_t
i_ztilde
=
tildes
[
ZIdx
-
NonSpatialDimsNum
];
index_t
i_ytilde
=
tildes
[
YIdx
-
NonSpatialDimsNum
];
index_t
i_xtilde
=
tildes
[
XIdx
-
NonSpatialDimsNum
];
const
index_t
N
=
in_g_n_c_wis_lengths
[
1
];
const
index_t
K
=
wei_g_k_c_xs_lengths
[
1
];
const
index_t
C
=
wei_g_k_c_xs_lengths
[
2
];
const
index_t
Ho
=
out_g_n_k_wos_lengths
[
3
];
const
index_t
Wo
=
out_g_n_k_wos_lengths
[
4
];
const
index_t
Do
=
NDimSpatial
==
3
?
out_g_n_k_wos_lengths
[
DIdx
]
:
1
;
const
index_t
Ho
=
out_g_n_k_wos_lengths
[
HIdx
];
const
index_t
Wo
=
out_g_n_k_wos_lengths
[
WIdx
];
const
index_t
Y
=
wei_g_k_c_xs_lengths
[
3
];
const
index_t
X
=
wei_g_k_c_xs_lengths
[
4
];
const
index_t
Z
=
NDimSpatial
==
3
?
wei_g_k_c_xs_lengths
[
ZIdx
]
:
1
;
const
index_t
Y
=
wei_g_k_c_xs_lengths
[
YIdx
];
const
index_t
X
=
wei_g_k_c_xs_lengths
[
XIdx
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
1
];
const
index_t
ConvStrideD
=
conv_filter_strides
[
DIdx
-
NonSpatialDimsNum
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
HIdx
-
NonSpatialDimsNum
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
WIdx
-
NonSpatialDimsNum
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
1
];
const
index_t
ConvDilationD
=
conv_filter_dilations
[
DIdx
-
NonSpatialDimsNum
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
HIdx
-
NonSpatialDimsNum
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
WIdx
-
NonSpatialDimsNum
];
const
index_t
BK0
=
K
/
BK1
;
// assume packed
const
auto
wei_k_y_x_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
,
X
,
C
)
)
;
// k_y_x_c for 2d or k_z_y_x_c for 3d
const
auto
wei_grid_desc
=
make_wei_grid_desc
<
BLayout
>
(
K
,
Z
,
Y
,
X
,
C
);
if
constexpr
(
ConvBwdDataSpecialization
==
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
...
...
@@ -299,7 +522,7 @@ struct TransformConvBwdDataToGemm_v1
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
make_naive_tensor_descriptor
(
make_tuple
(
N
*
Ho
*
Wo
,
C
),
make_tuple
(
I0
,
I1
));
make_naive_tensor_descriptor
(
make_tuple
(
N
*
Do
*
Ho
*
Wo
,
C
),
make_tuple
(
I0
,
I1
));
const
auto
wei_gemmbk0_gemmn_gemmbk1_grid_desc
=
ck
::
tensor_operation
::
device
::
PadTensorDescriptor
(
...
...
@@ -311,23 +534,30 @@ struct TransformConvBwdDataToGemm_v1
}
else
{
const
auto
GcdStrideDilationD
=
math
::
gcd
(
ConvStrideD
,
ConvDilationD
);
const
auto
GcdStrideDilationH
=
math
::
gcd
(
ConvStrideH
,
ConvDilationH
);
const
auto
GcdStrideDilationW
=
math
::
gcd
(
ConvStrideW
,
ConvDilationW
);
const
auto
ZTilde
=
ConvStrideD
/
GcdStrideDilationD
;
const
auto
YTilde
=
ConvStrideH
/
GcdStrideDilationH
;
const
auto
XTilde
=
ConvStrideW
/
GcdStrideDilationW
;
const
auto
ZDot
=
math
::
integer_divide_ceil
(
Z
,
ZTilde
);
const
auto
YDot
=
math
::
integer_divide_ceil
(
Y
,
YTilde
);
const
auto
XDot
=
math
::
integer_divide_ceil
(
X
,
XTilde
);
// GemmK is different for each GEMM
const
auto
ZDotSlice
=
math
::
integer_divide_ceil
(
Z
-
i_ztilde
,
ZTilde
);
const
auto
YDotSlice
=
math
::
integer_divide_ceil
(
Y
-
i_ytilde
,
YTilde
);
const
auto
XDotSlice
=
math
::
integer_divide_ceil
(
X
-
i_xtilde
,
XTilde
);
// B weight tensor
if
constexpr
(
NDimSpatial
==
2
)
{
const
auto
wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc
=
transform_tensor_descriptor
(
wei_k_y_x_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
K
),
wei_grid_desc
,
make_tuple
(
make_pass_through_transform
(
K
),
make_embed_transform
(
make_tuple
(
YDot
,
YTilde
),
make_tuple
(
ConvStrideH
/
GcdStrideDilationH
,
I1
)),
make_embed_transform
(
make_tuple
(
XDot
,
XTilde
),
...
...
@@ -337,7 +567,8 @@ struct TransformConvBwdDataToGemm_v1
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
wei_bk0_bk1_ydotslice_xdotslice_c_grid_desc
=
transform_tensor_descriptor
(
wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc
,
transform_tensor_descriptor
(
wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_slice_transform
(
YDot
,
I0
,
YDotSlice
),
make_slice_transform
(
XDot
,
I0
,
XDotSlice
),
...
...
@@ -368,18 +599,98 @@ struct TransformConvBwdDataToGemm_v1
const
auto
wei_gemmbk0_gemmn_gemmbk1_grid_desc
=
ck
::
tensor_operation
::
device
::
PadTensorDescriptor
(
wei_gemmbk0_gemmnraw_gemmbk1_grid_desc
,
make_tuple
(
wei_gemmbk0_gemmnraw_gemmbk1_grid_desc
.
GetLength
(
I0
),
GemmNPerBlock
,
BK1
),
Sequence
<
false
,
DoPadGemmN
,
false
>
{});
return
wei_gemmbk0_gemmn_gemmbk1_grid_desc
;
}
else
if
constexpr
(
NDimSpatial
==
3
)
{
const
auto
wei_k_zdot_ztilde_ydot_ytilde_xdot_xtilde_c_grid_desc
=
transform_tensor_descriptor
(
wei_grid_desc
,
make_tuple
(
make_pass_through_transform
(
K
),
make_embed_transform
(
make_tuple
(
ZDot
,
ZTilde
),
make_tuple
(
ConvStrideD
/
GcdStrideDilationD
,
I1
)),
make_embed_transform
(
make_tuple
(
YDot
,
YTilde
),
make_tuple
(
ConvStrideH
/
GcdStrideDilationH
,
I1
)),
make_embed_transform
(
make_tuple
(
XDot
,
XTilde
),
make_tuple
(
ConvStrideW
/
GcdStrideDilationW
,
I1
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
,
6
>
{},
Sequence
<
7
>
{}));
const
auto
wei_bk0_bk1_zdotslice_ydotslice_xdotslice_c_grid_desc
=
transform_tensor_descriptor
(
wei_k_zdot_ztilde_ydot_ytilde_xdot_xtilde_c_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_slice_transform
(
ZDot
,
I0
,
ZDotSlice
),
make_slice_transform
(
YDot
,
I0
,
YDotSlice
),
make_slice_transform
(
XDot
,
I0
,
XDotSlice
),
make_freeze_transform
(
i_ztilde
),
make_freeze_transform
(
i_ytilde
),
make_freeze_transform
(
i_xtilde
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{},
Sequence
<
5
>
{},
Sequence
<
2
>
{},
Sequence
<
4
>
{},
Sequence
<
6
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<>
{},
Sequence
<>
{},
Sequence
<>
{},
Sequence
<
5
>
{}));
const
auto
wei_gemmbk0_gemmnraw_gemmbk1_grid_desc
=
transform_tensor_descriptor
(
wei_bk0_bk1_zdotslice_ydotslice_xdotslice_c_grid_desc
,
make_tuple
(
wei_gemmbk0_gemmnraw_gemmbk1_grid_desc
.
GetLength
(
I0
),
GemmNPerBlock
,
BK1
),
make_merge_transform
(
make_tuple
(
ZDotSlice
,
YDotSlice
,
XDotSlice
,
BK0
)),
make_pass_through_transform
(
C
),
make_pass_through_transform
(
BK1
)),
make_tuple
(
Sequence
<
2
,
3
,
4
,
0
>
{},
Sequence
<
5
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
const
auto
wei_gemmbk0_gemmn_gemmbk1_grid_desc
=
ck
::
tensor_operation
::
device
::
PadTensorDescriptor
(
wei_gemmbk0_gemmnraw_gemmbk1_grid_desc
,
make_tuple
(
wei_gemmbk0_gemmnraw_gemmbk1_grid_desc
.
GetLength
(
I0
),
GemmNPerBlock
,
BK1
),
Sequence
<
false
,
DoPadGemmN
,
false
>
{});
return
wei_gemmbk0_gemmn_gemmbk1_grid_desc
;
}
else
{
throw
std
::
runtime_error
(
"wrong! only implemented for 2D and 3D now"
);
}
}
}
template
<
typename
CLayout
,
typename
std
::
enable_if
<
NDimSpatial
==
2
&&
typename
std
::
enable_if
<
(
NDimSpatial
==
2
||
NDimSpatial
==
3
)
&&
(
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
GNHWC
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
GNDHWC
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
NHWGC
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
NDHWGC
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
G_NHW_C
>
),
bool
>::
type
=
false
>
static
auto
...
...
@@ -395,49 +706,57 @@ struct TransformConvBwdDataToGemm_v1
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
tildes
)
{
index_t
i_ytilde
=
tildes
[
0
];
index_t
i_xtilde
=
tildes
[
1
];
index_t
i_ztilde
=
tildes
[
ZIdx
-
NonSpatialDimsNum
];
index_t
i_ytilde
=
tildes
[
YIdx
-
NonSpatialDimsNum
];
index_t
i_xtilde
=
tildes
[
XIdx
-
NonSpatialDimsNum
];
const
index_t
N
=
in_g_n_c_wis_lengths
[
1
];
const
index_t
C
=
wei_g_k_c_xs_lengths
[
2
];
const
index_t
Hi
=
in_g_n_c_wis_lengths
[
3
];
const
index_t
Wi
=
in_g_n_c_wis_lengths
[
4
];
const
index_t
Di
=
NDimSpatial
==
3
?
in_g_n_c_wis_lengths
[
DIdx
]
:
1
;
const
index_t
Hi
=
in_g_n_c_wis_lengths
[
HIdx
];
const
index_t
Wi
=
in_g_n_c_wis_lengths
[
WIdx
];
const
index_t
Ho
=
out_g_n_k_wos_lengths
[
3
];
const
index_t
Wo
=
out_g_n_k_wos_lengths
[
4
];
const
index_t
Do
=
NDimSpatial
==
3
?
out_g_n_k_wos_lengths
[
DIdx
]
:
1
;
const
index_t
Ho
=
out_g_n_k_wos_lengths
[
HIdx
];
const
index_t
Wo
=
out_g_n_k_wos_lengths
[
WIdx
];
const
index_t
Y
=
wei_g_k_c_xs_lengths
[
3
];
const
index_t
X
=
wei_g_k_c_xs_lengths
[
4
];
const
index_t
Z
=
NDimSpatial
==
3
?
wei_g_k_c_xs_lengths
[
ZIdx
]
:
1
;
const
index_t
Y
=
wei_g_k_c_xs_lengths
[
YIdx
];
const
index_t
X
=
wei_g_k_c_xs_lengths
[
XIdx
];
const
index_t
InLeftPadH
=
input_left_pads
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
1
];
const
index_t
InLeftPadD
=
input_left_pads
[
DIdx
-
NonSpatialDimsNum
];
const
index_t
InLeftPadH
=
input_left_pads
[
HIdx
-
NonSpatialDimsNum
];
const
index_t
InLeftPadW
=
input_left_pads
[
WIdx
-
NonSpatialDimsNum
];
const
index_t
InRightPadH
=
input_right_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
1
];
const
index_t
InRightPadD
=
input_right_pads
[
DIdx
-
NonSpatialDimsNum
];
const
index_t
InRightPadH
=
input_right_pads
[
HIdx
-
NonSpatialDimsNum
];
const
index_t
InRightPadW
=
input_right_pads
[
WIdx
-
NonSpatialDimsNum
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
1
];
const
index_t
ConvStrideD
=
conv_filter_strides
[
DIdx
-
NonSpatialDimsNum
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
HIdx
-
NonSpatialDimsNum
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
WIdx
-
NonSpatialDimsNum
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
1
];
const
index_t
ConvDilationD
=
conv_filter_dilations
[
DIdx
-
NonSpatialDimsNum
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
HIdx
-
NonSpatialDimsNum
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
WIdx
-
NonSpatialDimsNum
];
// assume strided
const
auto
in_n_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Hi
,
Wi
,
C
),
make_tuple
(
in_g_n_c_wis_strides
[
1
],
in_g_n_c_wis_strides
[
3
],
in_g_n_c_wis_strides
[
4
],
in_g_n_c_wis_strides
[
2
]));
// n_hi_wi_c for 2d n_di_hi_wi_c for 3d
const
auto
in_grid_desc
=
make_in_grid_desc
<
NDimSpatial
,
CLayout
>
(
N
,
Di
,
Hi
,
Wi
,
C
,
in_g_n_c_wis_strides
);
if
constexpr
(
ConvBwdDataSpecialization
==
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
)
{
// C: input tensor
if
constexpr
(
NDimSpatial
==
2
)
{
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
in_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
I1
,
Ho
),
make_tuple
(
I1
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
I1
,
Wo
),
make_tuple
(
I1
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
...
...
@@ -453,7 +772,51 @@ struct TransformConvBwdDataToGemm_v1
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
3
>
{},
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<>
{},
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmn_grid_desc
=
ck
::
tensor_operation
::
device
::
PadTensorDescriptor
(
const
auto
in_gemmm_gemmn_grid_desc
=
ck
::
tensor_operation
::
device
::
PadTensorDescriptor
(
in_gemmmraw_gemmnraw_grid_desc
,
make_tuple
(
GemmMPerBlock
,
GemmNPerBlock
),
Sequence
<
DoPadGemmM
,
DoPadGemmN
>
{});
return
in_gemmm_gemmn_grid_desc
;
}
else
if
constexpr
(
NDimSpatial
==
3
)
{
// C: input tensor
const
auto
in_n_x_do_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
I1
,
Do
),
make_tuple
(
I1
,
ConvStrideD
)),
make_embed_transform
(
make_tuple
(
I1
,
Ho
),
make_tuple
(
I1
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
I1
,
Wo
),
make_tuple
(
I1
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
,
6
>
{},
Sequence
<
7
>
{}));
const
auto
in_gemmmraw_gemmnraw_grid_desc
=
transform_tensor_descriptor
(
in_n_x_do_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_freeze_transform
(
I0
),
make_freeze_transform
(
I0
),
make_freeze_transform
(
I0
),
make_merge_transform
(
make_tuple
(
N
,
Do
,
Ho
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
3
>
{},
Sequence
<
5
>
{},
Sequence
<
0
,
2
,
4
,
6
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<>
{},
Sequence
<>
{},
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmn_grid_desc
=
ck
::
tensor_operation
::
device
::
PadTensorDescriptor
(
in_gemmmraw_gemmnraw_grid_desc
,
make_tuple
(
GemmMPerBlock
,
GemmNPerBlock
),
Sequence
<
DoPadGemmM
,
DoPadGemmN
>
{});
...
...
@@ -462,34 +825,51 @@ struct TransformConvBwdDataToGemm_v1
}
else
{
throw
std
::
runtime_error
(
"wrong! only implemented for 2D and 3D now"
);
}
}
else
{
const
auto
GcdStrideDilationD
=
math
::
gcd
(
ConvStrideD
,
ConvDilationD
);
const
auto
GcdStrideDilationH
=
math
::
gcd
(
ConvStrideH
,
ConvDilationH
);
const
auto
GcdStrideDilationW
=
math
::
gcd
(
ConvStrideW
,
ConvDilationW
);
const
auto
ZTilde
=
ConvStrideD
/
GcdStrideDilationD
;
const
auto
YTilde
=
ConvStrideH
/
GcdStrideDilationH
;
const
auto
XTilde
=
ConvStrideW
/
GcdStrideDilationW
;
const
auto
DTilde
=
Do
+
math
::
integer_divide_ceil
(
ConvDilationD
*
(
Z
-
I1
),
ConvStrideD
);
const
auto
HTilde
=
Ho
+
math
::
integer_divide_ceil
(
ConvDilationH
*
(
Y
-
I1
),
ConvStrideH
);
const
auto
WTilde
=
Wo
+
math
::
integer_divide_ceil
(
ConvDilationW
*
(
X
-
I1
),
ConvStrideW
);
// only work on HTilde and WTilde that contribute to non-padding area of input tensor
// only work on DTilde, HTilde and WTilde that contribute to
// non-padding area of input tensor
const
auto
IDTildeSliceBegin
=
math
::
integer_divide_floor
(
math
::
max
(
I0
,
InLeftPadD
-
ConvDilationD
*
(
ZTilde
-
I1
)),
ConvStrideD
);
const
auto
IHTildeSliceBegin
=
math
::
integer_divide_floor
(
math
::
max
(
I0
,
InLeftPadH
-
ConvDilationH
*
(
YTilde
-
I1
)),
ConvStrideH
);
const
auto
IWTildeSliceBegin
=
math
::
integer_divide_floor
(
math
::
max
(
I0
,
InLeftPadW
-
ConvDilationW
*
(
XTilde
-
I1
)),
ConvStrideW
);
const
auto
IDTildeSliceEnd
=
math
::
min
(
DTilde
,
math
::
integer_divide_ceil
(
InLeftPadD
+
Di
-
I1
,
ConvStrideD
)
+
I1
);
const
auto
IHTildeSliceEnd
=
math
::
min
(
HTilde
,
math
::
integer_divide_ceil
(
InLeftPadH
+
Hi
-
I1
,
ConvStrideH
)
+
I1
);
const
auto
IWTildeSliceEnd
=
math
::
min
(
WTilde
,
math
::
integer_divide_ceil
(
InLeftPadW
+
Wi
-
I1
,
ConvStrideW
)
+
I1
);
const
auto
DTildeSlice
=
IDTildeSliceEnd
-
IDTildeSliceBegin
;
const
auto
HTildeSlice
=
IHTildeSliceEnd
-
IHTildeSliceBegin
;
const
auto
WTildeSlice
=
IWTildeSliceEnd
-
IWTildeSliceBegin
;
// C: input tensor
if
constexpr
(
NDimSpatial
==
2
)
{
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c
_grid_desc
,
in
_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
...
...
@@ -497,7 +877,8 @@ struct TransformConvBwdDataToGemm_v1
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc
=
transform_tensor_descriptor
(
const
auto
in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
YTilde
,
HTilde
),
...
...
@@ -506,7 +887,8 @@ struct TransformConvBwdDataToGemm_v1
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_n_htildeslice_wtildeslice_c_grid_desc
=
transform_tensor_descriptor
(
in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc
,
...
...
@@ -536,13 +918,98 @@ struct TransformConvBwdDataToGemm_v1
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmn_grid_desc
=
ck
::
tensor_operation
::
device
::
PadTensorDescriptor
(
const
auto
in_gemmm_gemmn_grid_desc
=
ck
::
tensor_operation
::
device
::
PadTensorDescriptor
(
in_gemmmraw_gemmnraw_grid_desc
,
make_tuple
(
GemmMPerBlock
,
GemmNPerBlock
),
Sequence
<
DoPadGemmM
,
DoPadGemmN
>
{});
return
in_gemmm_gemmn_grid_desc
;
}
else
if
(
NDimSpatial
==
3
)
{
const
auto
in_n_dip_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Di
,
InLeftPadD
,
InRightPadD
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}));
const
auto
in_n_ztilde_dtilde_ytilde_htilde_xtilde_wtilde_c_grid_desc
=
transform_tensor_descriptor
(
in_n_dip_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
ZTilde
,
DTilde
),
make_tuple
(
ConvDilationD
,
ConvStrideD
)),
make_embed_transform
(
make_tuple
(
YTilde
,
HTilde
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
XTilde
,
WTilde
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
,
6
>
{},
Sequence
<
7
>
{}));
const
auto
in_n_dtildeslice_htildeslice_wtildeslice_c_grid_desc
=
transform_tensor_descriptor
(
in_n_ztilde_dtilde_ytilde_htilde_xtilde_wtilde_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_freeze_transform
(
i_ztilde
),
make_slice_transform
(
DTilde
,
IDTildeSliceBegin
,
DTildeSlice
),
make_freeze_transform
(
i_ytilde
),
make_slice_transform
(
HTilde
,
IHTildeSliceBegin
,
HTildeSlice
),
make_freeze_transform
(
i_xtilde
),
make_slice_transform
(
WTilde
,
IWTildeSliceBegin
,
WTildeSlice
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{},
Sequence
<
6
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<>
{},
Sequence
<
1
>
{},
Sequence
<>
{},
Sequence
<
2
>
{},
Sequence
<>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}));
const
auto
in_gemmmraw_gemmnraw_grid_desc
=
transform_tensor_descriptor
(
in_n_dtildeslice_htildeslice_wtildeslice_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
DTildeSlice
,
HTildeSlice
,
WTildeSlice
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmn_grid_desc
=
ck
::
tensor_operation
::
device
::
PadTensorDescriptor
(
in_gemmmraw_gemmnraw_grid_desc
,
make_tuple
(
GemmMPerBlock
,
GemmNPerBlock
),
Sequence
<
DoPadGemmM
,
DoPadGemmN
>
{});
return
in_gemmm_gemmn_grid_desc
;
}
else
{
throw
std
::
runtime_error
(
"wrong! only implemented for 2D and 3D now"
);
}
}
}
// for input bias
...
...
include/ck/utility/amd_buffer_addressing.hpp
View file @
50540084
...
...
@@ -629,7 +629,7 @@ __device__ void amd_buffer_store_impl(const typename vector_type<T, N>::type src
{
static_assert
(
(
is_same
<
T
,
double
>::
value
&&
(
N
==
1
||
N
==
2
))
||
(
is_same
<
T
,
float
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
))
||
(
is_same
<
T
,
float
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
half_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
bhalf_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
int32_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
))
||
...
...
@@ -682,6 +682,20 @@ __device__ void amd_buffer_store_impl(const typename vector_type<T, N>::type src
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
8
)
{
vector_type
<
float
,
8
>
tmp
{
src_thread_data
};
llvm_amdgcn_raw_buffer_store_fp32x4
(
tmp
.
AsType
<
float4_t
>
()[
Number
<
0
>
{}],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
llvm_amdgcn_raw_buffer_store_fp32x4
(
tmp
.
AsType
<
float4_t
>
()[
Number
<
1
>
{}],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
+
4
*
sizeof
(
float
),
static_cast
<
index_t
>
(
coherence
));
}
}
else
if
constexpr
(
is_same
<
T
,
half_t
>::
value
)
{
...
...
include/ck/utility/inner_product.hpp
View file @
50540084
...
...
@@ -13,13 +13,13 @@ __device__ void inner_product(const TA& a, const TB& b, TC& c);
template
<
>
__device__
void
inner_product
<
float
,
float
,
float
>
(
const
float
&
a
,
const
float
&
b
,
float
&
c
)
{
#if CK_USE_AMD_
INNER_PRODUCT
_INLINE_ASM && defined(CK_USE_AMD_V_MAC_F32)
#if CK_USE_AMD_
V_MAC
_INLINE_ASM && defined(CK_USE_AMD_V_MAC_F32)
asm
volatile
(
"
\n
\
v_mac_f32 %0, %1, %2
\n
\
"
:
"=v"
(
c
)
:
"v"
(
a
),
"v"
(
b
),
"0"
(
c
));
#elif CK_USE_AMD_
INNER_PRODUCT
_INLINE_ASM && defined(CK_USE_AMD_V_FMAC_F32)
#elif CK_USE_AMD_
V_MAC
_INLINE_ASM && defined(CK_USE_AMD_V_FMAC_F32)
asm
volatile
(
"
\n
\
v_fmac_f32 %0, %1, %2
\n
\
"
...
...
@@ -76,14 +76,18 @@ template <>
__device__
void
inner_product
<
half2_t
,
half2_t
,
float
>
(
const
half2_t
&
a
,
const
half2_t
&
b
,
float
&
c
)
{
#if defined(CK_USE_AMD_V_DOT2_F32_F16)
#if CK_USE_AMD_INNER_PRODUCT_INLINE_ASM
#if CK_USE_AMD_V_DOT_INLINE_ASM
// Use 3 x s_nop to avoid hazard (mi200 cdna2 isa page 47
// https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf
// ) s_nop with parameter 2 is equal to 3 x s_nop
asm
volatile
(
"
\n
\
v_dot2_f32_f16 %0, %1, %2, %0
\n
\
s_nop 2
\n
\
"
:
"=v"
(
c
)
:
"v"
(
a
),
"v"
(
b
),
"0"
(
c
));
#else
c
=
__builtin_amdgcn_
s
dot2
(
a
,
b
,
c
,
false
);
c
=
__builtin_amdgcn_
f
dot2
(
a
,
b
,
c
,
false
);
#endif
#else
const
vector_type
<
half_t
,
2
>
a_vector
{
a
};
...
...
@@ -163,9 +167,13 @@ __device__ void
inner_product
<
int8x4_t
,
int8x4_t
,
int32_t
>
(
const
int8x4_t
&
a
,
const
int8x4_t
&
b
,
int32_t
&
c
)
{
#if defined(CK_USE_AMD_V_DOT4_I32_I8)
#if CK_USE_AMD_INNER_PRODUCT_INLINE_ASM
#if CK_USE_AMD_V_DOT_INLINE_ASM
// Use 3 x s_nop to avoid hazard (mi200 cdna2 isa page 47
// https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf
// ) s_nop with parameter 2 is equal to 3 x s_nop
asm
volatile
(
"
\n
\
v_dot4_i32_i8 %0, %1, %2, %0
\n
\
s_nop 2
\n
\
"
:
"=v"
(
c
)
:
"v"
(
bit_cast
<
int32_t
>
(
a
)),
"v"
(
bit_cast
<
int32_t
>
(
b
)),
"0"
(
c
));
...
...
include/ck/utility/magic_division.hpp
View file @
50540084
...
...
@@ -157,4 +157,76 @@ struct MagicDivision
}
};
struct
MDiv
{
// 1 dword -> 3 dword storage
uint32_t
divisor
;
uint32_t
multiplier
;
uint32_t
shift
;
// TODO: 8 bit is enough
// prefer construct on host
__host__
__device__
MDiv
(
uint32_t
divisor_
)
:
divisor
(
divisor_
)
{
auto
tmp
=
MagicDivision
::
CalculateMagicNumbers
(
divisor_
);
multiplier
=
tmp
[
Number
<
0
>
{}];
shift
=
tmp
[
Number
<
1
>
{}];
}
__host__
__device__
MDiv
()
:
divisor
(
0
),
multiplier
(
0
),
shift
(
0
)
{}
__host__
__device__
void
update
(
uint32_t
divisor_
)
{
divisor
=
divisor_
;
auto
tmp
=
MagicDivision
::
CalculateMagicNumbers
(
divisor_
);
multiplier
=
tmp
[
Number
<
0
>
{}];
shift
=
tmp
[
Number
<
1
>
{}];
}
__host__
__device__
uint32_t
div
(
uint32_t
dividend_
)
const
{
return
MagicDivision
::
DoMagicDivision
(
dividend_
,
multiplier
,
shift
);
}
__host__
__device__
void
divmod
(
uint32_t
dividend_
,
uint32_t
&
quotient_
,
uint32_t
&
remainder_
)
const
{
quotient_
=
div
(
dividend_
);
remainder_
=
dividend_
-
(
quotient_
*
divisor
);
}
__host__
__device__
uint32_t
get
()
const
{
return
divisor
;
}
};
struct
MDiv2
{
// 1 dword -> 2 dword storage, divisor need compute from runtime
uint32_t
multiplier
;
uint32_t
shift
;
// TODO: 8 bit is enough
// prefer construct on host
__host__
__device__
MDiv2
(
uint32_t
divisor_
)
{
auto
tmp
=
MagicDivision
::
CalculateMagicNumbers
(
divisor_
);
multiplier
=
tmp
[
Number
<
0
>
{}];
shift
=
tmp
[
Number
<
1
>
{}];
}
__host__
__device__
MDiv2
()
:
multiplier
(
0
),
shift
(
0
)
{}
__host__
__device__
uint32_t
div
(
uint32_t
dividend_
)
const
{
return
MagicDivision
::
DoMagicDivision
(
dividend_
,
multiplier
,
shift
);
}
__host__
__device__
void
divmod
(
uint32_t
dividend_
,
uint32_t
divisor_
,
uint32_t
&
quotient_
,
uint32_t
&
remainder_
)
const
{
quotient_
=
div
(
dividend_
);
remainder_
=
dividend_
-
(
quotient_
*
divisor_
);
}
};
}
// namespace ck
include/ck/utility/math.hpp
View file @
50540084
...
...
@@ -240,5 +240,21 @@ struct less
__host__
__device__
constexpr
bool
operator
()(
T
x
,
T
y
)
const
{
return
x
<
y
;
}
};
template
<
index_t
X
>
__host__
__device__
constexpr
auto
next_power_of_two
()
{
// TODO: X need to be 2 ~ 0x7fffffff. 0, 1, or larger than 0x7fffffff will compile fail
constexpr
index_t
Y
=
1
<<
(
32
-
__builtin_clz
(
X
-
1
));
return
Y
;
}
template
<
index_t
X
>
__host__
__device__
constexpr
auto
next_power_of_two
(
Number
<
X
>
x
)
{
// TODO: X need to be 2 ~ 0x7fffffff. 0, 1, or larger than 0x7fffffff will compile fail
constexpr
index_t
Y
=
1
<<
(
32
-
__builtin_clz
(
x
.
value
-
1
));
return
Number
<
Y
>
{};
}
}
// namespace math
}
// namespace ck
include/ck/utility/type_convert.hpp
View file @
50540084
...
...
@@ -62,24 +62,6 @@ inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, half_t>(half_
return
type_convert
<
bhalf_t
>
(
x_fp32
);
}
// convert bfp16 to int32 via fp32
template
<
>
inline
__host__
__device__
constexpr
int32_t
type_convert
<
int32_t
,
bhalf_t
>
(
bhalf_t
x
)
{
float
x_fp32
=
type_convert
<
float
>
(
x
);
return
static_cast
<
int32_t
>
(
x_fp32
);
}
// convert int32 to bfp16 via fp32
template
<
>
inline
__host__
__device__
constexpr
bhalf_t
type_convert
<
bhalf_t
,
int32_t
>
(
int32_t
x
)
{
float
x_fp32
=
static_cast
<
float
>
(
x
);
return
type_convert
<
bhalf_t
>
(
x_fp32
);
}
// convert bfp16 to int8 via fp32
template
<
>
inline
__host__
__device__
constexpr
int8_t
type_convert
<
int8_t
,
bhalf_t
>
(
bhalf_t
x
)
...
...
include/ck/utility/workgroup_barrier.hpp
0 → 100644
View file @
50540084
#pragma once
#include <hip/hip_runtime.h>
#include <stdint.h>
namespace
ck
{
struct
workgroup_barrier
{
__device__
workgroup_barrier
(
uint32_t
*
ptr
)
:
base_ptr
(
ptr
)
{}
__device__
uint32_t
ld
(
uint32_t
offset
)
{
#if 0
float d = llvm_amdgcn_raw_buffer_load_fp32(
amdgcn_make_buffer_resource(base_ptr),
0,
offset,
AMDGCN_BUFFER_GLC);
union cvt {
float f32;
uint32_t u32;
};
cvt x;
x.f32 = d;
return x.u32;
#endif
return
__atomic_load_n
(
base_ptr
+
offset
,
__ATOMIC_RELAXED
);
}
__device__
void
wait_eq
(
uint32_t
offset
,
uint32_t
value
)
{
if
(
threadIdx
.
x
==
0
)
{
while
(
ld
(
offset
)
!=
value
)
{}
}
__syncthreads
();
}
__device__
void
wait_lt
(
uint32_t
offset
,
uint32_t
value
)
{
if
(
threadIdx
.
x
==
0
)
{
while
(
ld
(
offset
)
<
value
)
{}
}
__syncthreads
();
}
__device__
void
wait_set
(
uint32_t
offset
,
uint32_t
compare
,
uint32_t
value
)
{
if
(
threadIdx
.
x
==
0
)
{
while
(
atomicCAS
(
base_ptr
+
offset
,
compare
,
value
)
!=
compare
)
{}
}
__syncthreads
();
}
// enter critical zoon, assume buffer is zero when launch kernel
__device__
void
aquire
(
uint32_t
offset
)
{
wait_set
(
offset
,
0
,
1
);
}
// exit critical zoon, assume buffer is zero when launch kernel
__device__
void
release
(
uint32_t
offset
)
{
wait_set
(
offset
,
1
,
0
);
}
__device__
void
inc
(
uint32_t
offset
)
{
__syncthreads
();
if
(
threadIdx
.
x
==
0
)
{
atomicAdd
(
base_ptr
+
offset
,
1
);
}
}
uint32_t
*
base_ptr
;
};
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_multi_d.hpp
View file @
50540084
...
...
@@ -14,6 +14,7 @@
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#ifdef DL_KERNELS
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
...
...
@@ -335,3 +336,4 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceBatche
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/include/ck/library/tensor_operation_instance/gpu/convolution_backward_data.hpp
View file @
50540084
...
...
@@ -39,7 +39,7 @@ void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
1
,
NWC
,
KXC
,
NWK
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#ifdef __int8__
void
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
1
,
NWC
,
...
...
@@ -51,7 +51,7 @@ void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
// conv2d backward data
void
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
2
,
...
...
@@ -88,7 +88,7 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#ifdef __int8__
void
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
2
,
NHWC
,
...
...
@@ -100,7 +100,7 @@ void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
// conv2d dl
void
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
2
,
...
...
@@ -125,7 +125,7 @@ void add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f32_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#ifdef __int8__
void
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
2
,
NHWC
,
...
...
@@ -137,6 +137,7 @@ void add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_int8_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
// conv3d backward data
void
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
3
,
...
...
@@ -173,7 +174,7 @@ void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#ifdef __int8__
void
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvBwdData
<
3
,
NDHWC
,
...
...
@@ -185,7 +186,7 @@ void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
template
<
ck
::
index_t
NumDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
...
...
@@ -239,11 +240,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances
(
op_ptrs
);
}
#ifdef __int8__
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances
(
op_ptrs
);
}
#endif
}
else
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
InLayout
,
NHWC
>
&&
is_same_v
<
WeiLayout
,
KYXC
>
&&
is_same_v
<
OutLayout
,
NHWK
>
)
...
...
@@ -266,12 +269,14 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances
(
op_ptrs
);
}
#ifdef __int8__
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances
(
op_ptrs
);
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_int8_instances
(
op_ptrs
);
}
#endif
}
else
if
constexpr
(
NumDimSpatial
==
3
&&
is_same_v
<
InLayout
,
NDHWC
>
&&
is_same_v
<
WeiLayout
,
KZYXC
>
&&
is_same_v
<
OutLayout
,
NDHWK
>
)
...
...
@@ -292,11 +297,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances
(
op_ptrs
);
}
#ifdef __int8__
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances
(
op_ptrs
);
}
#endif
}
return
op_ptrs
;
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
View file @
50540084
...
...
@@ -17,6 +17,7 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
#if defined(__fp16__) && defined(DL_KERNELS)
void
add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
...
...
@@ -56,11 +57,11 @@ void add_device_gemm_dl_f16_f16_f16_mk_nk_mn_irregular_instances(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#if defined(__fp32__) && defined(DL_KERNELS)
void
add_device_gemm_dl_f32_f32_f32_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_dl_f32_f32_f32_km_nk_mn_instances
(
...
...
@@ -77,7 +78,8 @@ void add_device_gemm_dl_f32_f32_f32_mk_nk_mn_instances(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#if defined(__int8__) && defined(DL_KERNELS)
void
add_device_gemm_dl_i8_i8_i8_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
int8_t
,
int8_t
,
int8_t
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
...
...
@@ -117,30 +119,32 @@ void add_device_gemm_dl_i8_i8_i8_mk_nk_mn_irregular_instances(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
int8_t
,
int8_t
,
int8_t
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances
(
#endif
#ifdef __int8__
void
add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Col
,
Row
,
Row
,
int8_t
,
int8_t
,
int8_t
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_
bf16_bf16_bf16
_km_
k
n_mn_instances
(
void
add_device_gemm_xdl_c_shuffle_
i8_i8_i8
_km_n
k
_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Col
,
Col
,
Row
,
int8_t
,
int8_t
,
int8_t
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_
bf16_bf16_bf16_km_nk
_mn_instances
(
void
add_device_gemm_xdl_c_shuffle_
i8_i8_i8_mk_kn
_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Col
,
Row
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Row
,
Row
,
int8_t
,
int8_t
,
int8_t
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_
bf16_bf16_bf16
_mk_
k
n_mn_instances
(
void
add_device_gemm_xdl_c_shuffle_
i8_i8_i8
_mk_n
k
_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Col
,
Row
,
int8_t
,
int8_t
,
int8_t
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instances
(
#endif
#ifdef __fp16__
void
add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
B
F16
,
B
F16
,
B
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances
(
...
...
@@ -163,64 +167,67 @@ void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_
c_shuffle_f32_f32_f32
_km_kn_mn_instances
(
void
add_device_gemm_xdl_
f16_f16_f16
_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
F
32
,
F
32
,
F
32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Col
,
Row
,
Row
,
F
16
,
F
16
,
F
16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_
c_shuffle_f32_f32_f32
_km_nk_mn_instances
(
void
add_device_gemm_xdl_
f16_f16_f16
_km_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Col
,
Row
,
F
32
,
F
32
,
F
32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Col
,
Col
,
Row
,
F
16
,
F
16
,
F
16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_
c_shuffle_f32_f32_f32
_mk_kn_mn_instances
(
void
add_device_gemm_xdl_
f16_f16_f16
_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F
32
,
F
32
,
F
32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Row
,
Row
,
F
16
,
F
16
,
F
16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_
c_shuffle_f32_f32_f32
_mk_nk_mn_instances
(
void
add_device_gemm_xdl_
f16_f16_f16
_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F
32
,
F
32
,
F
32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Col
,
Row
,
F
16
,
F
16
,
F
16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances
(
#endif
#ifdef __bf16__
void
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
int8_t
,
int8_t
,
int8_t
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Col
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_
i8_i8_i8
_km_nk_mn_instances
(
void
add_device_gemm_xdl_c_shuffle_
bf16_bf16_bf16
_km_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Col
,
Row
,
int8_t
,
int8_t
,
int8_t
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Col
,
Col
,
Row
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_
i8_i8_i8
_mk_kn_mn_instances
(
void
add_device_gemm_xdl_c_shuffle_
bf16_bf16_bf16
_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
int8_t
,
int8_t
,
int8_t
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_
i8_i8_i8
_mk_nk_mn_instances
(
void
add_device_gemm_xdl_c_shuffle_
bf16_bf16_bf16
_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
int8_t
,
int8_t
,
int8_t
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Col
,
Row
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances
(
#endif
#ifdef __fp32__
void
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
F
16
,
F
16
,
F
16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Col
,
Row
,
Row
,
F
32
,
F
32
,
F
32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_
f16_f16_f16
_km_nk_mn_instances
(
void
add_device_gemm_xdl_
c_shuffle_f32_f32_f32
_km_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Col
,
Row
,
F
16
,
F
16
,
F
16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Col
,
Col
,
Row
,
F
32
,
F
32
,
F
32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_
f16_f16_f16
_mk_kn_mn_instances
(
void
add_device_gemm_xdl_
c_shuffle_f32_f32_f32
_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F
16
,
F
16
,
F
16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Row
,
Row
,
F
32
,
F
32
,
F
32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_
f16_f16_f16
_mk_nk_mn_instances
(
void
add_device_gemm_xdl_
c_shuffle_f32_f32_f32
_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F
16
,
F
16
,
F
16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Col
,
Row
,
F
32
,
F
32
,
F
32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances
(
...
...
@@ -242,7 +249,8 @@ void add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef __fp64__
void
add_device_gemm_xdl_f64_f64_f64_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
...
...
@@ -263,7 +271,7 @@ void add_device_gemm_xdl_f64_f64_f64_mk_nk_mn_instances(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F64
,
F64
,
F64
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
...
...
@@ -302,28 +310,36 @@ struct DeviceOperationInstanceFactory<
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_gemm_dl_f32_f32_f32_mk_kn_mn_instances
(
op_ptrs
);
#endif
add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_gemm_dl_f32_f32_f32_mk_nk_mn_instances
(
op_ptrs
);
#endif
add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_gemm_dl_f32_f32_f32_km_kn_mn_instances
(
op_ptrs
);
#endif
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_gemm_dl_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
#endif
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
}
}
...
...
@@ -334,16 +350,20 @@ struct DeviceOperationInstanceFactory<
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instances
(
op_ptrs
);
#endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_irregular_instances
(
op_ptrs
);
#endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
}
...
...
@@ -351,16 +371,20 @@ struct DeviceOperationInstanceFactory<
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_km_kn_mn_irregular_instances
(
op_ptrs
);
#endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_km_nk_mn_irregular_instances
(
op_ptrs
);
#endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
}
}
...
...
@@ -388,6 +412,7 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instances
(
op_ptrs
);
}
}
#ifdef __int8__
else
if
constexpr
(
is_same_v
<
ADataType
,
int8_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
CDataType
,
int8_t
>
)
{
...
...
@@ -395,32 +420,40 @@ struct DeviceOperationInstanceFactory<
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_gemm_dl_i8_i8_i8_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_dl_i8_i8_i8_mk_kn_mn_irregular_instances
(
op_ptrs
);
#endif
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_gemm_dl_i8_i8_i8_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_dl_i8_i8_i8_mk_nk_mn_irregular_instances
(
op_ptrs
);
#endif
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_gemm_dl_i8_i8_i8_km_kn_mn_instances
(
op_ptrs
);
add_device_gemm_dl_i8_i8_i8_km_kn_mn_irregular_instances
(
op_ptrs
);
#endif
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances
(
op_ptrs
);
#ifdef DL_KERNELS
add_device_gemm_dl_i8_i8_i8_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_dl_i8_i8_i8_km_nk_mn_irregular_instances
(
op_ptrs
);
#endif
}
}
#endif
return
op_ptrs
;
}
};
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm_streamk.hpp
0 → 100644
View file @
50540084
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_streamk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_xdl_streamk_f16_f16_f16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmStreamK
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGemmStreamK
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>>
{
using
DeviceOp
=
DeviceGemmStreamK
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#if 0
if constexpr(is_same_v<ADataType, float> && is_same_v<BDataType, float> &&
is_same_v<CDataType, float>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<CDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances(op_ptrs);
}
}
#endif
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
CDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_streamk_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
}
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/
src
/tensor_operation_instance/gpu/grouped_conv
2d
_bwd_data/device_grouped_conv
2d
_bwd_data_xdl_instance.hpp
→
library/
include/ck/library
/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_xdl_instance.hpp
View file @
50540084
...
...
@@ -24,13 +24,7 @@ using Empty_Tuple = ck::Tuple<>;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
NHWGC
=
ck
::
tensor_layout
::
convolution
::
NHWGC
;
using
GNHWC
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
GKYXC
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
NHWGK
=
ck
::
tensor_layout
::
convolution
::
NHWGK
;
using
GNHWK
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
namespace
ck
::
tensor_layout
::
convolution
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
...
@@ -40,97 +34,103 @@ static constexpr auto ConvBwdDataFilter1x1Stride1Pad0 =
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
;
// f16_f16_f32_f16
template
<
typename
ALayout
,
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv2d_bwd_data_xdl_f16_instances
=
std
::
tuple
<
using
device_grouped_conv_bwd_data_xdl_f16_instances
=
std
::
tuple
<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
2
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
#ifdef CK_WORKAROUND_
SWDEV_3318619
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
#if
n
def CK_WORKAROUND_
GITHUB_ISSUE_824
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvBwdDataDefault
,
true
,
true
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvBwdDataDefault
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvBwdDataDefault
,
true
,
true
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvBwdDataDefault
,
true
,
true
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvBwdDataDefault
,
true
,
true
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvBwdDataDefault
,
true
,
true
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvBwdDataDefault
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvBwdDataDefault
,
true
,
true
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvBwdDataDefault
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvBwdDataDefault
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvBwdDataDefault
,
true
,
true
,
1
,
128
,
32
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvBwdDataDefault
,
true
,
true
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvBwdDataDefault
,
true
,
true
,
1
,
64
,
32
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
#endif
// clang-format on
>
;
// bf16_bf16_f32_bf16
template
<
typename
ALayout
,
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv2d_bwd_data_xdl_bf16_instances
=
std
::
tuple
<
using
device_grouped_conv_bwd_data_xdl_bf16_instances
=
std
::
tuple
<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
2
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
#ifdef CK_WORKAROUND_
SWDEV_3318619
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
#if
n
def CK_WORKAROUND_
GITHUB_ISSUE_824
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
128
,
32
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
64
,
32
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
#endif
// clang-format on
>
;
// f32_f32_f32_f32
template
<
typename
ALayout
,
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv2d_bwd_data_xdl_f32_instances
=
std
::
tuple
<
using
device_grouped_conv_bwd_data_xdl_f32_instances
=
std
::
tuple
<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
2
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
#ifdef CK_WORKAROUND_
SWDEV_3318619
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 4>, 4>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 4>, 4>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 4>, 4>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 4>, 4>,
//
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
2
, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
#if
n
def CK_WORKAROUND_
GITHUB_ISSUE_824
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
128
,
32
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
true
,
true
,
1
,
64
,
32
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
#endif
// clang-format on
>
;
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp
0 → 100644
View file @
50540084
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
namespace
ck
::
tensor_layout
::
convolution
;
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Empty_Tuple
=
ck
::
Tuple
<>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvBwdWeightDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardWeightSpecialization
::
Default
;
static
constexpr
auto
ConvBwdWeightFilter1x1Stride1Pad0
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
;
template
<
ck
::
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
ConvolutionBackwardWeightSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_weight_xdl_c_shuffle_f32_instances
=
std
::
tuple
<
// clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
256
,
128
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
4
,
true
,
S
<
1
,
4
,
32
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
2
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
128
,
256
,
4
,
4
,
32
,
32
,
2
,
4
,
S
<
1
,
4
,
32
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
2
,
true
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
4
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
128
,
128
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
4
,
true
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
4
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
128
,
128
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
2
,
true
,
S
<
1
,
4
,
32
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
2
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
128
,
64
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
4
,
true
,
S
<
1
,
4
,
16
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
2
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
64
,
128
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
16
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
2
,
true
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
4
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
64
,
64
,
64
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
16
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
4
,
true
,
S
<
1
,
4
,
16
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
4
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
128
,
64
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
32
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
2
,
true
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
1
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
64
,
128
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
1
,
true
,
S
<
1
,
4
,
32
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
2
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
128
,
32
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
4
,
true
,
S
<
1
,
4
,
8
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
1
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
32
,
128
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
8
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
1
,
true
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
4
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
64
,
64
,
32
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
16
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
4
,
true
,
S
<
1
,
4
,
8
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
2
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
64
,
32
,
64
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
8
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
2
,
true
,
S
<
1
,
4
,
16
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
4
,
4
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
>
// clang-format on
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
ConvolutionBackwardWeightSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_instances
=
std
::
tuple
<
// clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
32
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
S
<
1
,
4
,
32
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
128
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
16
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
S
<
1
,
4
,
16
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
128
,
128
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
128
,
64
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
16
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
S
<
1
,
4
,
8
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
64
,
128
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
8
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
S
<
1
,
4
,
16
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
64
,
64
,
64
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
8
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
S
<
1
,
4
,
8
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
128
,
64
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
S
<
1
,
4
,
8
,
8
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
1
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
64
,
128
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
8
,
8
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
1
,
true
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
128
,
32
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
16
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
S
<
1
,
4
,
4
,
8
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
1
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
32
,
128
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
4
,
8
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
1
,
true
,
S
<
1
,
4
,
16
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
64
,
64
,
32
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
8
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
S
<
1
,
4
,
4
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
64
,
32
,
64
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
4
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
S
<
1
,
4
,
8
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
// clang-format on
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
ConvolutionBackwardWeightSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_instances
=
std
::
tuple
<
// clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
BF16
,
F32
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
32
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
BF16
,
F32
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
S
<
1
,
4
,
32
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
BF16
,
F32
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
128
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
16
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
S
<
1
,
4
,
16
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
BF16
,
F32
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
128
,
128
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
BF16
,
F32
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
128
,
64
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
16
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
S
<
1
,
4
,
8
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
BF16
,
F32
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
64
,
128
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
8
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
S
<
1
,
4
,
16
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
BF16
,
F32
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
64
,
64
,
64
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
8
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
S
<
1
,
4
,
8
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
BF16
,
F32
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
128
,
64
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
S
<
1
,
4
,
8
,
8
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
1
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
BF16
,
F32
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
256
,
64
,
128
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
8
,
8
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
1
,
true
,
S
<
1
,
4
,
16
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
BF16
,
F32
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
128
,
32
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
16
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
S
<
1
,
4
,
4
,
8
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
1
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
BF16
,
F32
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
128
,
32
,
128
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
4
,
8
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
1
,
true
,
S
<
1
,
4
,
16
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
BF16
,
F32
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
64
,
64
,
32
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
8
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
S
<
1
,
4
,
4
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
>
,
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ELayout
,
BF16
,
F32
,
BF16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
64
,
32
,
64
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
4
,
4
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
2
,
true
,
S
<
1
,
4
,
8
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
2
,
1
,
3
>
,
2
,
8
,
4
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp
View file @
50540084
...
...
@@ -16,7 +16,7 @@ namespace device {
namespace
instance
{
// conv2d backward data
void
add_device_grouped_conv2d_bwd_data_xdl_gnhw
c
_gkyxc_gnhw
k
_f16_instances
(
void
add_device_grouped_conv2d_bwd_data_xdl_gnhw
k
_gkyxc_gnhw
c
_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
GNHWK
,
GKYXC
,
...
...
@@ -30,7 +30,7 @@ void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_gnhw
c
_gkyxc_gnhw
k
_f32_instances
(
void
add_device_grouped_conv2d_bwd_data_xdl_gnhw
k
_gkyxc_gnhw
c
_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
GNHWK
,
GKYXC
,
...
...
@@ -44,7 +44,7 @@ void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_gnhw
c
_gkyxc_gnhw
k
_bf16_instances
(
void
add_device_grouped_conv2d_bwd_data_xdl_gnhw
k
_gkyxc_gnhw
c
_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
GNHWK
,
GKYXC
,
...
...
@@ -58,7 +58,7 @@ void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_nhwg
c
_gkyxc_nhwg
k
_f16_instances
(
void
add_device_grouped_conv2d_bwd_data_xdl_nhwg
k
_gkyxc_nhwg
c
_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
...
...
@@ -72,7 +72,7 @@ void add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_nhwg
c
_gkyxc_nhwg
k
_f32_instances
(
void
add_device_grouped_conv2d_bwd_data_xdl_nhwg
k
_gkyxc_nhwg
c
_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
...
...
@@ -86,7 +86,7 @@ void add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instances(
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_nhwg
c
_gkyxc_nhwg
k
_bf16_instances
(
void
add_device_grouped_conv2d_bwd_data_xdl_nhwg
k
_gkyxc_nhwg
c
_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
...
...
@@ -100,6 +100,91 @@ void add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(
PassThrough
,
PassThrough
>>>&
instances
);
// conv3d backward data
void
add_device_grouped_conv3d_bwd_data_xdl_gndhwk_gkzyxc_gndhwc_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
3
,
GNDHWK
,
GKZYXC
,
Empty_Tuple
,
GNDHWC
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv3d_bwd_data_xdl_gndhwk_gkzyxc_gndhwc_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
3
,
GNDHWK
,
GKZYXC
,
Empty_Tuple
,
GNDHWC
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv3d_bwd_data_xdl_gndhwk_gkzyxc_gndhwc_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
3
,
GNDHWK
,
GKZYXC
,
Empty_Tuple
,
GNDHWC
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
3
,
NDHWGK
,
GKZYXC
,
Empty_Tuple
,
NDHWGC
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
3
,
NDHWGK
,
GKZYXC
,
Empty_Tuple
,
NDHWGC
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
3
,
NDHWGK
,
GKZYXC
,
Empty_Tuple
,
NDHWGC
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
template
<
ck
::
index_t
NumDimSpatial
,
typename
OutLayout
,
typename
WeiLayout
,
...
...
@@ -139,43 +224,96 @@ struct DeviceOperationInstanceFactory<
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
NumDimSpatial
==
2
)
{
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
In
Layout
,
G
NHW
C
>
&&
is_same_v
<
WeiLayout
,
GKYXC
>
&&
is_same_v
<
OutLayout
,
GNHWK
>
)
if
constexpr
(
is_same_v
<
InLayout
,
GNHWC
>
&&
is_same_v
<
Wei
Layout
,
G
KYX
C
>
&&
is_same_v
<
OutLayout
,
GNHWK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
WeiDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhw
c
_gkyxc_gnhw
k
_f16_instances
(
op_ptrs
);
add_device_grouped_conv2d_bwd_data_xdl_gnhw
k
_gkyxc_gnhw
c
_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
WeiDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhw
c
_gkyxc_gnhw
k
_f32_instances
(
op_ptrs
);
add_device_grouped_conv2d_bwd_data_xdl_gnhw
k
_gkyxc_gnhw
c
_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
BF16
>
&&
is_same_v
<
WeiDataType
,
BF16
>
&&
is_same_v
<
OutDataType
,
BF16
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instances
(
op_ptrs
);
add_device_grouped_conv2d_bwd_data_xdl_gnhwk_gkyxc_gnhwc_bf16_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
In
Layout
,
NHWG
C
>
&&
is_same_v
<
WeiLayout
,
GKYXC
>
&&
is_same_v
<
OutLayout
,
NHWGK
>
)
else
if
constexpr
(
is_same_v
<
InLayout
,
NHWGC
>
&&
is_same_v
<
Wei
Layout
,
GKYX
C
>
&&
is_same_v
<
OutLayout
,
NHWGK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
WeiDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwg
c
_gkyxc_nhwg
k
_f16_instances
(
op_ptrs
);
add_device_grouped_conv2d_bwd_data_xdl_nhwg
k
_gkyxc_nhwg
c
_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
WeiDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwg
c
_gkyxc_nhwg
k
_f32_instances
(
op_ptrs
);
add_device_grouped_conv2d_bwd_data_xdl_nhwg
k
_gkyxc_nhwg
c
_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
BF16
>
&&
is_same_v
<
WeiDataType
,
BF16
>
&&
is_same_v
<
OutDataType
,
BF16
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instances
(
op_ptrs
);
add_device_grouped_conv2d_bwd_data_xdl_nhwgk_gkyxc_nhwgc_bf16_instances
(
op_ptrs
);
}
}
}
else
if
constexpr
(
NumDimSpatial
==
3
)
{
if
constexpr
(
is_same_v
<
InLayout
,
GNDHWC
>
&&
is_same_v
<
WeiLayout
,
GKZYXC
>
&&
is_same_v
<
OutLayout
,
GNDHWK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
WeiDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_gndhwk_gkzyxc_gndhwc_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
WeiDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_gndhwk_gkzyxc_gndhwc_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
BF16
>
&&
is_same_v
<
WeiDataType
,
BF16
>
&&
is_same_v
<
OutDataType
,
BF16
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_gndhwk_gkzyxc_gndhwc_bf16_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
InLayout
,
NDHWGC
>
&&
is_same_v
<
WeiLayout
,
GKZYXC
>
&&
is_same_v
<
OutLayout
,
NDHWGK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
WeiDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
WeiDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
BF16
>
&&
is_same_v
<
WeiDataType
,
BF16
>
&&
is_same_v
<
OutDataType
,
BF16
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_bf16_instances
(
op_ptrs
);
}
}
}
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_weight.hpp
View file @
50540084
...
...
@@ -91,6 +91,42 @@ void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
2
,
NHWGC
,
GKYXC
,
NHWGK
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
2
,
NHWGC
,
GKYXC
,
NHWGK
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
2
,
NHWGC
,
GKYXC
,
NHWGK
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
// conv3d backward weight
void
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
...
...
@@ -128,6 +164,42 @@ void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_instances
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
template
<
ck
::
index_t
NumDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
...
...
@@ -162,8 +234,10 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
NumDimSpatial
==
1
&&
is_same_v
<
InLayout
,
GNWC
>
&&
is_same_v
<
WeiLayout
,
GKXC
>
&&
is_same_v
<
OutLayout
,
GNWK
>
)
if
constexpr
(
NumDimSpatial
==
1
)
{
if
constexpr
(
is_same_v
<
InLayout
,
GNWC
>
&&
is_same_v
<
WeiLayout
,
GKXC
>
&&
is_same_v
<
OutLayout
,
GNWK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
...
...
@@ -175,35 +249,68 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
InLayout
,
GNHWC
>
&&
is_same_v
<
WeiLayout
,
GKYXC
>
&&
is_same_v
<
OutLayout
,
GNHWK
>
)
}
else
if
constexpr
(
NumDimSpatial
==
2
)
{
if
constexpr
(
is_same_v
<
InLayout
,
GNHWC
>
&&
is_same_v
<
WeiLayout
,
GKYXC
>
&&
is_same_v
<
OutLayout
,
GNHWK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_instances
(
op_ptrs
);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_instances
(
op_ptrs
);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
NumDimSpatial
==
3
&&
is_same_v
<
InLayout
,
GNDHWC
>
&&
is_same_v
<
WeiLayout
,
GKZYXC
>
&&
is_same_v
<
OutLayout
,
GNDHWK
>
)
else
if
constexpr
(
is_same_v
<
InLayout
,
NHWGC
>
&&
is_same_v
<
WeiLayout
,
GKYXC
>
&&
is_same_v
<
OutLayout
,
NHWGK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_instances
(
op_ptrs
);
}
}
}
else
if
constexpr
(
NumDimSpatial
==
3
)
{
if
constexpr
(
is_same_v
<
InLayout
,
GNDHWC
>
&&
is_same_v
<
WeiLayout
,
GKZYXC
>
&&
is_same_v
<
OutLayout
,
GNDHWK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
...
...
@@ -217,13 +324,38 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
InLayout
,
NDHWGC
>
&&
is_same_v
<
WeiLayout
,
GKZYXC
>
&&
is_same_v
<
OutLayout
,
NDHWGK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances
(
op_ptrs
);
}
}
}
return
op_ptrs
;
}
...
...
library/include/ck/library/utility/device_memory.hpp
View file @
50540084
...
...
@@ -20,8 +20,9 @@ __global__ void set_buffer_value(T* p, T x, uint64_t buffer_element_size)
*/
struct
DeviceMem
{
DeviceMem
()
=
delete
;
DeviceMem
()
:
mpDeviceBuf
(
nullptr
),
mMemSize
(
0
)
{}
DeviceMem
(
std
::
size_t
mem_size
);
void
Realloc
(
std
::
size_t
mem_size
);
void
*
GetDeviceBuffer
()
const
;
std
::
size_t
GetBufferSize
()
const
;
void
ToDevice
(
const
void
*
p
)
const
;
...
...
library/src/tensor_operation_instance/gpu/CMakeLists.txt
View file @
50540084
...
...
@@ -12,9 +12,46 @@ set(CK_DEVICE_INSTANCES)
FOREACH
(
subdir_path
${
dir_list
}
)
set
(
target_dir
)
IF
(
IS_DIRECTORY
"
${
subdir_path
}
"
)
set
(
cmake_instance
)
file
(
READ
"
${
subdir_path
}
/CMakeLists.txt"
cmake_instance
)
set
(
add_inst 0
)
if
(
"
${
cmake_instance
}
"
MATCHES
"DTYPES MATCHES
\"
fp8
\"
"
AND DTYPES MATCHES
"fp8"
)
#message("fp8 instance found!")
set
(
add_inst 1
)
endif
()
if
(
"
${
cmake_instance
}
"
MATCHES
"DTYPES MATCHES
\"
fp16
\"
"
AND DTYPES MATCHES
"fp16"
)
#message("fp16 instance found!")
set
(
add_inst 1
)
endif
()
if
(
"
${
cmake_instance
}
"
MATCHES
"DTYPES MATCHES
\"
fp32
\"
"
AND DTYPES MATCHES
"fp32"
)
#message("fp32 instance found!")
set
(
add_inst 1
)
endif
()
if
(
"
${
cmake_instance
}
"
MATCHES
"DTYPES MATCHES
\"
fp64
\"
"
AND DTYPES MATCHES
"fp64"
)
#message("fp64 instance found!")
set
(
add_inst 1
)
endif
()
if
(
"
${
cmake_instance
}
"
MATCHES
"DTYPES MATCHES
\"
bf16
\"
"
AND DTYPES MATCHES
"bf16"
)
#message("bf16 instance found!")
set
(
add_inst 1
)
endif
()
if
(
"
${
cmake_instance
}
"
MATCHES
"DTYPES MATCHES
\"
int8
\"
"
AND DTYPES MATCHES
"int8"
)
#message("int8 instance found!")
set
(
add_inst 1
)
endif
()
if
(
NOT
"
${
cmake_instance
}
"
MATCHES
"DTYPES"
OR NOT DEFINED DTYPES
)
#message("instance should be built for all types!")
set
(
add_inst 1
)
endif
()
if
(
"
${
cmake_instance
}
"
MATCHES
"ONLY DL_KERNELS"
AND NOT DEFINED DL_KERNELS
)
message
(
"Found only dl instances, but DL_KERNELS is not set. Skipping."
)
set
(
add_inst 0
)
endif
()
if
(
add_inst EQUAL 1
)
get_filename_component
(
target_dir
${
subdir_path
}
NAME
)
add_subdirectory
(
${
target_dir
}
)
list
(
APPEND CK_DEVICE_INSTANCES $<TARGET_OBJECTS:device_
${
target_dir
}
_instance>
)
endif
()
ENDIF
()
ENDFOREACH
()
...
...
library/src/tensor_operation_instance/gpu/batched_gemm_add_relu_gemm_add/device_batched_gemm_add_relu_gemm_add_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
View file @
50540084
...
...
@@ -31,22 +31,24 @@ using CDE1ElementOp = ck::tensor_operation::element_wise::Add;
using
device_batched_gemm_add_relu_gemm_add_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
=
std
::
tuple
<
// clang-format off
//##################################################| A0Layout| B0Layout| D0Layout| B1Layout| D1sLayout| E1Layout| A0Data| B0Data| Acc0DataType| D0DataType| B1Data| Acc1CData| CShuffle| D1sData| E1Data| A0| B0| CDE0| B1| CDE1| PadGemm0M| PadGemm0N| PadGemm0K| PadGemm1N| PadGemm1K|NumGemm0K| Block| Gemm0| Gemm0| Gemm0| Gemm1| Gemm1|A0K1|B0K1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1|A0BlockTransfer|A0BlockTransfer|A0BlockTransfer|A0BlockTransfer|A0BlockTransfer|A0BlockTransfer|A0BlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| C1Shuffle| C1Shuffle| CDE1BlockTransferClusterLengths| CDE1BlockTransfer|
//##################################################| | | | | | | Type| Type| Type| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| | | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##################################################| | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per|Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | |
//##################################################| A0Layout| B0Layout| D0Layout| B1Layout| D1sLayout| E1Layout| A0Data| B0Data| Acc0DataType| D0DataType| B1Data| Acc1CData| CShuffle| D1sData| E1Data| A0| B0| CDE0| B1| CDE1| PadGemm0M| PadGemm0N| PadGemm0K| PadGemm1N| PadGemm1K|NumGemm0K| Block| Gemm0| Gemm0| Gemm0| Gemm1| Gemm1|A0K1|B0K1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1|A0BlockTransfer|A0BlockTransfer|A0BlockTransfer|A0BlockTransfer|A0BlockTransfer|A0BlockTransfer|A0BlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| CDE0BlockTransfer| CDE0BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| C1Shuffle| C1Shuffle| CDE1BlockTransferClusterLengths| CDE1BlockTransfer|
//##################################################| | | | | | | Type| Type| Type| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| | | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcVectorDim| SrcScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##################################################| | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per|Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | |
//generic
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
true
,
true
,
true
,
true
,
true
,
1
,
256
,
128
,
64
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
9
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
// no padding
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
128
,
128
,
64
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
128
,
128
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
128
,
128
,
64
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
128
,
128
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
64
,
256
,
32
,
128
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
8
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
8
,
S
<
1
,
16
,
1
,
16
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
64
,
256
,
32
,
64
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
4
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
64
,
256
,
64
,
128
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
8
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
8
,
S
<
1
,
16
,
1
,
16
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
64
,
256
,
64
,
64
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
4
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
128
,
128
,
64
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
9
,
4
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
128
,
128
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
9
,
4
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
128
,
128
,
64
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
9
,
4
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
128
,
128
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
9
,
4
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
64
,
256
,
32
,
128
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
8
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
9
,
4
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
8
,
S
<
1
,
16
,
1
,
16
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
64
,
256
,
32
,
64
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
9
,
4
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
4
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
64
,
256
,
64
,
128
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
8
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
9
,
4
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
8
,
S
<
1
,
16
,
1
,
16
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
false
,
false
,
false
,
false
,
false
,
1
,
256
,
64
,
256
,
64
,
64
,
32
,
8
,
8
,
2
,
16
,
16
,
1
,
16
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
9
,
4
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
4
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
// Padded fallback kernel
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
true
,
true
,
true
,
true
,
true
,
1
,
256
,
128
,
128
,
64
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
true
,
true
,
true
,
true
,
true
,
1
,
256
,
128
,
64
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
true
,
true
,
true
,
true
,
true
,
1
,
256
,
128
,
128
,
64
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
false
,
9
,
4
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
ck
::
Tuple
<
Row
>
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
F16
,
F16
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
F32
,
F32
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
CDE0ElementOp
,
PassThrough
,
CDE1ElementOp
,
true
,
true
,
true
,
true
,
true
,
1
,
256
,
128
,
64
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
9
,
4
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
...
...
Prev
1
2
3
4
5
6
7
8
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment