Commit 4fb81e00 authored by Chao Liu's avatar Chao Liu
Browse files

adding padding to implicit gemm v1r3

parent 740149fc
#ifndef CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V1R3_CHWN_CYXK_KHWN
#define CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V1R3_CHWN_CYXK_KHWN
#ifndef CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V1R3_CHWN_CYXK_KHWN_HPP
#define CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V1R3_CHWN_CYXK_KHWN_HPP
#include "common_header.hpp"
#include "ConstantTensorDescriptor.hpp"
......@@ -79,21 +79,21 @@ struct GridwiseConvolutionImplicitGemm_v1r3_chwn_cyxk_khwn
Ho % HoPerBlock == 0 && Wo % WoPerBlock == 0,
"wrong! cannot evenly divide work for workgroup ");
constexpr index_t NBlockWork = math::integer_divide_ceil(N, NPerBlock);
constexpr index_t KBlockWork = math::integer_divide_ceil(K, KPerBlock);
constexpr index_t HBlockWork = math::integer_divide_ceil(Ho, HoPerBlock);
constexpr index_t WBlockWork = math::integer_divide_ceil(Wo, WoPerBlock);
constexpr index_t NBlockWork = math::integer_divide_ceil(N, NPerBlock);
constexpr auto block_work_desc = make_ConstantTensorDescriptor_packed(
Sequence<NBlockWork, KBlockWork, HBlockWork, WBlockWork>{});
Sequence<KBlockWork, HBlockWork, WBlockWork, NBlockWork>{});
const auto block_work_multi_id =
block_work_desc.GetMultiIndexFrom1dIndex(get_block_1d_id());
const index_t n_block_data_begin = block_work_multi_id[0] * NPerBlock;
const index_t k_block_data_begin = block_work_multi_id[1] * KPerBlock;
const index_t ho_block_data_begin = block_work_multi_id[2] * HoPerBlock;
const index_t wo_block_data_begin = block_work_multi_id[3] * WoPerBlock;
const index_t k_block_data_begin = block_work_multi_id[0] * KPerBlock;
const index_t ho_block_data_begin = block_work_multi_id[1] * HoPerBlock;
const index_t wo_block_data_begin = block_work_multi_id[2] * WoPerBlock;
const index_t n_block_data_begin = block_work_multi_id[3] * NPerBlock;
const index_t hi_block_data_begin = ho_block_data_begin;
const index_t wi_block_data_begin = wo_block_data_begin;
......
#ifndef CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V1R3_CHWN_CYXK_KHWN_LDS_DOUBLE_BUFFER
#define CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V1R3_CHWN_CYXK_KHWN_LDS_DOUBLE_BUFFER
#ifndef CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V1R3_CHWN_CYXK_KHWN_LDS_DOUBLE_BUFFER_HPP
#define CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V1R3_CHWN_CYXK_KHWN_LDS_DOUBLE_BUFFER_HPP
#include "common_header.hpp"
#include "ConstantTensorDescriptor.hpp"
......@@ -74,14 +74,8 @@ struct GridwiseConvolutionImplicitGemm_v1r3_chwn_cyxk_khwn_lds_double_buffer
constexpr index_t Y = wei_c_y_x_k_global_desc.GetLength(I1);
constexpr index_t X = wei_c_y_x_k_global_desc.GetLength(I2);
constexpr index_t HiPerBlock = HoPerBlock + Y - 1;
constexpr index_t WiPerBlock = WoPerBlock + X - 1;
// assert for LDS double buffer
static_assert(C % (2 * CPerBlock) == 0, "C cannot be evenly divided");
// divide block work: [K, Ho, Wo, N]
static_assert(N % NPerBlock == 0 && K % KPerBlock == 0 && C % CPerBlock == 0 &&
static_assert(N % NPerBlock == 0 && K % KPerBlock == 0 && C % (2 * CPerBlock) == 0 &&
Ho % HoPerBlock == 0 && Wo % WoPerBlock == 0,
"wrong! cannot evenly divide work for workgroup ");
......
#ifndef CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V1R3_CHWN_CYXK_KHWN_PADDED_HPP
#define CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V1R3_CHWN_CYXK_KHWN_PADDED_HPP
#include "common_header.hpp"
#include "ConstantTensorDescriptor.hpp"
#include "ConstantMatrixDescriptor.hpp"
#include "blockwise_generic_tensor_slice_copy.hpp"
#include "threadwise_generic_tensor_slice_copy.hpp"
#include "blockwise_batched_gemm.hpp"
namespace ck {
template <index_t GridSize,
index_t BlockSize,
class Float,
class InGlobalDesc,
class WeiGlobalDesc,
class OutGlobalDesc,
class LowerPads,
class UpperPads,
index_t NPerBlock,
index_t KPerBlock,
index_t CPerBlock,
index_t HoPerBlock,
index_t WoPerBlock,
index_t NPerThread,
index_t KPerThread,
index_t HoPerThread,
index_t WoPerThread,
index_t GemmMPerThreadSubC,
index_t GemmNPerThreadSubC,
index_t GemmMLevel0Cluster,
index_t GemmNLevel0Cluster,
index_t GemmMLevel1Cluster,
index_t GemmNLevel1Cluster,
index_t GemmKPerThreadLoop,
index_t GemmDataPerReadA,
index_t GemmDataPerReadB,
class InBlockCopySubLengths_CHWN,
class InBlockCopyClusterLengths_CHWN,
index_t InBlockCopyDataPerAccess_N,
class WeiBlockCopySubLengths_CK,
class WeiBlockCopyClusterLengths_CK,
index_t WeiBlockCopyDataPerAccess_K,
index_t OutThreadCopyDataPerAccess_N>
struct GridwiseConvolutionImplicitGemm_v1r3_chwn_cyxk_khwn_padded
{
__device__ void Run(const Float* const __restrict__ p_in_global,
const Float* const __restrict__ p_wei_global,
Float* const __restrict__ p_out_global) const
{
// be careful of this assertion
static_assert(
NPerBlock % NPerThread == 0 &&
((GemmNPerThreadSubC <= NPerBlock && NPerBlock % GemmNPerThreadSubC == 0) ||
(GemmNPerThreadSubC >= NPerBlock && NPerThread == NPerBlock &&
GemmNPerThreadSubC % NPerThread == 0)),
"wrong!");
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto in_c_h_w_n_global_desc = InGlobalDesc{};
constexpr auto wei_c_y_x_k_global_desc = WeiGlobalDesc{};
constexpr auto out_k_h_w_n_global_desc = OutGlobalDesc{};
constexpr index_t C = in_c_h_w_n_global_desc.GetLength(I0);
constexpr index_t K = out_k_h_w_n_global_desc.GetLength(I0);
constexpr index_t Ho = out_k_h_w_n_global_desc.GetLength(I1);
constexpr index_t Wo = out_k_h_w_n_global_desc.GetLength(I2);
constexpr index_t N = out_k_h_w_n_global_desc.GetLength(I3);
constexpr index_t Y = wei_c_y_x_k_global_desc.GetLength(I1);
constexpr index_t X = wei_c_y_x_k_global_desc.GetLength(I2);
// divide block work: [K, Ho, Wo, N]
static_assert(N % NPerBlock == 0 && K % KPerBlock == 0 && C % CPerBlock == 0 &&
Ho % HoPerBlock == 0 && Wo % WoPerBlock == 0,
"wrong! cannot evenly divide work for workgroup ");
constexpr index_t KBlockWork = math::integer_divide_ceil(K, KPerBlock);
constexpr index_t HBlockWork = math::integer_divide_ceil(Ho, HoPerBlock);
constexpr index_t WBlockWork = math::integer_divide_ceil(Wo, WoPerBlock);
constexpr index_t NBlockWork = math::integer_divide_ceil(N, NPerBlock);
constexpr auto block_work_desc = make_ConstantTensorDescriptor_packed(
Sequence<KBlockWork, HBlockWork, WBlockWork, NBlockWork>{});
const auto block_work_multi_id =
block_work_desc.GetMultiIndexFrom1dIndex(get_block_1d_id());
const index_t k_block_data_begin = block_work_multi_id[0] * KPerBlock;
const index_t ho_block_data_begin = block_work_multi_id[1] * HoPerBlock;
const index_t wo_block_data_begin = block_work_multi_id[2] * WoPerBlock;
const index_t n_block_data_begin = block_work_multi_id[3] * NPerBlock;
const index_t hi_block_data_begin = ho_block_data_begin;
const index_t wi_block_data_begin = wo_block_data_begin;
// global tensor view
constexpr auto wei_c_k_global_desc = wei_c_y_x_k_global_desc.Extract(I0, I3);
// LDS tensor view
// be careful of alignment
constexpr index_t max_align = math::lcm(InBlockCopyDataPerAccess_N,
WeiBlockCopyDataPerAccess_K,
GemmDataPerReadA,
GemmDataPerReadB);
constexpr auto in_c_h_w_n_block_desc = make_ConstantTensorDescriptor_aligned(
Sequence<CPerBlock, HoPerBlock, WoPerBlock, NPerBlock>{}, Number<max_align>{});
// this check is ad-hoc
// TODO: need to properly implement tensor descriptor with alignment
static_assert(in_c_h_w_n_block_desc.GetStride(I1) % GemmDataPerReadB == 0,
"GemmDataPerReadB alignment requirement is not meet");
constexpr auto wei_c_k_block_desc = make_ConstantTensorDescriptor_aligned(
Sequence<CPerBlock, KPerBlock>{}, Number<max_align>{});
// tensor view of threadwise output in register
constexpr auto out_k_h_w_n_thread_desc = make_ConstantTensorDescriptor_packed(
Sequence<KPerThread, HoPerThread, WoPerThread, NPerThread>{});
// blockwise copy
// input: format is [C, Hi, Wi, N]
auto blockwise_in_copy =
BlockwiseGenericTensorSliceCopy_v1<BlockSize,
decltype(in_c_h_w_n_global_desc),
decltype(in_c_h_w_n_block_desc),
decltype(in_c_h_w_n_block_desc.GetLengths()),
InBlockCopySubLengths_CHWN,
InBlockCopyClusterLengths_CHWN,
Sequence<0, 1, 2, 3>,
Sequence<0, 1, 2, 3>,
Sequence<0, 1, 2, 3>,
3,
3,
InBlockCopyDataPerAccess_N,
InBlockCopyDataPerAccess_N>({0, 0, 0, 0},
{0, 0, 0, 0});
// blockwise wei copy
// format is [CPerBlock, X * KPerBlock]
const auto blockwise_wei_copy =
BlockwiseGenericTensorSliceCopy_v1<BlockSize,
decltype(wei_c_k_global_desc),
decltype(wei_c_k_block_desc),
decltype(wei_c_k_block_desc.GetLengths()),
WeiBlockCopySubLengths_CK,
WeiBlockCopyClusterLengths_CK,
Sequence<0, 1>,
Sequence<0, 1>,
Sequence<0, 1>,
1,
1,
WeiBlockCopyDataPerAccess_K,
WeiBlockCopyDataPerAccess_K>({0, 0}, {0, 0});
// a series of blockwise batched GEMM
// C_matrix += transpose(A_matrix) * B_matrix
// A_matrix and B_matrix saved in LDS, C_matrix saved in register
// A_matrix[C,K] is a sub-matrix of wei_block[C,K]
// B_matrix[C,Wo*N] is a sub-matrix of in_block[C,Hi,Wi,N]
// C_matrix[K,Wo*N] is a sub-matrix of out_block[K,Ho,Wo,N]
constexpr auto a_c_k_block_mtx_desc = make_ConstantMatrixDescriptor(
Number<CPerBlock>{}, Number<KPerBlock>{}, Number<wei_c_k_block_desc.GetStride(I0)>{});
constexpr auto b_c_wn_block_mtx_desc =
make_ConstantMatrixDescriptor(Number<CPerBlock>{},
Number<WoPerBlock * NPerBlock>{},
Number<in_c_h_w_n_block_desc.GetStride(I0)>{});
constexpr auto c_k_wn_thread_mtx_desc =
make_ConstantMatrixDescriptor(Number<KPerThread>{},
Number<WoPerThread * NPerThread>{},
Number<out_k_h_w_n_thread_desc.GetStride(I0)>{});
const auto blockwise_batch_gemm =
BlockwiseBatchGemmBlockABlockBThreadCTransANormalBNormalC_V2<
BlockSize,
decltype(a_c_k_block_mtx_desc),
decltype(b_c_wn_block_mtx_desc),
decltype(c_k_wn_thread_mtx_desc),
0,
in_c_h_w_n_block_desc.GetStride(I1),
out_k_h_w_n_thread_desc.GetStride(I1),
HoPerBlock,
GemmMPerThreadSubC,
GemmNPerThreadSubC,
GemmMLevel0Cluster,
GemmNLevel0Cluster,
GemmMLevel1Cluster,
GemmNLevel1Cluster,
GemmKPerThreadLoop,
HoPerThread,
GemmDataPerReadA,
GemmDataPerReadB>{};
// LDS: be careful of alignment
constexpr index_t in_block_space = in_c_h_w_n_block_desc.GetElementSpace();
constexpr index_t wei_block_space = wei_c_k_block_desc.GetElementSpace();
__shared__ Float p_in_block[in_block_space];
__shared__ Float p_wei_block[wei_block_space];
// register
// C++ lambda doesn't capture array, use pointer instead
Float p_out_thread_data[out_k_h_w_n_thread_desc.GetElementSpace()];
Float* const p_out_thread = p_out_thread_data;
#if 0
if(get_thread_local_1d_id() == 0 && get_block_1d_id() == 0)
{
print_ConstantTensorDescriptor(in_c_h_w_n_global_desc, "in_c_h_w_n_global_desc");
print_ConstantTensorDescriptor(wei_c_y_x_k_global_desc, "wei_c_y_x_k_global_desc");
print_ConstantTensorDescriptor(in_c_h_w_n_block_desc, "in_c_h_w_n_block_desc");
print_ConstantTensorDescriptor(wei_c_x_k_block_desc, "wei_c_x_k_block_desc");
printf("in_block_space %u, wei_block_space %u\n", in_block_space, wei_block_space);
}
#endif
// set threadwise output tensor to 0
threadwise_matrix_set_zero(c_k_wn_thread_mtx_desc, p_out_thread);
for(index_t y = 0; y < Y; ++y)
{
for(index_t x = 0; x < X; ++x)
{
const Float* p_in_global_block_offset =
p_in_global +
in_c_h_w_n_global_desc.GetOffsetFromMultiIndex(
0, hi_block_data_begin + y, wi_block_data_begin + x, n_block_data_begin);
const Float* p_wei_global_block_offset =
p_wei_global +
wei_c_y_x_k_global_desc.GetOffsetFromMultiIndex(0, y, x, k_block_data_begin);
for(index_t c_block_data_begin = 0; c_block_data_begin < C;
c_block_data_begin += CPerBlock,
p_in_global_block_offset +=
CPerBlock * in_c_h_w_n_global_desc.GetStride(I0),
p_wei_global_block_offset +=
CPerBlock * wei_c_y_x_k_global_desc.GetStride(I0))
{
blockwise_in_copy.Run(p_in_global_block_offset, p_in_block);
blockwise_wei_copy.Run(p_wei_global_block_offset, p_wei_block);
__syncthreads();
blockwise_batch_gemm.Run(p_wei_block, p_in_block, p_out_thread);
__syncthreads();
}
}
}
// output: register to global mem
const auto c_thread_mtx_begin =
blockwise_batch_gemm.GetBeginOfThreadMatrixC(get_thread_local_1d_id());
const index_t k_thread_data_begin = c_thread_mtx_begin.row;
const index_t ho_thread_data_begin = c_thread_mtx_begin.batch;
const index_t wo_thread_data_begin = c_thread_mtx_begin.col / NPerBlock;
const index_t n_thread_data_begin = c_thread_mtx_begin.col % NPerBlock;
static_if<GemmNPerThreadSubC <= NPerBlock>{}([&](auto fwd) {
// fwd do nothing but perfect forwarding.
// Using this trick to make this lambda a generic lambda, so it won't be compiled until
// being instantiated here
static_assert(
(fwd(GemmNPerThreadSubC) <= NPerBlock && NPerBlock % GemmNPerThreadSubC == 0),
"wrong!");
// output is a 10d tensor
constexpr index_t N2 = GemmNPerThreadSubC;
constexpr index_t N1 = NPerBlock / N2;
constexpr index_t W2 =
(GemmNLevel0Cluster * GemmNLevel1Cluster) / fwd(NPerBlock / GemmNPerThreadSubC);
constexpr index_t W1 = WoPerBlock / W2;
constexpr index_t K2 = GemmMPerThreadSubC;
constexpr index_t K1 = KPerBlock / KPerThread;
constexpr auto out_10d_global_desc = fwd(out_k_h_w_n_global_desc)
.Fold(I3, Number<N1>{}, Number<N2>{})
.Fold(I2, Number<W1>{}, Number<W2>{})
.Fold(I0, Number<K1>{}, Number<K2>{});
constexpr auto out_10d_thread_desc = fwd(out_k_h_w_n_thread_desc)
.Fold(I3, Number<1>{}, Number<N2>{})
.Fold(I2, Number<W1>{}, Number<1>{})
.Fold(I0, Number<1>{}, Number<K2>{});
#if 0
if(get_thread_local_1d_id() == 0 && get_block_1d_id() == 0)
{
print_ConstantTensorDescriptor(out_k_h_w_n_thread_desc,
"a: out_k_h_w_n_thread_desc");
print_ConstantTensorDescriptor(out_10d_thread_desc, "a: out_10d_thread_desc");
print_ConstantTensorDescriptor(out_k_h_w_n_global_desc,
"a: out_k_h_w_n_global_desc");
print_ConstantTensorDescriptor(out_10d_global_desc, "a: out_10d_global_desc");
}
#endif
Float* p_out_thread_on_global = p_out_global +
out_k_h_w_n_global_desc.GetOffsetFromMultiIndex(
k_block_data_begin + k_thread_data_begin,
ho_block_data_begin + ho_thread_data_begin,
wo_block_data_begin + wo_thread_data_begin,
n_block_data_begin + n_thread_data_begin);
#if 1
ThreadwiseGenericTensorSliceCopy_v1r2<decltype(out_10d_thread_desc),
decltype(out_10d_global_desc),
decltype(out_10d_thread_desc.GetLengths()),
arithmetic_sequence_gen<0, 10, 1>::type,
9,
OutThreadCopyDataPerAccess_N,
OutThreadCopyDataPerAccess_N>(
make_zero_array<index_t, 10>(), make_zero_array<index_t, 10>())
.Run(p_out_thread, p_out_thread_on_global);
#elif 0
ThreadwiseGenericTensorSliceCopy_v1r1<decltype(out_10d_thread_desc),
decltype(out_10d_global_desc),
decltype(out_10d_thread_desc.GetLengths()),
arithmetic_sequence_gen<0, 10, 1>::type,
arithmetic_sequence_gen<0, 10, 1>::type,
9,
9,
OutThreadCopyDataPerAccess_N,
OutThreadCopyDataPerAccess_N>(
make_zero_array<index_t, 10>(), make_zero_array<index_t, 10>())
.Run(p_out_thread, p_out_thread_on_global);
#endif
}).Else([&](auto fwd) {
static_assert(fwd(GemmNPerThreadSubC) >= NPerBlock && NPerThread == NPerBlock &&
GemmNPerThreadSubC % NPerThread == 0,
"wrong!");
// output is a 10d tensor
constexpr index_t N1 = NPerBlock;
constexpr index_t W3 = GemmNPerThreadSubC / NPerBlock;
constexpr index_t W2 = GemmNLevel0Cluster * GemmNLevel1Cluster;
constexpr index_t W1 = WoPerBlock / fwd(W2 * W3);
constexpr index_t K2 = GemmMPerThreadSubC;
constexpr index_t K1 = KPerBlock / KPerThread;
constexpr auto out_10d_global_desc =
fwd(out_k_h_w_n_global_desc)
.Fold(I3, Number<N1>{})
.Fold(I2, Number<W1>{}, Number<W2>{}, Number<W3>{})
.Fold(I0, Number<K1>{}, Number<K2>{});
constexpr auto out_10d_thread_desc =
fwd(out_k_h_w_n_thread_desc)
.Fold(I3, Number<N1>{})
.Fold(I2, Number<W1>{}, Number<1>{}, Number<W3>{})
.Fold(I0, Number<1>{}, Number<K2>{});
#if 0
if(get_thread_local_1d_id() == 0 && get_block_1d_id() == 0)
{
print_ConstantTensorDescriptor(out_k_h_w_n_thread_desc,
"b: out_k_h_w_n_thread_desc");
print_ConstantTensorDescriptor(out_10d_thread_desc, "b: out_10d_thread_desc");
print_ConstantTensorDescriptor(out_k_h_w_n_global_desc,
"b: out_k_h_w_n_global_desc");
print_ConstantTensorDescriptor(out_10d_global_desc, "b: out_10d_global_desc");
}
#endif
Float* p_out_thread_on_global = p_out_global +
out_k_h_w_n_global_desc.GetOffsetFromMultiIndex(
k_block_data_begin + k_thread_data_begin,
ho_block_data_begin + ho_thread_data_begin,
wo_block_data_begin + wo_thread_data_begin,
n_block_data_begin + n_thread_data_begin);
#if 1
ThreadwiseGenericTensorSliceCopy_v1r2<decltype(out_10d_thread_desc),
decltype(out_10d_global_desc),
decltype(out_10d_thread_desc.GetLengths()),
arithmetic_sequence_gen<0, 10, 1>::type,
9,
OutThreadCopyDataPerAccess_N,
OutThreadCopyDataPerAccess_N>(
make_zero_array<index_t, 10>(), make_zero_array<index_t, 10>())
.Run(p_out_thread, p_out_thread_on_global);
#elif 0
ThreadwiseGenericTensorSliceCopy_v1r1<decltype(out_10d_thread_desc),
decltype(out_10d_global_desc),
decltype(out_10d_thread_desc.GetLengths()),
arithmetic_sequence_gen<0, 10, 1>::type,
arithmetic_sequence_gen<0, 10, 1>::type,
9,
9,
OutThreadCopyDataPerAccess_N,
OutThreadCopyDataPerAccess_N>(
make_zero_array<index_t, 10>(), make_zero_array<index_t, 10>())
.Run(p_out_thread, p_out_thread_on_global);
#endif
});
}
};
} // namespace ck
#endif
......@@ -472,13 +472,10 @@ void device_convolution_implicit_gemm_v1_chwn_cyxk_khwn(InDesc,
#endif
constexpr index_t GridSize =
((N + NPerBlock - 1) / NPerBlock) * ((K + KPerBlock - 1) / KPerBlock) *
((Ho + HoPerBlock - 1) / HoPerBlock) * ((Wo + WoPerBlock - 1) / WoPerBlock);
(N / NPerBlock) * (K / KPerBlock) * (Ho / HoPerBlock) * (Wo / WoPerBlock);
printf("%s: BlockSize %u, GridSize %u \n", __func__, BlockSize, GridSize);
for(index_t i = 0; i < nrepeat; ++i)
{
constexpr auto gridwise_conv =
#if 0
GridwiseConvolutionImplicitGemm_v1r1_chwn_cyxk_khwn
......@@ -521,6 +518,8 @@ void device_convolution_implicit_gemm_v1_chwn_cyxk_khwn(InDesc,
WeiBlockCopyDataPerAccess_K,
OutThreadCopyDataPerAccess_N>{};
for(index_t i = 0; i < nrepeat; ++i)
{
float time = launch_kernel(run_gridwise_convolution_kernel<decltype(gridwise_conv), T>,
dim3(GridSize),
dim3(BlockSize),
......
#pragma once
#include <unistd.h>
#include "device.hpp"
#include "tensor.hpp"
#include "gridwise_convolution_implicit_gemm_v1r3_chwn_cyxk_khwn_padded.hpp"
using namespace ck;
template <class T, class InDesc, class WeiDesc, class OutDesc, class LowerPads, class UpperPads>
void device_convolution_implicit_gemm_v1_chwn_cyxk_khwn_padded(InDesc,
const Tensor<T>& in_nchw,
WeiDesc,
const Tensor<T>& wei_kcyx,
OutDesc,
Tensor<T>& out_nkhw,
LowerPads,
UpperPads,
index_t nrepeat)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto in_nchw_desc = InDesc{};
constexpr auto wei_kcyx_desc = WeiDesc{};
constexpr auto out_nkhw_desc = OutDesc{};
constexpr index_t Hi = in_nchw_desc.GetLength(I2);
constexpr index_t Wi = in_nchw_desc.GetLength(I3);
constexpr index_t N = out_nkhw_desc.GetLength(I0);
constexpr index_t Ho = out_nkhw_desc.GetLength(I2);
constexpr index_t Wo = out_nkhw_desc.GetLength(I3);
constexpr index_t K = wei_kcyx_desc.GetLength(I0);
constexpr index_t C = wei_kcyx_desc.GetLength(I1);
constexpr index_t Y = wei_kcyx_desc.GetLength(I2);
constexpr index_t X = wei_kcyx_desc.GetLength(I3);
// reorder weight
auto wei_cyxk_desc = make_ConstantTensorDescriptor_packed(Sequence<C, Y, X, K>{});
ostream_ConstantTensorDescriptor(wei_cyxk_desc, std::cout << "wei_cyxk_desc: ");
Tensor<T> wei_cyxk(make_TensorDescriptor(wei_cyxk_desc));
auto f_reorder_kcyx2cyxk = [&](auto k, auto c, auto y, auto x) {
wei_cyxk(c, y, x, k) = wei_kcyx(k, c, y, x);
};
make_ParallelTensorFunctor(f_reorder_kcyx2cyxk, K, C, Y, X)(
std::thread::hardware_concurrency());
// reorder input
auto in_chwn_desc = make_ConstantTensorDescriptor_packed(Sequence<C, Hi, Wi, N>{});
ostream_ConstantTensorDescriptor(in_chwn_desc, std::cout << "in_chwn_desc: ");
Tensor<T> in_chwn(make_TensorDescriptor(in_chwn_desc));
auto f_reorder_nchw2chwn = [&](auto n, auto c, auto hi, auto wi) {
in_chwn(c, hi, wi, n) = in_nchw(n, c, hi, wi);
};
make_ParallelTensorFunctor(f_reorder_nchw2chwn, N, C, Hi, Wi)(
std::thread::hardware_concurrency());
// output
auto out_khwn_desc = make_ConstantTensorDescriptor_packed(Sequence<K, Ho, Wo, N>{});
ostream_ConstantTensorDescriptor(out_khwn_desc, std::cout << "out_khwn_desc: ");
Tensor<T> out_khwn(make_TensorDescriptor(out_khwn_desc));
std::size_t data_sz = sizeof(T);
DeviceMem in_chwn_device_buf(data_sz * in_chwn.mDesc.GetElementSpace());
DeviceMem wei_cyxk_device_buf(data_sz * wei_cyxk.mDesc.GetElementSpace());
DeviceMem out_khwn_device_buf(data_sz * out_khwn.mDesc.GetElementSpace());
in_chwn_device_buf.ToDevice(in_chwn.mData.data());
wei_cyxk_device_buf.ToDevice(wei_cyxk.mData.data());
out_khwn_device_buf.ToDevice(out_khwn.mData.data());
#if 1
// v1r3, 3x3, 32x32, 1x1 pad
constexpr index_t BlockSize = 128;
constexpr index_t NPerBlock = 16;
constexpr index_t KPerBlock = 128;
constexpr index_t CPerBlock = 8;
constexpr index_t HoPerBlock = 2;
constexpr index_t WoPerBlock = 2;
constexpr index_t NPerThread = 4;
constexpr index_t KPerThread = 8;
constexpr index_t HoPerThread = 1;
constexpr index_t WoPerThread = 2;
constexpr index_t GemmMPerThreadSubC = 4;
constexpr index_t GemmNPerThreadSubC = 4;
constexpr index_t GemmMLevel0Cluster = 4;
constexpr index_t GemmNLevel0Cluster = 2;
constexpr index_t GemmMLevel1Cluster = 4;
constexpr index_t GemmNLevel1Cluster = 2;
constexpr index_t GemmKPerThreadLoop = 1;
constexpr index_t GemmDataPerReadA = 4;
constexpr index_t GemmDataPerReadB = 4;
using InBlockCopySubLengths_CHWN = Sequence<1, 1, 1, 4>;
using InBlockCopyClusterLengths_CHWN = Sequence<8, 2, 2, 4>;
constexpr index_t InBlockCopyDataPerAccess_N = 4;
using WeiBlockCopySubLengths_CK = Sequence<2, 4>;
using WeiBlockCopyClusterLengths_CK = Sequence<4, 32>;
constexpr index_t WeiBlockCopyDataPerAccess_K = 4;
constexpr index_t OutThreadCopyDataPerAccess_N = 2;
#endif
constexpr index_t GridSize =
(N / NPerBlock) * (K / KPerBlock) * (Ho / HoPerBlock) * (Wo / WoPerBlock);
printf("%s: BlockSize %u, GridSize %u \n", __func__, BlockSize, GridSize);
constexpr auto gridwise_conv =
GridwiseConvolutionImplicitGemm_v1r3_chwn_cyxk_khwn_padded<GridSize,
BlockSize,
T,
decltype(in_chwn_desc),
decltype(wei_cyxk_desc),
decltype(out_khwn_desc),
LowerPads,
UpperPads,
NPerBlock,
KPerBlock,
CPerBlock,
HoPerBlock,
WoPerBlock,
NPerThread,
KPerThread,
HoPerThread,
WoPerThread,
GemmMPerThreadSubC,
GemmNPerThreadSubC,
GemmMLevel0Cluster,
GemmNLevel0Cluster,
GemmMLevel1Cluster,
GemmNLevel1Cluster,
GemmKPerThreadLoop,
GemmDataPerReadA,
GemmDataPerReadB,
InBlockCopySubLengths_CHWN,
InBlockCopyClusterLengths_CHWN,
InBlockCopyDataPerAccess_N,
WeiBlockCopySubLengths_CK,
WeiBlockCopyClusterLengths_CK,
WeiBlockCopyDataPerAccess_K,
OutThreadCopyDataPerAccess_N>{};
for(index_t i = 0; i < nrepeat; ++i)
{
float time = launch_kernel(run_gridwise_convolution_kernel<decltype(gridwise_conv), T>,
dim3(GridSize),
dim3(BlockSize),
0,
static_cast<T*>(in_chwn_device_buf.GetDeviceBuffer()),
static_cast<T*>(wei_cyxk_device_buf.GetDeviceBuffer()),
static_cast<T*>(out_khwn_device_buf.GetDeviceBuffer()));
printf("Elapsed time : %f ms, %f TFlop/s\n",
time,
(float)calculate_convolution_flops(InDesc{}, WeiDesc{}, OutDesc{}) /
(std::size_t(1000) * 1000 * 1000) / time);
usleep(std::min(time * 1000, float(10000)));
}
out_khwn_device_buf.FromDevice(out_khwn.mData.data());
// reorder output
auto f_reorder_khwn2nkhw = [&](auto k, auto ho, auto wo, auto n) {
out_nkhw(n, k, ho, wo) = out_khwn(k, ho, wo, n);
};
make_ParallelTensorFunctor(f_reorder_khwn2nkhw, K, Ho, Wo, N)(
std::thread::hardware_concurrency());
}
......@@ -10,6 +10,7 @@
#include "host_conv.hpp"
#include "device_convolution_direct_v2_nchw_kcyx_nkhw.hpp"
#include "device_convolution_implicit_gemm_v1_chwn_cyxk_khwn.hpp"
#include "device_convolution_implicit_gemm_v1_chwn_cyxk_khwn_padded.hpp"
//#include "device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw.hpp"
//#include "device_convolution_implicit_gemm_v2_chwn_cyxk_khwn.hpp"
//#include "device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw.hpp"
......@@ -71,7 +72,7 @@ int main(int argc, char* argv[])
{
using namespace ck;
#if 1
#if 0
constexpr index_t N = 64;
constexpr index_t C = 1536;
constexpr index_t HI = 8;
......@@ -367,9 +368,19 @@ int main(int argc, char* argv[])
#if 0
device_convolution_direct_v2_nchw_kcyx_nkhw
(in_nchw_desc, in_nchw, wei_kcyx_desc, wei_kcyx, out_nkhw_desc, out_nkhw_device, nrepeat);
#elif 1
#elif 0
device_convolution_implicit_gemm_v1_chwn_cyxk_khwn(
in_nchw_desc, in_nchw, wei_kcyx_desc, wei_kcyx, out_nkhw_desc, out_nkhw_device, nrepeat);
#elif 1
device_convolution_implicit_gemm_v1_chwn_cyxk_khwn_padded(in_nchw_desc,
in_nchw,
wei_kcyx_desc,
wei_kcyx,
out_nkhw_desc,
out_nkhw_device,
lower_pads,
upper_pads,
nrepeat);
#elif 0
device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw(
in_nchw_desc, in_nchw, wei_kcyx_desc, wei_kcyx, out_nkhw_desc, out_nkhw_device, nrepeat);
......@@ -419,16 +430,6 @@ int main(int argc, char* argv[])
ConvStrides{},
ConvDilations{},
nrepeat);
#elif 0
device_implicit_gemm_convolution_1_chwn_cyxk_khwn_padded(in_nchw_desc,
in_nchw,
wei_kcyx_desc,
wei_kcyx,
out_nkhw_desc,
out_nkhw_device,
lower_pads,
upper_pads,
nrepeat);
#endif
if(do_verification)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment