Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
503fb6ac
Unverified
Commit
503fb6ac
authored
Nov 27, 2023
by
Illia Silin
Committed by
GitHub
Nov 27, 2023
Browse files
Merge branch 'develop' into lwpck-1026
parents
f5b239ca
60ecfd73
Changes
32
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
494 additions
and
188 deletions
+494
-188
include/ck/utility/synchronization.hpp
include/ck/utility/synchronization.hpp
+9
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
...include/ck/library/tensor_operation_instance/gpu/gemm.hpp
+42
-8
library/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
...ary/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
+5
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp
...vice_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp
+18
-18
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_instance.cpp
...vice_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_instance.cpp
+66
-25
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instance.cpp
...shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instance.cpp
+54
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instance.cpp
...shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instance.cpp
+51
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instance.cpp
...shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instance.cpp
+51
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instance.cpp
...shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instance.cpp
+50
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instance.cpp
...shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instance.cpp
+53
-0
profiler/include/profiler/profile_gemm_impl.hpp
profiler/include/profiler/profile_gemm_impl.hpp
+95
-52
profiler/src/profile_transpose.cpp
profiler/src/profile_transpose.cpp
+0
-85
No files found.
include/ck/utility/synchronization.hpp
View file @
503fb6ac
...
@@ -19,6 +19,15 @@ __device__ void block_sync_lds()
...
@@ -19,6 +19,15 @@ __device__ void block_sync_lds()
#endif
#endif
}
}
__device__
void
block_sync_lds_direct_load
()
{
asm
volatile
(
"\
s_waitcnt vmcnt(0)
\n
\
s_waitcnt lgkmcnt(0)
\n
\
s_barrier \
"
::
);
}
__device__
void
s_nop
()
__device__
void
s_nop
()
{
{
#if 1
#if 1
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
View file @
503fb6ac
...
@@ -227,6 +227,10 @@ void add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
...
@@ -227,6 +227,10 @@ void add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
instances
);
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#endif
#ifdef CK_ENABLE_BF16
#ifdef CK_ENABLE_BF16
void
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instances
(
void
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instances
(
...
@@ -289,6 +293,26 @@ void add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(
...
@@ -289,6 +293,26 @@ void add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
instances
);
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#endif
#ifdef CK_ENABLE_FP64
#ifdef CK_ENABLE_FP64
void
add_device_gemm_xdl_f64_f64_f64_km_kn_mn_instances
(
void
add_device_gemm_xdl_f64_f64_f64_km_kn_mn_instances
(
...
@@ -377,38 +401,46 @@ struct DeviceOperationInstanceFactory<
...
@@ -377,38 +401,46 @@ struct DeviceOperationInstanceFactory<
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
is_same_v
<
CLayout
,
Row
>
)
{
{
add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances
(
op_ptrs
);
///
add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances(op_ptrs);
#ifdef DL_KERNELS
#ifdef DL_KERNELS
add_device_gemm_dl_f32_f32_f32_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f32_f32_f32_mk_kn_mn_instances
(
op_ptrs
);
#endif
#endif
add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
is_same_v
<
CLayout
,
Row
>
)
{
{
add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances
(
op_ptrs
);
///
add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(op_ptrs);
#ifdef DL_KERNELS
#ifdef DL_KERNELS
add_device_gemm_dl_f32_f32_f32_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f32_f32_f32_mk_nk_mn_instances
(
op_ptrs
);
#endif
#endif
add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
is_same_v
<
CLayout
,
Row
>
)
{
{
add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances
(
op_ptrs
);
///
add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(op_ptrs);
#ifdef DL_KERNELS
#ifdef DL_KERNELS
add_device_gemm_dl_f32_f32_f32_km_kn_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f32_f32_f32_km_kn_mn_instances
(
op_ptrs
);
#endif
#endif
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Col
>
&&
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
is_same_v
<
CLayout
,
Row
>
)
{
{
add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
///
add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(op_ptrs);
#ifdef DL_KERNELS
#ifdef DL_KERNELS
add_device_gemm_dl_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
#endif
#endif
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
}
}
}
}
#ifdef CK_ENABLE_FP16
#ifdef CK_ENABLE_FP16
...
@@ -418,7 +450,7 @@ struct DeviceOperationInstanceFactory<
...
@@ -418,7 +450,7 @@ struct DeviceOperationInstanceFactory<
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
is_same_v
<
CLayout
,
Row
>
)
{
{
add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
///
add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
#ifdef DL_KERNELS
#ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instances
(
op_ptrs
);
...
@@ -430,7 +462,7 @@ struct DeviceOperationInstanceFactory<
...
@@ -430,7 +462,7 @@ struct DeviceOperationInstanceFactory<
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
is_same_v
<
CLayout
,
Row
>
)
{
{
add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
///
add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
#ifdef DL_KERNELS
#ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_irregular_instances
(
op_ptrs
);
...
@@ -439,11 +471,13 @@ struct DeviceOperationInstanceFactory<
...
@@ -439,11 +471,13 @@ struct DeviceOperationInstanceFactory<
#endif
#endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
is_same_v
<
CLayout
,
Row
>
)
{
{
add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
///
add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(op_ptrs);
#ifdef DL_KERNELS
#ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_km_kn_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_km_kn_mn_irregular_instances
(
op_ptrs
);
...
@@ -455,7 +489,7 @@ struct DeviceOperationInstanceFactory<
...
@@ -455,7 +489,7 @@ struct DeviceOperationInstanceFactory<
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Col
>
&&
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
is_same_v
<
CLayout
,
Row
>
)
{
{
add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
///
add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(op_ptrs);
#ifdef DL_KERNELS
#ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_km_nk_mn_irregular_instances
(
op_ptrs
);
add_device_gemm_dl_f16_f16_f16_km_nk_mn_irregular_instances
(
op_ptrs
);
...
...
library/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
View file @
503fb6ac
...
@@ -13,6 +13,10 @@ list(APPEND GEMM_INSTANCES
...
@@ -13,6 +13,10 @@ list(APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_dl_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_dl_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_dl_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_dl_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp
...
@@ -41,6 +45,7 @@ list(APPEND GEMM_INSTANCES
...
@@ -41,6 +45,7 @@ list(APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v2_instance.cpp
...
...
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp
View file @
503fb6ac
This diff is collapsed.
Click to expand it.
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_instance.cpp
View file @
503fb6ac
This diff is collapsed.
Click to expand it.
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instance.cpp
0 → 100644
View file @
503fb6ac
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmMNPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
using
device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instances
=
std
::
tuple
<
// clang-format off
// ##################################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ##################################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraM| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ##################################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| | | PerVector| | Lengths_K0_N_K1| | | PerVector| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
4
,
16
,
4
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
1
,
S
<
4
,
16
,
4
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNPadding
,
1
,
256
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
4
,
16
,
4
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
1
,
S
<
4
,
16
,
4
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
// clang-format on
>
;
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instance.cpp
0 → 100644
View file @
503fb6ac
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instances
=
std
::
tuple
<
// clang-format off
// ##################################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ##################################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraM| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ##################################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| | | PerVector| | Lengths_K0_N_K1| | | PerVector| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
<
Col
,
Row
,
Row
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
// clang-format on
>
;
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instance.cpp
0 → 100644
View file @
503fb6ac
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instances
=
std
::
tuple
<
// clang-format off
// ##################################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ##################################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraM| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ##################################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| | | PerVector| | Lengths_K0_N_K1| | | PerVector| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
<
Col
,
Col
,
Row
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
// clang-format on
>
;
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instance.cpp
0 → 100644
View file @
503fb6ac
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instances
=
std
::
tuple
<
// clang-format off
// ##################################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ##################################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraM| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ##################################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| | | PerVector| | Lengths_K0_N_K1| | | PerVector| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
<
Row
,
Row
,
Row
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
// clang-format on
>
;
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instance.cpp
0 → 100644
View file @
503fb6ac
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmMNPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
using
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instances
=
std
::
tuple
<
// clang-format off
// ##################################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ##################################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraM| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ##################################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| | | PerVector| | Lengths_K0_N_K1| | | PerVector| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNPadding
,
1
,
256
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
// clang-format on
>
;
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
profiler/include/profiler/profile_gemm_impl.hpp
View file @
503fb6ac
...
@@ -6,6 +6,7 @@
...
@@ -6,6 +6,7 @@
#include <iomanip>
#include <iomanip>
#include <iostream>
#include <iostream>
#include <typeinfo>
#include <typeinfo>
#include <unistd.h>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
...
@@ -20,6 +21,7 @@
...
@@ -20,6 +21,7 @@
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/fill.hpp"
namespace
ck
{
namespace
ck
{
namespace
profiler
{
namespace
profiler
{
...
@@ -69,14 +71,17 @@ int profile_gemm_impl(int do_verification,
...
@@ -69,14 +71,17 @@ int profile_gemm_impl(int do_verification,
switch
(
init_method
)
switch
(
init_method
)
{
{
case
0
:
break
;
case
0
:
ck
::
utils
::
FillConstant
<
ADataType
>
{
static_cast
<
ADataType
>
(
1.
f
)}(
a_m_k
);
ck
::
utils
::
FillConstant
<
BDataType
>
{
static_cast
<
BDataType
>
(
1.
f
)}(
b_k_n
);
break
;
case
1
:
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
}
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5
.
f
,
5
.
f
}(
a_m_k
);
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
}
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
5
.
f
,
5
.
f
}(
b_k_n
);
break
;
break
;
default:
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
0.1
}
);
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
1.
f
,
1.
f
}(
a_m_k
);
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.01
,
0.01
}
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1.
f
,
1.
f
}(
b_k_n
);
}
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
@@ -130,11 +135,10 @@ int profile_gemm_impl(int do_verification,
...
@@ -130,11 +135,10 @@ int profile_gemm_impl(int do_verification,
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
}
}
std
::
string
best_op_name
;
float
best_tflops
=
0
;
float
best_avg_time
=
0
;
int
best_instance_id
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
int
instance_id
=
0
;
// profile device op instances
// profile device op instances
for
(
auto
&
op_ptr
:
op_ptrs
)
for
(
auto
&
op_ptr
:
op_ptrs
)
{
{
...
@@ -178,10 +182,8 @@ int profile_gemm_impl(int do_verification,
...
@@ -178,10 +182,8 @@ int profile_gemm_impl(int do_verification,
if
(
tflops
>
best_tflops
)
if
(
tflops
>
best_tflops
)
{
{
best_op_name
=
op_name
;
best_instance_id
=
instance_id
;
best_tflops
=
tflops
;
best_tflops
=
tflops
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
if
(
do_verification
)
if
(
do_verification
)
...
@@ -205,53 +207,94 @@ int profile_gemm_impl(int do_verification,
...
@@ -205,53 +207,94 @@ int profile_gemm_impl(int do_verification,
{
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
}
if
constexpr
(
is_same
<
CDataType
,
float
>::
value
)
instance_id
++
;
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
}
else
if
constexpr
(
is_same
<
CDataType
,
bhalf_t
>::
value
)
{
sleep
(
2
);
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
// Run the best instance again
else
if
constexpr
(
is_same
<
CDataType
,
int8_t
>::
value
)
{
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
auto
&
op_ptr
=
op_ptrs
[
best_instance_id
];
}
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
50
,
200
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
if
constexpr
(
is_same
<
CDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
int8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
#if defined CK_ENABLE_FP8
#if defined CK_ENABLE_FP8
else
if
constexpr
(
is_same
<
CDataType
,
f8_t
>::
value
)
else
if
constexpr
(
is_same
<
CDataType
,
f8_t
>::
value
)
{
{
std
::
cout
<<
"Best Perf for datatype = fp8"
;
std
::
cout
<<
"Best Perf for datatype = fp8"
;
}
}
#endif
#endif
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
std
::
cout
<<
" ALayout = RowMajor"
;
std
::
cout
<<
" ALayout = RowMajor"
;
}
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
std
::
cout
<<
" BLayout = RowMajor"
;
std
::
cout
<<
" BLayout = RowMajor"
;
}
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
}
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideC = "
<<
StrideC
<<
" : "
<<
best_avg_time
<<
" StrideB = "
<<
StrideB
<<
" StrideC = "
<<
StrideC
<<
" : "
<<
avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
best_op_name
<<
std
::
endl
;
<<
std
::
endl
;
}
}
return
pass
?
0
:
1
;
return
pass
?
0
:
1
;
}
}
...
...
profiler/src/profile_transpose.cpp
deleted
100644 → 0
View file @
f5b239ca
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_transpose_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
MatrixLayout
{
NCDHW
,
// 0
NCHWD
,
// 1
};
enum
struct
DataType
{
F32_F32_F32_F32_F32
,
// 0
F16_F16_F16_F16_F16
,
// 1
};
#define OP_NAME "transpose"
#define OP_DESC "Transpose"
int
profile_transpose
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
15
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16)
\n
"
);
// printf("arg3: matrix layout (NCDHW -> NDCHW);\n");
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 13: N, C, D, H, W
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
DataType
>
(
std
::
stoi
(
argv
[
2
]));
// const auto layout = static_cast<MatrixLayout>(std::stoi(argv[3]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
3
]);
const
int
init_method
=
std
::
stoi
(
argv
[
4
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
5
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
6
]);
std
::
vector
<
index_t
>
lengths
=
std
::
stoi
(
argv
[
7
]);
/**const int N = std::stoi(argv[7]);
const int C = std::stoi(argv[8]);
const int D = std::stoi(argv[9]);
const int H = std::stoi(argv[10]);
const int W = std::stoi(argv[11]);**/
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
bool
pass
=
ck
::
profiler
::
profile_transpose_impl
<
ADataType
,
BDataType
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
lengths
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
GemmDataType
::
F32_F32_F32_F32_F32
)
{
return
profile
(
F32
{},
F32
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16_F16_F16
)
{
return
profile
(
F16
{},
F16
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_gemm_transpose
);
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment