Commit 4f0b87dc authored by Artur Wojcik's avatar Artur Wojcik
Browse files

Merge branch 'uif2-initial' into uif2-migraphx

parents 696f0839 bc5b84b1
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/utility/number.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/tuple_helper.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/utility/sequence_helper.hpp"
#include "ck/utility/is_detected.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
namespace ck {
namespace tensor_transform_wrapper {
/**
* \brief Layout wrapper
*
* \details
* Layout wrapper that performs the tensor descriptor logic.
*
* \tparam Shape Tuple of Number<> (for compile-time layout) or index_t
* (dynamic layout). It is possible to pass nested shapes
* (e.g. ((4, 2), 2)), nested dimensions are merged.
* \tparam Strides Tuple of Number<> (for compile-time layout) or index_t
* (dynamic layout). Stride tuple should be nested if shape tuple is
* nested.
*/
template <typename Shape, typename Strides = Tuple<>>
struct Layout
{
private:
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
template <typename T>
using is_tuple = decltype(std::declval<T&>().IsTuple());
// Generate packed (column-major) strides if not passed
template <typename... Ts>
__host__ __device__ constexpr static auto
GenerateColumnMajorPackedStrides(const Tuple<Ts...>& tuple)
{
return generate_tuple(
[&](auto i) {
if constexpr(i.value == 0)
{
return I1;
}
else
{
return TupleReduce<I0.value, i.value>([](auto x, auto y) { return x * y; },
tuple);
}
},
Number<Tuple<Ts...>::Size()>{});
}
// Generate LowerDims in Compile-time for MergeTrasform using passed Type
// If element of Tuple<Ts...> is also tuple, then merge (generate sequence for merge)
// If tuple is element, then pass through (sequence with one element)
template <typename Idx, typename... Ts>
__host__ __device__ constexpr static auto GenerateLowerDim(const Tuple<Ts...>&)
{
if constexpr(Idx::value == 0)
{
if constexpr(is_detected<is_tuple, tuple_element_t<Idx::value, Tuple<Ts...>>>::value)
{
// Return Sequence for the first tuple
constexpr index_t merge_nelems = decltype(UnrollNestedTuple(
tuple_element_t<Idx::value, Tuple<Ts...>>{}))::Size();
using LowerDimsSequence =
typename arithmetic_sequence_gen<0, merge_nelems, 1>::type;
return LowerDimsSequence::Reverse();
}
else
{
// Return first element
return Sequence<0>{};
}
}
else
{
// Get previous element using recurence (in compile-time)
using PreviousSeqT = decltype(GenerateLowerDim<Number<Idx::value - 1>>(Tuple<Ts...>{}));
const auto next_seq_val = PreviousSeqT::At(I0) + 1;
if constexpr(is_detected<is_tuple, tuple_element_t<Idx::value, Tuple<Ts...>>>::value)
{
constexpr index_t merge_nelems = decltype(UnrollNestedTuple(
tuple_element_t<Idx::value, Tuple<Ts...>>{}))::Size();
using LowerDimsSequence =
typename arithmetic_sequence_gen<next_seq_val, next_seq_val + merge_nelems, 1>::
type;
return LowerDimsSequence::Reverse();
}
else
{
return Sequence<next_seq_val>{};
}
}
}
// Iterate over nested tuples in shape
// Unroll nested tuples to align Tuple<ShapeDims...> to Tuple<IdxDims...>
// Example idx: (1, 1), 1, 1
// Example shape: (2, (2, 2)), 2, (2, 2)
// Unrolled shape: 2, (2, 2), 2, (2, 2)
template <typename... ShapeDims, typename... IdxDims>
__host__ __device__ constexpr static auto UnrollShapeViaIdx(const Tuple<ShapeDims...>& shape,
const Tuple<IdxDims...>& idx)
{
if constexpr(!IsNestedTuple(Tuple<IdxDims...>{}))
{
// Index unrolled to flatten, return shape
return shape;
}
else
{
// Iterate over shape tuple elements:
// 1. If corresponding idx element is tuple then return (will be unrolled)
// 2. If no, pack in tuple. It will be restored during unroll.
auto unrolled_shape_via_idx = generate_tuple(
[&](auto i) {
if constexpr(is_detected<is_tuple,
tuple_element_t<i, Tuple<IdxDims...>>>::value)
{
return shape.At(i);
}
else
{
return make_tuple(shape.At(i));
}
},
Number<Tuple<IdxDims...>::Size()>{});
// Unroll and process next step
return UnrollShapeViaIdx(UnrollNestedTuple<0, 1>(unrolled_shape_via_idx),
UnrollNestedTuple<0, 1>(idx));
}
}
template <typename... ShapeDims, typename DescriptorToMerge>
__host__ __device__ constexpr static auto MakeMerge1d(const Tuple<ShapeDims...>& shape,
DescriptorToMerge& desc)
{
// Reverse each element in tuple
using ReversedUnrolledShape = decltype(TupleReverse(UnrollNestedTuple(shape)));
const auto merge_elems = ReversedUnrolledShape{};
// Generate reverted indexes (column major traverse)
using MergeElemsSequence =
typename arithmetic_sequence_gen<0, ReversedUnrolledShape::Size(), 1>::type;
const auto lower_dims = make_tuple(MergeElemsSequence::Reverse());
const auto upper_dims = make_tuple(Sequence<0>{});
// Merge to 1d
return transform_tensor_descriptor(
desc, make_tuple(make_merge_transform(merge_elems)), lower_dims, upper_dims);
}
// Merge nested shape dims
// Input desc shape: 2, 2, 2, 2, 2, 2
// Example idx: 1, 1, 1, 1
// Example shape: 2, (2, 2), 2, (2, 2)
// Merged shape: 2, 4, 2, 4
template <typename... ShapeDims, typename... IdxDims, typename DescriptorToMerge>
__host__ __device__ constexpr static auto
MakeMerges(const Tuple<ShapeDims...>& shape, const Tuple<IdxDims...>&, DescriptorToMerge& desc)
{
const auto transforms = generate_tuple(
[&](auto i) {
// Compare Idx with shape
if constexpr(is_detected<is_tuple,
tuple_element_t<i, Tuple<ShapeDims...>>>::value &&
!is_detected<is_tuple, tuple_element_t<i, Tuple<IdxDims...>>>::value)
{
// If shape element is tuple and idx element is Number, then merge
// Unroll and reverse tuple to traverse column-major
const auto merge_elems = TupleReverse(UnrollNestedTuple(shape.At(i)));
return make_merge_transform(merge_elems);
}
else
{
// If shape element is integer and idx element is tuple, passed idx is wrong
static_assert(
!(!is_detected<is_tuple, tuple_element_t<i, Tuple<ShapeDims...>>>::value &&
is_detected<is_tuple, tuple_element_t<i, Tuple<IdxDims...>>>::value),
"Wrong Idx for layout()");
// If shape element has the same type as idx element, then pass through
return make_pass_through_transform(shape.At(i));
}
},
Number<Tuple<ShapeDims...>::Size()>{});
const auto lower_dims =
generate_tuple([&](auto i) { return GenerateLowerDim<Number<i>>(shape); },
Number<Tuple<ShapeDims...>::Size()>{});
const auto upper_dims = generate_tuple([&](auto i) { return Sequence<i.value>{}; },
Number<Tuple<ShapeDims...>::Size()>{});
return transform_tensor_descriptor(desc, transforms, lower_dims, upper_dims);
}
template <typename... ShapeDims, typename... IdxDims>
__host__ __device__ constexpr auto TransformDesc(const Tuple<ShapeDims...>& shape,
const Tuple<IdxDims...>& idx) const
{
if constexpr(Tuple<IdxDims...>::Size() == I1)
{
// 1d idx path
return MakeMerge1d(shape, descriptor_);
}
else
{
// Merge nested shape dims
// Example idx: (1, 1), 1, 1
// Example shape: (2, (2, 2)), 2, (2, 2)
// Merged shape: (2, 4), 2, 4
static_assert(Tuple<ShapeDims...>::Size() == Tuple<IdxDims...>::Size(),
"Idx rank and Shape rank must be the same (except 1d).");
// Unroll while IdxDims is nested
const auto unrolled_shape_via_idx = UnrollShapeViaIdx(shape, idx);
// Transform correct form of shape
return MakeMerges(unrolled_shape_via_idx, UnrollNestedTuple(idx), descriptor_);
}
}
template <typename LayoutShape, typename LayoutStrides>
__host__ __device__ static auto MakeNaiveDescriptor(const LayoutShape& shape,
const LayoutStrides& strides)
{
const auto unrolled_shape = UnrollNestedTuple(shape);
if constexpr(ck::is_same_v<LayoutStrides, Tuple<>>)
{
// If shape is packed
const auto column_major_packed_strides =
GenerateColumnMajorPackedStrides(unrolled_shape);
return make_naive_tensor_descriptor(unrolled_shape, column_major_packed_strides);
}
else
{
const auto unrolled_strides = UnrollNestedTuple(strides);
static_assert(unrolled_shape.Size() == unrolled_strides.Size(),
"Size of strides and shape are not consistent.");
return make_naive_tensor_descriptor(unrolled_shape, unrolled_strides);
}
}
public:
using NaiveDescriptorType = remove_cvref_t<decltype(MakeNaiveDescriptor(Shape{}, Strides{}))>;
/**
* \brief Layout constructor.
*
* \param shape Shape for layout.
* \param strides Strides for layout (optional if tensor is packed).
* \return Layout object.
*/
__host__ __device__ Layout() = delete;
__host__ __device__ Layout(const Shape& shape, const Strides& strides) : descriptor_{}
{
// Construct if runtime mode
if constexpr(!NaiveDescriptorType::IsKnownAtCompileTime())
{
// Keep only shape, strides are not need for transforms
shape_ = shape;
descriptor_ = MakeNaiveDescriptor(shape, strides);
}
}
__host__ __device__ Layout(const Shape& shape) : descriptor_{}
{
if constexpr(!NaiveDescriptorType::IsKnownAtCompileTime())
{
shape_ = shape;
descriptor_ = MakeNaiveDescriptor(shape, Strides{});
}
}
/**
* \brief Returns real offset to element in runtime.
*
* \tparam Idxs Tuple of indexes.
* \return Calculated offset.
*/
template <typename Idxs>
__host__ __device__ constexpr index_t operator()() const
{
using TransformedDesc = decltype(TransformDesc(Shape{}, Idxs{}));
using UnrolledIdx = decltype(UnrollNestedTuple(Idxs{}));
return TransformedDesc{}.CalculateOffset(UnrolledIdx{});
}
/**
* \brief Returns real offset to element in compile time.
*
* \param Idx Tuple of indexes.
* \return Calculated offset.
*/
template <typename... Ts>
__host__ __device__ index_t operator()(const Tuple<Ts...>& Idx) const
{
// Static to construct transformed_desc only once
static const auto transformed_desc = TransformDesc(shape_, Idx);
return transformed_desc.CalculateOffset(UnrollNestedTuple(Idx));
}
/**
* \brief Length getter (product if tuple).
*
* \tparam IDim Tuple of indexes or index.
* \return Calculated size.
*/
template <index_t IDim>
__host__ __device__ constexpr index_t GetLength() const
{
const auto elem = shape_.At(Number<IDim>{});
if constexpr(is_detected<is_tuple, tuple_element_t<IDim, Shape>>::value)
{
const auto unrolled_element = UnrollNestedTuple(elem);
return TupleReduce<I0.value, unrolled_element.Size()>(
[](auto x, auto y) { return x * y; }, unrolled_element);
}
else
{
return elem;
}
}
/**
* \brief Layout size getter (product of shape).
*
* \return Calculated size.
*/
__host__ __device__ constexpr index_t GetLength() const
{
const auto unrolled_shape = UnrollNestedTuple(shape_);
return TupleReduce<I0.value, unrolled_shape.Size()>([](auto x, auto y) { return x * y; },
unrolled_shape);
}
/**
* \brief Dimension getter.
*
* \tparam IDim Dimension idx.
* \return Calculated size.
*/
template <index_t IDim>
__host__ __device__ constexpr auto Get() const
{
const auto elem = shape_.At(Number<IDim>{});
return elem;
}
private:
NaiveDescriptorType descriptor_;
Shape shape_;
};
// Layout helpers
// Length getter (product if tuple)
template <index_t idx, typename Shape, typename Strides>
__host__ __device__ constexpr index_t size(const Layout<Shape, Strides>& layout)
{
return layout.template GetLength<idx>();
}
// Get shape size (product of dims if tuple)
template <typename... ShapeDims>
__host__ __device__ constexpr index_t size(const Tuple<ShapeDims...>& shape)
{
using UnrolledShape = decltype(UnrollNestedTuple(shape));
return TupleReduce<0, UnrolledShape::Size()>([](auto x, auto y) { return x * y; },
UnrolledShape{});
}
// Get dim size (could be returned from get function)
template <typename T>
__host__ __device__ T constexpr size(const T& dim)
{
return dim;
}
// Get layout size (product of shapes)
template <typename Shape, typename Strides>
__host__ __device__ constexpr index_t size(const Layout<Shape, Strides>& layout)
{
return layout.GetLength();
}
// Get shape element size
template <index_t idx, typename... ShapeDims>
__host__ __device__ constexpr index_t size(const Tuple<ShapeDims...>& shape)
{
return size(shape.At(Number<idx>{}));
}
// Dim getter (tuple if tuple)
template <index_t idx, typename Shape, typename Strides>
__host__ __device__ constexpr auto get(const Layout<Shape, Strides>& layout)
{
return layout.template Get<idx>();
}
template <typename Shape, typename Strides>
__host__ __device__ constexpr Layout<Shape, Strides> make_layout(const Shape& shape,
const Strides& strides)
{
return Layout<Shape, Strides>(shape, strides);
}
template <typename Shape>
__host__ __device__ constexpr Layout<Shape> make_layout(const Shape& shape)
{
return Layout<Shape>(shape);
}
} // namespace tensor_transform_wrapper
} // namespace ck
......@@ -135,6 +135,9 @@
// inner product using V_DOT with DPP8 modifiers
#define CK_USE_AMD_V_DOT_DPP8_INLINE_ASM 1
// LDS direct loads using inline assembly
#define CK_USE_AMD_LDS_DIRECT_LOAD_INLINE_ASM 1
// set stochastic rounding as default for f8 conversions
#define CK_USE_SR_F8_CONVERSION 1
......
......@@ -11,6 +11,6 @@ struct StreamConfig
hipStream_t stream_id_ = nullptr;
bool time_kernel_ = false;
int log_level_ = 0;
int cold_niters_ = 50;
int nrepeat_ = 200;
int cold_niters_ = 1;
int nrepeat_ = 10;
};
......@@ -62,7 +62,9 @@ struct BaseOperator
};
virtual size_t GetWorkSpaceSize(const BaseArgument*) const { return 0; }
virtual void SetWorkSpacePointer(BaseArgument* p_arg, void* p_workspace) const
virtual void SetWorkSpacePointer(BaseArgument* p_arg,
void* p_workspace,
const StreamConfig& = StreamConfig{}) const
{
assert(p_arg);
p_arg->p_workspace_ = p_workspace;
......
......@@ -376,7 +376,9 @@ struct DeviceBatchNormBwdImpl : public DeviceBatchNormBwd<XDataType,
return (workspace_size);
};
void SetWorkSpacePointer(BaseArgument* pArg, void* p_workspace) const override
void SetWorkSpacePointer(BaseArgument* pArg,
void* p_workspace,
const StreamConfig& = StreamConfig{}) const override
{
Argument* pArg_ = dynamic_cast<Argument*>(pArg);
......
......@@ -354,7 +354,9 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
return (workspace_size);
};
void SetWorkSpacePointer(BaseArgument* pArg, void* p_workspace) const override
void SetWorkSpacePointer(BaseArgument* pArg,
void* p_workspace,
const StreamConfig& = StreamConfig{}) const override
{
Argument* pArg_ = dynamic_cast<Argument*>(pArg);
......
......@@ -345,7 +345,9 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
return (workspace_size);
};
void SetWorkSpacePointer(BaseArgument* pArg, void* p_workspace) const override
void SetWorkSpacePointer(BaseArgument* pArg,
void* p_workspace,
const StreamConfig& = StreamConfig{}) const override
{
Argument* pArg_ = dynamic_cast<Argument*>(pArg);
......
......@@ -13,6 +13,7 @@
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/stream_utility.hpp"
namespace ck {
......@@ -292,6 +293,12 @@ struct DeviceElementwise3dImpl : public DeviceElementwise<InDataTypeTuple,
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
if((ck::get_device_name() == "gfx940" || ck::get_device_name() == "gfx941" ||
ck::get_device_name() == "gfx942"))
{
return false;
}
const Argument* pArg = dynamic_cast<const Argument*>(p_arg);
if(pArg == nullptr)
......
......@@ -821,7 +821,9 @@ struct DeviceGemmMultipleDLayernorm_Xdl_CShuffle
return (workspace_size);
};
void SetWorkSpacePointer(BaseArgument* pArg, void* p_workspace) const override
void SetWorkSpacePointer(BaseArgument* pArg,
void* p_workspace,
const StreamConfig& = StreamConfig{}) const override
{
Argument* pArg_ = dynamic_cast<Argument*>(pArg);
......
......@@ -380,7 +380,9 @@ struct DeviceGemm_Xdl_CShuffle_LdsDirectLoad : public DeviceGemm<ALayout,
<< " LoopScheduler: "
<< LoopSchedToString[LoopSched] << ", "
<< "PipelineVersion: "
<< PipelineVersionToString[PipelineVer];
<< PipelineVersionToString[PipelineVer] << ", "
<< "Prefetch: "
<< NumGemmKPrefetchStage;
// clang-format on
return str.str();
......
......@@ -226,7 +226,9 @@ struct DeviceGemmXdlStreamK : public DeviceGemmStreamK<ALayout,
}
}
void SetWorkSpacePointer(BaseArgument* pArg, void* p_workspace) const override
void SetWorkSpacePointer(BaseArgument* pArg,
void* p_workspace,
const StreamConfig& = StreamConfig{}) const override
{
Argument* pArg_ = dynamic_cast<Argument*>(pArg);
......
......@@ -817,12 +817,15 @@ struct DeviceGroupedGemm_Xdl_Fixed_NK : public DeviceGroupedGemmFixedNK<ALayout,
return arg.group_count_ * sizeof(GroupedGemmKernelArgument<NumDTensor>);
}
void SetWorkSpacePointer(BaseArgument* p_arg, void* p_workspace) const override
void SetWorkSpacePointer(BaseArgument* p_arg,
void* p_workspace,
const StreamConfig& stream_config = StreamConfig{}) const override
{
auto p_arg_ = dynamic_cast<Argument*>(p_arg);
p_arg_->p_workspace_ = p_workspace;
hip_check_error(hipMemset(p_workspace, 0, GetWorkSpaceSize(p_arg)));
hip_check_error(
hipMemsetAsync(p_workspace, 0, GetWorkSpaceSize(p_arg), stream_config.stream_id_));
}
static void SetKBatch(Argument& arg, index_t k_batch) { arg.UpdateKBatch(k_batch); }
......
......@@ -577,7 +577,9 @@ struct DeviceNormalizationFwdSplitKImpl : public DeviceNormalizationFwd<XDataTyp
return (workspace_size);
};
void SetWorkSpacePointer(BaseArgument* pArg, void* p_workspace) const override
void SetWorkSpacePointer(BaseArgument* pArg,
void* p_workspace,
const StreamConfig& = StreamConfig{}) const override
{
Argument* pArg_ = dynamic_cast<Argument*>(pArg);
......
......@@ -236,9 +236,10 @@ struct GridwiseGemmMultipleD_Xdl_CShuffle_LdsDirectLoad
constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max(a_block_space_size_aligned * sizeof(AComputeDataType) +
b_block_space_size_aligned * sizeof(BComputeDataType),
c_block_size * sizeof(CShuffleDataType));
return math::max(
NumGemmKPrefetchStage * a_block_space_size_aligned * sizeof(AComputeDataType) +
NumGemmKPrefetchStage * b_block_space_size_aligned * sizeof(BComputeDataType),
c_block_size * sizeof(CShuffleDataType));
}
__host__ __device__ static auto
......@@ -491,6 +492,22 @@ struct GridwiseGemmMultipleD_Xdl_CShuffle_LdsDirectLoad
__device__ __host__ static constexpr auto GetMPerBlock() { return MPerBlock; }
template <typename DataType>
__device__ static auto AllocateBlockBuffers(void* p_shared,
int32_t num_elems,
int32_t offset_elems,
int32_t max_lds_align)
{
const int32_t single_buffer_offset = math::integer_least_multiple(num_elems, max_lds_align);
return generate_tuple(
[&](auto i) {
const int32_t local_offset = i * single_buffer_offset;
return make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<DataType*>(p_shared) + local_offset + offset_elems, num_elems);
},
Number<NumGemmKPrefetchStage>{});
}
template <bool HasMainKBlockLoop,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
......@@ -624,12 +641,14 @@ struct GridwiseGemmMultipleD_Xdl_CShuffle_LdsDirectLoad
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<AComputeDataType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<BComputeDataType*>(p_shared) + a_block_space_size_aligned,
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
auto a_block_buffers = AllocateBlockBuffers<AComputeDataType>(
p_shared, a_block_desc_ak0_m_ak1.GetElementSpaceSize(), 0, max_lds_align);
const auto b_buffers_offset = a_block_space_size_aligned * NumGemmKPrefetchStage;
auto b_block_buffers =
AllocateBlockBuffers<BComputeDataType>(p_shared,
b_block_desc_bk0_n_bk1.GetElementSpaceSize(),
b_buffers_offset,
max_lds_align);
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock / BK1, 0, 0);
......@@ -645,13 +664,13 @@ struct GridwiseGemmMultipleD_Xdl_CShuffle_LdsDirectLoad
a_block_desc_ak0_m_ak1,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_buffers,
a_block_slice_copy_step,
b_grid_desc_bk0_n_bk1,
b_block_desc_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_buffers,
b_block_slice_copy_step,
blockwise_gemm,
c_thread_buf,
......
......@@ -7,6 +7,20 @@
#include "ck/utility/loop_scheduler.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
namespace lds_direct_load {
__device__ void sched_barrier()
{
#if CK_USE_AMD_LDS_DIRECT_LOAD_INLINE_ASM
// When direct loads and `waitcnt` instructions are submitted using inline asm, the usage of
// `sched_barrier` is necessary to make sure no instructions that use the loaded memory
// are scheduled by the compiler before the `waitcnt` instruction.
__builtin_amdgcn_sched_barrier(0);
#endif
}
} // namespace lds_direct_load
namespace ck {
template <index_t NumPrefetch>
......@@ -17,7 +31,6 @@ template <>
struct GridwiseGemmPipeline_v4<1>
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
__host__ __device__ static constexpr bool IsSupported(index_t /* num_loop */) { return true; }
......@@ -31,13 +44,13 @@ struct GridwiseGemmPipeline_v4<1>
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockBuffers,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockBuffers,
typename BBlockTransferStep,
typename BlockwiseGemm,
typename CThreadBuffer>
......@@ -45,18 +58,22 @@ struct GridwiseGemmPipeline_v4<1>
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
ABlockBuffers& a_block_bufs,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
BBlockBuffers& b_block_bufs,
const BBlockTransferStep& b_block_copy_step,
const BlockwiseGemm& blockwise_gemm,
CThreadBuffer& c_thread_buf,
index_t num_loop)
{
static_assert(ABlockBuffers::Size() == 1 && BBlockBuffers::Size() == 1);
auto& a_block_buf = a_block_bufs.At(I0);
auto& b_block_buf = b_block_bufs.At(I0);
a_blockwise_copy.Run(a_grid_desc, a_grid_buf, a_block_desc, a_block_buf);
b_blockwise_copy.Run(b_grid_desc, b_grid_buf, b_block_desc, b_block_buf);
......@@ -74,10 +91,12 @@ struct GridwiseGemmPipeline_v4<1>
do
{
block_sync_lds_direct_load();
lds_direct_load::sched_barrier();
blockwise_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
block_sync_lds_direct_load();
lds_direct_load::sched_barrier();
a_blockwise_copy.Run(a_grid_desc, a_grid_buf, a_block_desc, a_block_buf);
b_blockwise_copy.Run(b_grid_desc, b_grid_buf, b_block_desc, b_block_buf);
......@@ -92,10 +111,128 @@ struct GridwiseGemmPipeline_v4<1>
// tail
{
block_sync_lds_direct_load();
lds_direct_load::sched_barrier();
blockwise_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
}
}
};
// 2-stages prefetch
template <>
struct GridwiseGemmPipeline_v4<2>
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
__host__ __device__ static constexpr bool IsSupported(index_t num_loop)
{
return num_loop % 2 == 0;
}
__host__ __device__ static constexpr bool CalculateHasMainLoop(index_t num_loop)
{
return (num_loop / 2) > 1;
}
template <bool HasMainLoop,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffers,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffers,
typename BBlockTransferStep,
typename BlockwiseGemm,
typename CThreadBuffer>
__device__ static void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffers& a_block_bufs,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffers& b_block_bufs,
const BBlockTransferStep& b_block_copy_step,
const BlockwiseGemm& blockwise_gemm,
CThreadBuffer& c_thread_buf,
index_t num_loop)
{
static_assert(ABlockBuffers::Size() == 2 && BBlockBuffers::Size() == 2);
auto& a_block_buf1 = a_block_bufs.At(I0);
auto& a_block_buf2 = a_block_bufs.At(I1);
auto& b_block_buf1 = b_block_bufs.At(I0);
auto& b_block_buf2 = b_block_bufs.At(I1);
a_blockwise_copy.Run(a_grid_desc, a_grid_buf, a_block_desc, a_block_buf1);
b_blockwise_copy.Run(b_grid_desc, b_grid_buf, b_block_desc, b_block_buf1);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Initialize C
c_thread_buf.Clear();
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
block_sync_lds_direct_load();
lds_direct_load::sched_barrier();
a_blockwise_copy.Run(a_grid_desc, a_grid_buf, a_block_desc, a_block_buf2);
b_blockwise_copy.Run(b_grid_desc, b_grid_buf, b_block_desc, b_block_buf2);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
blockwise_gemm.Run(a_block_buf1, b_block_buf1, c_thread_buf);
block_sync_lds_direct_load();
lds_direct_load::sched_barrier();
a_blockwise_copy.Run(a_grid_desc, a_grid_buf, a_block_desc, a_block_buf1);
b_blockwise_copy.Run(b_grid_desc, b_grid_buf, b_block_desc, b_block_buf1);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
blockwise_gemm.Run(a_block_buf2, b_block_buf2, c_thread_buf);
i += 2;
} while(i < (num_loop - 2));
}
// tail
{
block_sync_lds_direct_load();
lds_direct_load::sched_barrier();
a_blockwise_copy.Run(a_grid_desc, a_grid_buf, a_block_desc, a_block_buf2);
b_blockwise_copy.Run(b_grid_desc, b_grid_buf, b_block_desc, b_block_buf2);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
blockwise_gemm.Run(a_block_buf1, b_block_buf1, c_thread_buf);
block_sync_lds_direct_load();
lds_direct_load::sched_barrier();
blockwise_gemm.Run(a_block_buf2, b_block_buf2, c_thread_buf);
}
}
};
} // namespace ck
......@@ -972,6 +972,15 @@ __device__ void amd_direct_load_global_to_lds(const T* global_base_ptr,
const int32x4_t src_resource = make_wave_buffer_resource(global_ptr, src_element_space_size);
const index_t global_offset_bytes = is_valid ? global_offset * sizeof(T) : 0x80000000;
#if CK_USE_AMD_LDS_DIRECT_LOAD_INLINE_ASM
T* lds_ptr = lds_base_ptr + lds_offset;
auto const lds_ptr_sgpr =
__builtin_amdgcn_readfirstlane((reinterpret_cast<uintptr_t>(lds_ptr)));
asm volatile("s_mov_b32 m0, %0; \n\t"
"buffer_load_dword %1, %2, 0 offen lds;\n\t" ::"s"(lds_ptr_sgpr),
"v"(global_offset_bytes),
"s"(src_resource));
#else
// LDS pointer must be attributed with the LDS address space.
__attribute__((address_space(3))) uint32_t* lds_ptr =
reinterpret_cast<__attribute__((address_space(3))) uint32_t*>(
......@@ -979,6 +988,7 @@ __device__ void amd_direct_load_global_to_lds(const T* global_base_ptr,
llvm_amdgcn_raw_buffer_load_lds(
src_resource, lds_ptr, sizeof(uint32_t), global_offset_bytes, 0, 0, 0);
#endif
}
} // namespace ck
......@@ -5,6 +5,7 @@
#include "functional4.hpp"
#include "tuple.hpp"
#include "is_detected.hpp"
namespace ck {
......@@ -33,6 +34,28 @@ __host__ __device__ constexpr auto concat_tuple_of_reference(const Tuple<X&...>&
ty);
}
template <typename... X, typename... Y>
__host__ __device__ constexpr auto concat_tuple(const Tuple<X...>& tx, const Tuple<Y...>& ty)
{
return unpack2(
[&](auto... zs) { return Tuple<decltype(zs)...>{std::forward<decltype(zs)>(zs)...}; },
tx,
ty);
}
// Support any number of tuples to concat (also 1)
template <typename... X>
__host__ __device__ constexpr auto concat_tuple(const Tuple<X...>& tx)
{
return tx;
}
template <typename... X, typename... Tuples>
__host__ __device__ constexpr auto concat_tuple(const Tuple<X...>& tx, const Tuples&... tuples)
{
return concat_tuple(tx, concat_tuple(tuples...));
}
namespace detail {
template <typename F, typename X, index_t... Is>
......@@ -78,4 +101,69 @@ __host__ __device__ constexpr auto transform_tuples(F f, const X& x, const Y& y,
f, x, y, z, typename arithmetic_sequence_gen<0, X::Size(), 1>::type{});
}
// By default unroll to the flatten
template <index_t Depth = 0, index_t MaxDepth = -1>
__host__ __device__ constexpr auto UnrollNestedTuple(const Tuple<>& element)
{
return element;
}
template <index_t Depth = 0, index_t MaxDepth = -1, typename T>
__host__ __device__ constexpr auto UnrollNestedTuple(const T& element)
{
return make_tuple(element);
}
template <index_t Depth = 0, index_t MaxDepth = -1, typename... Ts>
__host__ __device__ constexpr auto UnrollNestedTuple(const Tuple<Ts...>& tuple)
{
if constexpr(Depth == MaxDepth)
{
return tuple;
}
else
{
return unpack(
[&](auto&&... ts) {
return concat_tuple(UnrollNestedTuple<Depth + 1, MaxDepth>(ts)...);
},
tuple);
}
}
template <typename... Ts>
__host__ __device__ constexpr auto TupleReverse(const Tuple<Ts...>& tuple)
{
return generate_tuple(
[&](auto i) {
using Idx = Number<Tuple<Ts...>::Size() - i - 1>;
return tuple.At(Idx{});
},
Number<Tuple<Ts...>::Size()>{});
}
// Reduce tuple values in specific range using Function
template <index_t Idx, index_t End, typename F, typename... Ts>
__host__ __device__ constexpr auto TupleReduce(F&& f, const Tuple<Ts...>& tuple)
{
static_assert(Idx < End, "Wrong parameters for TupleReduce");
if constexpr(Idx + 1 == End)
{
return tuple.At(Number<Idx>{});
}
else
{
return f(tuple.At(Number<Idx>{}), TupleReduce<Idx + 1, End>(f, tuple));
}
}
template <typename T>
using is_tuple = decltype(std::declval<T&>().IsTuple());
template <typename... Ts>
__host__ __device__ constexpr auto IsNestedTuple(const Tuple<Ts...>&)
{
return (is_detected<is_tuple, Ts>::value || ...);
}
} // namespace ck
......@@ -61,7 +61,12 @@ endfunction(add_instance_library INSTANCE_NAME)
file(GLOB dir_list LIST_DIRECTORIES true *)
set(CK_DEVICE_INSTANCES)
set(CK_DEVICE_OTHER_INSTANCES)
set(CK_DEVICE_GEMM_INSTANCES)
set(CK_DEVICE_CONV_INSTANCES)
set(CK_DEVICE_MHA_INSTANCES)
set(CK_DEVICE_CONTRACTION_INSTANCES)
set(CK_DEVICE_REDUCTION_INSTANCES)
FOREACH(subdir_path ${dir_list})
set(target_dir)
IF(IS_DIRECTORY "${subdir_path}")
......@@ -125,7 +130,19 @@ FOREACH(subdir_path ${dir_list})
if((add_inst EQUAL 1))
get_filename_component(target_dir ${subdir_path} NAME)
add_subdirectory(${target_dir})
list(APPEND CK_DEVICE_INSTANCES $<TARGET_OBJECTS:device_${target_dir}_instance>)
if("${cmake_instance}" MATCHES "gemm")
list(APPEND CK_DEVICE_GEMM_INSTANCES $<TARGET_OBJECTS:device_${target_dir}_instance>)
elseif("${cmake_instance}" MATCHES "conv")
list(APPEND CK_DEVICE_CONV_INSTANCES $<TARGET_OBJECTS:device_${target_dir}_instance>)
elseif("${cmake_instance}" MATCHES "mha")
list(APPEND CK_DEVICE_MHA_INSTANCES $<TARGET_OBJECTS:device_${target_dir}_instance>)
elseif("${cmake_instance}" MATCHES "contr")
list(APPEND CK_DEVICE_CONTRACTION_INSTANCES $<TARGET_OBJECTS:device_${target_dir}_instance>)
elseif("${cmake_instance}" MATCHES "reduce")
list(APPEND CK_DEVICE_REDUCTION_INSTANCES $<TARGET_OBJECTS:device_${target_dir}_instance>)
else()
list(APPEND CK_DEVICE_OTHER_INSTANCES $<TARGET_OBJECTS:device_${target_dir}_instance>)
endif()
message("add_instance_directory ${subdir_path}")
else()
message("skip_instance_directory ${subdir_path}")
......@@ -133,51 +150,137 @@ FOREACH(subdir_path ${dir_list})
ENDIF()
ENDFOREACH()
add_library(device_operations STATIC ${CK_DEVICE_INSTANCES})
add_library(composablekernels::device_operations ALIAS device_operations)
if(CK_DEVICE_OTHER_INSTANCES)
add_library(device_other_operations STATIC ${CK_DEVICE_OTHER_INSTANCES})
add_library(composablekernels::device_other_operations ALIAS device_other_operations)
set_target_properties(device_other_operations PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_include_directories(device_other_operations PUBLIC
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/utility>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_description>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/problem_transform>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/device>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/device/impl>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/grid>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/block>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/warp>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/thread>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/element>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/utility>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu/quantization>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu/softmax>
)
rocm_install(TARGETS device_other_operations
EXPORT device_other_operationsTargets)
rocm_install(EXPORT device_other_operationsTargets
FILE composable_kerneldevice_other_operationsTargets.cmake
NAMESPACE composable_kernel::
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/composable_kernel
)
endif()
if(CK_DEVICE_GEMM_INSTANCES)
add_library(device_gemm_operations STATIC ${CK_DEVICE_GEMM_INSTANCES})
add_library(composablekernels::device_gemm_operations ALIAS device_gemm_operations)
target_compile_features(device_gemm_operations PUBLIC)
set_target_properties(device_gemm_operations PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_include_directories(device_gemm_operations PUBLIC
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu>
)
rocm_install(TARGETS device_gemm_operations
EXPORT device_gemm_operationsTargets)
rocm_install(EXPORT device_gemm_operationsTargets
FILE composable_kerneldevice_gemm_operationsTargets.cmake
NAMESPACE composable_kernel::
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/composable_kernel
)
endif()
if(CK_DEVICE_CONV_INSTANCES)
add_library(device_conv_operations STATIC ${CK_DEVICE_CONV_INSTANCES})
add_library(composablekernels::device_conv_operations ALIAS device_conv_operations)
target_compile_features(device_conv_operations PUBLIC)
set_target_properties(device_conv_operations PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_include_directories(device_conv_operations PUBLIC
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd>
)
rocm_install(TARGETS device_conv_operations
EXPORT device_conv_operationsTargets)
rocm_install(EXPORT device_conv_operationsTargets
FILE composable_kerneldevice_conv_operationsTargets.cmake
NAMESPACE composable_kernel::
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/composable_kernel
)
endif()
if(CK_DEVICE_MHA_INSTANCES)
add_library(device_mha_operations STATIC ${CK_DEVICE_MHA_INSTANCES})
add_library(composablekernels::device_mha_operations ALIAS device_mha_operations)
target_compile_features(device_mha_operations PUBLIC)
set_target_properties(device_mha_operations PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_include_directories(device_mha_operations PUBLIC
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu/mha>
)
rocm_install(TARGETS device_mha_operations
EXPORT device_mha_operationsTargets)
rocm_install(EXPORT device_mha_operationsTargets
FILE composable_kerneldevice_mha_operationsTargets.cmake
NAMESPACE composable_kernel::
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/composable_kernel
)
endif()
if(CK_DEVICE_CONTRACTION_INSTANCES)
add_library(device_contraction_operations STATIC ${CK_DEVICE_CONTRACTION_INSTANCES})
add_library(composablekernels::device_contraction_operations ALIAS device_contraction_operations)
target_compile_features(device_contraction_operations PUBLIC)
set_target_properties(device_contraction_operations PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_include_directories(device_contraction_operations PUBLIC
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu/contraction>
)
rocm_install(TARGETS device_contraction_operations
EXPORT device_contraction_operationsTargets)
rocm_install(EXPORT device_contraction_operationsTargets
FILE composable_kerneldevice_contraction_operationsTargets.cmake
NAMESPACE composable_kernel::
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/composable_kernel
)
endif()
if(CK_DEVICE_REDUCTION_INSTANCES)
add_library(device_reduction_operations STATIC ${CK_DEVICE_REDUCTION_INSTANCES})
add_library(composablekernels::device_reduction_operations ALIAS device_reduction_operations)
target_compile_features(device_reduction_operations PUBLIC)
set_target_properties(device_reduction_operations PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_include_directories(device_reduction_operations PUBLIC
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu/reduce>
)
rocm_install(TARGETS device_reduction_operations
EXPORT device_reduction_operationsTargets)
rocm_install(EXPORT device_reduction_operationsTargets
FILE composable_kerneldevice_reduction_operationsTargets.cmake
NAMESPACE composable_kernel::
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/composable_kernel
)
endif()
add_library(device_operations INTERFACE)
target_link_libraries(device_operations INTERFACE
device_contraction_operations
device_conv_operations
device_gemm_operations
device_other_operations
device_reduction_operations
utility)
set(DEV_OPS_INC_DIRS
${PROJECT_SOURCE_DIR}/include/ck/
${PROJECT_SOURCE_DIR}/library/include/ck/
)
set_target_properties(device_operations PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_include_directories(device_operations PUBLIC
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/utility>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_description>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/problem_transform>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/device>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/device/impl>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/grid>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/block>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/warp>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/thread>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/element>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/utility>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu/reduce>
)
#once new arches are enabled make this an option on the main cmake file
# and pass down here to be exported
target_compile_options(device_operations PRIVATE
--offload-arch=gfx908
--offload-arch=gfx90a
--offload-arch=gfx1030
--offload-arch=gfx1100
)
# install(TARGETS device_operations LIBRARY DESTINATION lib)
rocm_install(TARGETS device_operations
EXPORT device_operationsTargets)
rocm_install(DIRECTORY ${DEV_OPS_INC_DIRS} DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/ck)
rocm_install(EXPORT device_operationsTargets
FILE composable_kerneldevice_operationsTargets.cmake
NAMESPACE composable_kernel::
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/composable_kernel
)
......@@ -35,7 +35,21 @@ using device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instances =
// ##################################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| | | PerVector| | Lengths_K0_N_K1| | | PerVector| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 64, 64, 32, 8, 8, 32, 32, 1, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmMNPadding, 1, 256, 64, 64, 32, 8, 8, 32, 32, 1, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, 1, 1, S<1, 8, 1, 8>, 4>
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 64, 32, 32, 64, 8, 8, 32, 32, 1, 1, S<1, 16, 4>, S<1, 0, 2>, 2, 2, 1, S<1, 16, 4>, S<1, 0, 2>, 2, 2, 1, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 16, 4>, S<1, 0, 2>, 2, 2, 1, S<1, 16, 4>, S<1, 0, 2>, 2, 2, 1, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 128, 64, 32, 32, 8, 8, 32, 32, 1, 1, S<2, 16, 4>, S<1, 0, 2>, 2, 2, 1, S<2, 16, 4>, S<1, 0, 2>, 2, 2, 1, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 2, 256, 64, 64, 32, 8, 8, 32, 32, 1, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 2, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 0, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 0, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 2, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 0, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 0, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 2, 256, 32, 128, 32, 8, 8, 32, 32, 1, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 2, 64, 32, 32, 64, 8, 8, 32, 32, 1, 1, S<1, 16, 4>, S<1, 0, 2>, 2, 2, 1, S<1, 16, 4>, S<1, 0, 2>, 2, 2, 1, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 2, 128, 64, 32, 32, 8, 8, 32, 32, 1, 1, S<2, 16, 4>, S<1, 0, 2>, 2, 2, 1, S<2, 16, 4>, S<1, 0, 2>, 2, 2, 1, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmMNPadding, 1, 256, 64, 64, 32, 8, 8, 32, 32, 1, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Row, Col, Row, F16, F16, F16, F32, F32, PassThrough, PassThrough, PassThrough, GemmMNPadding, 2, 256, 64, 64, 32, 8, 8, 32, 32, 1, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, S<4, 16, 4>, S<1, 0, 2>, 2, 2, 1, 1, 1, S<1, 8, 1, 8>, 4>
// clang-format on
>;
......
......@@ -32,7 +32,8 @@ using device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instances =
// ##################################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraM| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ##################################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| | | PerVector| | Lengths_K0_N_K1| | | PerVector| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Col, Row, Row, F32, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 64, 64, 32, 8, 8, 32, 32, 1, 1, S<4, 8, 8>, S<0, 2, 1>, 1, 1, 1, S<4, 8, 8>, S<0, 2, 1>, 1, 1, 1, 1, 1, S<1, 8, 1, 8>, 4>
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Col, Row, Row, F32, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 64, 64, 32, 8, 8, 32, 32, 1, 1, S<4, 8, 8>, S<0, 2, 1>, 1, 1, 1, S<4, 8, 8>, S<0, 2, 1>, 1, 1, 1, 1, 1, S<1, 8, 1, 8>, 4>,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad< Col, Row, Row, F32, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, GemmDefault, 2, 256, 64, 64, 32, 8, 8, 32, 32, 1, 1, S<4, 8, 8>, S<0, 2, 1>, 1, 1, 1, S<4, 8, 8>, S<0, 2, 1>, 1, 1, 1, 1, 1, S<1, 8, 1, 8>, 4>
// clang-format on
>;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment