Unverified Commit 49e52bb3 authored by Bartłomiej Kocot's avatar Bartłomiej Kocot Committed by GitHub
Browse files

Support multi AB for grouped conv fwd xdl (#1027)

* Support multi AB for grouped conv fwd xdl

* Add instances

* Add client example

* Add example

* Add interface test

* Minor fixes

Minor fixes

Minor fixes

* Comment fixes

* Fixes

* Reference fix

* Test xdl fixes

* Improve multi_ab interface test
parent 1db75603
...@@ -63,7 +63,7 @@ int execute_conv_fwd_scaleadd_scaleadd_relu() ...@@ -63,7 +63,7 @@ int execute_conv_fwd_scaleadd_scaleadd_relu()
K * Z * Y * X * C, Z * Y * X * C, 1, Y * X * C, X * C, C}; K * Z * Y * X * C, Z * Y * X * C, 1, Y * X * C, X * C, C};
std::array<ck::index_t, 6> out_lengths{G, N, K, Do, Ho, Wo}; std::array<ck::index_t, 6> out_lengths{G, N, K, Do, Ho, Wo};
std::array<ck::index_t, 6> out_strides{ std::array<ck::index_t, 6> out_strides{
C, Do * Ho * Wo * G * C, 1, Ho * Wo * G * C, Wo * G * C, G * C}; K, Do * Ho * Wo * G * K, 1, Ho * Wo * G * K, Wo * G * K, G * K};
std::array<ck::index_t, NumDimSpatial> filter_strides{1, 1, 1}; std::array<ck::index_t, NumDimSpatial> filter_strides{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> filter_dilations{1, 1, 1}; std::array<ck::index_t, NumDimSpatial> filter_dilations{1, 1, 1};
......
add_executable(client_grouped_convnd_fwd_scaleadd_ab_fp32 grouped_conv_fwd_scaleadd_ab_fp32.cpp)
target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_fp32 PRIVATE composable_kernel::device_operations)
add_executable(client_grouped_convnd_fwd_scaleadd_ab_fp16 grouped_conv_fwd_scaleadd_ab_fp16.cpp)
target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_fp16 PRIVATE composable_kernel::device_operations)
add_executable(client_grouped_convnd_fwd_scaleadd_ab_bf16 grouped_conv_fwd_scaleadd_ab_bf16.cpp)
target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_bf16 PRIVATE composable_kernel::device_operations)
add_executable(client_grouped_convnd_fwd_scaleadd_ab_int8 grouped_conv_fwd_scaleadd_ab_int8.cpp)
target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_scaleadd_ab.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 32;
static constexpr ck::index_t N = 64; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 32; // input channel (per group)
static constexpr ck::index_t Z = 3; // filter D
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Di = 14; // input D
static constexpr ck::index_t Hi = 14; // input H
static constexpr ck::index_t Wi = 14; // input W
static constexpr ck::index_t Do = 14; // output D
static constexpr ck::index_t Ho = 14; // output H
static constexpr ck::index_t Wo = 14; // output W
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int execute_conv_fwd_scaleadd_ab()
{
constexpr ck::index_t NumAs = 2;
constexpr ck::index_t NumBs = 2;
constexpr float scale = 1.5f;
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space.
// However, CK's API only accepts lengths and strides with order of GNCDHW/GKCZYX/GNKDHW.
// Hence, we need to adjust the order of strides.
std::array<ck::index_t, 6> in_lengths{G, N, C, Di, Hi, Wi};
std::array<ck::index_t, 6> in_strides{
C, Di * Hi * Wi * G * C, 1, Hi * Wi * G * C, Wi * G * C, G * C};
std::array<ck::index_t, 6> wei_lengths{G, K, C, Z, Y, X};
std::array<ck::index_t, 6> wei_strides{
K * Z * Y * X * C, Z * Y * X * C, 1, Y * X * C, X * C, C};
std::array<ck::index_t, 6> out_lengths{G, N, K, Do, Ho, Wo};
std::array<ck::index_t, 6> out_strides{
K, Do * Ho * Wo * G * K, 1, Ho * Wo * G * K, Wo * G * K, G * K};
std::array<ck::index_t, NumDimSpatial> filter_strides{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> filter_dilations{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1, 1};
using InputDtype = ck::tuple_element_t<0, InDataType>;
using InputBiasDtype = ck::tuple_element_t<1, InDataType>;
using WeightDtype = ck::tuple_element_t<0, WeiDataType>;
using WeightBiasDtype = ck::tuple_element_t<1, WeiDataType>;
SimpleDeviceMem in(sizeof(InputDtype) * N * Di * Hi * Wi * G * C);
SimpleDeviceMem in_bias(sizeof(InputBiasDtype) * N * Di * Hi * Wi * G * C);
SimpleDeviceMem wei(sizeof(WeightDtype) * G * K * Z * Y * X * C);
SimpleDeviceMem wei_bias(sizeof(WeightBiasDtype) * G * K * Z * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Do * Ho * Wo * G * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
ScaleAdd,
ScaleAdd,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
std::array<const void*, NumAs> as = {in.GetDeviceBuffer(), in_bias.GetDeviceBuffer()};
std::array<const void*, NumBs> bs = {wei.GetDeviceBuffer(), wei_bias.GetDeviceBuffer()};
std::array<const void*, 0> ds{};
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(as,
bs,
ds,
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
{},
{},
out_lengths,
out_strides,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
ScaleAdd{scale},
ScaleAdd{scale},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * G * N * K * C * Do * Ho * Wo * Z * Y * X +
N * Di * Hi * Wi * G * C + G * K * Z * Y * X * C;
std::size_t num_bytes = 2 * sizeof(InDataType) * N * Di * Hi * Wi * G * C +
2 * sizeof(WeiDataType) * G * K * Z * Y * X * C +
sizeof(OutDataType) * N * Do * Ho * Wo * G * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(as,
bs,
ds,
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
{},
{},
out_lengths,
out_strides,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
ScaleAdd{scale},
ScaleAdd{scale},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using InDataType = ck::Tuple<ck::bhalf_t, ck::bhalf_t>;
using WeiDataType = ck::Tuple<ck::bhalf_t, ck::bhalf_t>;
using OutDataType = ck::bhalf_t;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int main() { return execute_conv_fwd_scaleadd_ab(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using InDataType = ck::Tuple<ck::half_t, ck::half_t>;
using WeiDataType = ck::Tuple<ck::half_t, ck::half_t>;
using OutDataType = ck::half_t;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int main() { return execute_conv_fwd_scaleadd_ab(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using InDataType = ck::Tuple<float, float>;
using WeiDataType = ck::Tuple<float, float>;
using OutDataType = float;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int main() { return execute_conv_fwd_scaleadd_ab(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using InDataType = ck::Tuple<int8_t, int8_t>;
using WeiDataType = ck::Tuple<int8_t, int8_t>;
using OutDataType = int8_t;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int main() { return execute_conv_fwd_scaleadd_ab(); }
...@@ -30,6 +30,15 @@ foreach(gpu IN LISTS GPU_TARGETS) ...@@ -30,6 +30,15 @@ foreach(gpu IN LISTS GPU_TARGETS)
# Elu # Elu
add_example_executable(example_convnd_fwd_xdl_elu_fp16 convnd_fwd_xdl_elu_fp16.cpp) add_example_executable(example_convnd_fwd_xdl_elu_fp16 convnd_fwd_xdl_elu_fp16.cpp)
add_example_dependencies(example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_elu_fp16) add_example_dependencies(example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_elu_fp16)
# ScaleAdd on A and B
add_example_executable(example_conv_fwd_xdl_scaleadd_ab_fp16 multi_AB/conv_fwd_xdl_scaleadd_ab_fp16.cpp)
add_example_dependencies(example_convnd_fwd_activ_xdl example_conv_fwd_xdl_scaleadd_ab_fp16)
add_example_executable(example_conv_fwd_xdl_scaleadd_ab_fp32 multi_AB/conv_fwd_xdl_scaleadd_ab_fp32.cpp)
add_example_dependencies(example_convnd_fwd_activ_xdl example_conv_fwd_xdl_scaleadd_ab_fp32)
add_example_executable(example_conv_fwd_xdl_scaleadd_ab_bf16 multi_AB/conv_fwd_xdl_scaleadd_ab_bf16.cpp)
add_example_dependencies(example_convnd_fwd_activ_xdl example_conv_fwd_xdl_scaleadd_ab_bf16)
add_example_executable(example_conv_fwd_xdl_scaleadd_ab_int8 multi_AB/conv_fwd_xdl_scaleadd_ab_int8.cpp)
add_example_dependencies(example_convnd_fwd_activ_xdl example_conv_fwd_xdl_scaleadd_ab_int8)
# ScaleAdd ScaleAdd Relu # ScaleAdd ScaleAdd Relu
add_example_executable(example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp) add_example_executable(example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp)
add_example_dependencies(example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16) add_example_dependencies(example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16)
......
...@@ -226,13 +226,16 @@ bool run_grouped_conv_fwd(bool do_verification, ...@@ -226,13 +226,16 @@ bool run_grouped_conv_fwd(bool do_verification,
if(do_verification) if(do_verification)
{ {
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial, auto ref_conv =
ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType, InDataType,
WeiDataType, WeiDataType,
OutDataType, OutDataType,
InElementOp, InElementOp,
WeiElementOp, WeiElementOp,
OutElementOp, OutElementOp,
0, /*Num A Elementwise Tensors*/
0, /*Num B Elementwise Tensors*/
NumDs>(); NumDs>();
auto ref_invoker = ref_conv.MakeInvoker(); auto ref_invoker = ref_conv.MakeInvoker();
...@@ -246,6 +249,8 @@ bool run_grouped_conv_fwd(bool do_verification, ...@@ -246,6 +249,8 @@ bool run_grouped_conv_fwd(bool do_verification,
in_element_op, in_element_op,
wei_element_op, wei_element_op,
out_element_op, out_element_op,
{},
{},
d_tensors); d_tensors);
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_multi_ab_common.hpp"
using DataType = ck::bhalf_t;
using AccDataType = float;
using InDataType = DataType;
using WeiDataType = DataType;
using OutDataType = DataType;
using ADataTypes = ck::Tuple<DataType, DataType>;
using BDataTypes = ck::Tuple<DataType, DataType>;
using InElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using WeiElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using DeviceGroupedConvNDFwdActivInstance = DeviceGroupedConvNDMultiABFwdInstance<DataType,
AccDataType,
ADataTypes,
BDataTypes,
InElementOp,
WeiElementOp>;
#include "../run_convnd_fwd_activ_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_multi_ab_common.hpp"
using DataType = ck::half_t;
using AccDataType = float;
using InDataType = DataType;
using WeiDataType = DataType;
using OutDataType = DataType;
using ADataTypes = ck::Tuple<DataType, DataType>;
using BDataTypes = ck::Tuple<DataType, DataType>;
using InElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using WeiElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using DeviceGroupedConvNDFwdActivInstance = DeviceGroupedConvNDMultiABFwdInstance<DataType,
AccDataType,
ADataTypes,
BDataTypes,
InElementOp,
WeiElementOp>;
#include "../run_convnd_fwd_activ_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_multi_ab_common.hpp"
using DataType = float;
using AccDataType = float;
using InDataType = DataType;
using WeiDataType = DataType;
using OutDataType = DataType;
using ADataTypes = ck::Tuple<DataType, DataType>;
using BDataTypes = ck::Tuple<DataType, DataType>;
using InElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using WeiElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using DeviceGroupedConvNDFwdActivInstance = DeviceGroupedConvNDMultiABFwdInstance<DataType,
AccDataType,
ADataTypes,
BDataTypes,
InElementOp,
WeiElementOp>;
#include "../run_convnd_fwd_activ_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_multi_ab_common.hpp"
using DataType = int8_t;
using AccDataType = int32_t;
using InDataType = DataType;
using WeiDataType = DataType;
using OutDataType = DataType;
using ADataTypes = ck::Tuple<DataType, DataType>;
using BDataTypes = ck::Tuple<DataType, DataType>;
using InElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using WeiElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using DeviceGroupedConvNDFwdActivInstance = DeviceGroupedConvNDMultiABFwdInstance<DataType,
AccDataType,
ADataTypes,
BDataTypes,
InElementOp,
WeiElementOp>;
#include "../run_convnd_fwd_activ_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr ck::index_t NDimSpatial = 3;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <typename DataType,
typename AccDataType,
typename InDataTypes,
typename WeiDataTypes,
typename InElementOp,
typename WeiElementOp>
using DeviceGroupedConvNDMultiABFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataTypes,
WeiDataTypes,
AccDataType,
DataType,
ck::Tuple<>,
DataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
namespace {
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv_fwd(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
constexpr ck::index_t NumAs = 2;
constexpr ck::index_t NumBs = 2;
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<InDataType> in_bias(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<WeiDataType> wei_bias(wei_g_k_c_xs_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-2, 2});
in_bias.GenerateTensorValue(GeneratorTensor_2<InDataType>{-2, 2});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
wei_bias.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
in_bias.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.05, 0.05});
wei_bias.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-1.0, 1.0});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem in_bias_device_buf(sizeof(InDataType) * in_bias.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem wei_bias_device_buf(sizeof(WeiDataType) * wei_bias.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
in_bias_device_buf.ToDevice(in_bias.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
wei_bias_device_buf.ToDevice(wei_bias.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
std::array<const void*, NumAs> as{in_device_buf.GetDeviceBuffer(),
in_bias_device_buf.GetDeviceBuffer()};
std::array<const void*, NumBs> bs{wei_device_buf.GetDeviceBuffer(),
wei_bias_device_buf.GetDeviceBuffer()};
std::array<const void*, 0> ds{};
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(as,
bs,
ds,
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
{},
{},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = conv_param.GetFlops() +
2 * conv_param.GetOutputByte<InDataType>() / sizeof(InDataType) +
2 * conv_param.GetOutputByte<WeiDataType>() / sizeof(WeiDataType);
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>() +
conv_param.GetInputByte<InDataType>() +
conv_param.GetWeightByte<WeiDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
const std::array<Tensor<InDataType>, NumAs - 1> elementwise_a_tensors = {in_bias};
const std::array<Tensor<WeiDataType>, NumBs - 1> elementwise_b_tensors = {wei_bias};
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
NumAs - 1,
NumBs - 1>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
out_host,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
out_element_op,
elementwise_a_tensors,
elementwise_b_tensors);
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(out_device, out_host, "Error: incorrect results!");
}
return true;
}
} // namespace
...@@ -6,18 +6,42 @@ ...@@ -6,18 +6,42 @@
#include <array> #include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp" #include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/utility/is_detected.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
// Convolution Forward: template <typename T>
// input : input image A[G, N, C, Hi, Wi], using is_tuple = decltype(std::declval<T&>().IsTuple());
// input : weight B[G, K, C, Y, X],
// input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ... /**
// output : output image E[G, N, K, Ho, Wo] * \brief Grouped Convolution Forward
// C = a_op(A) * b_op(B) *
// E = cde_op(C, D0, D1, ...) * \details
* input : input image A[G, N, C, Hi, Wi], A1[G, N, C, Hi, Wi]...
* input : weight B[G, K, C, Y, X], B1[G, K, C, Y, X]...
* input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
* output : output image E[G, N, K, Ho, Wo]
*
* C = a_op(A, A1...) * b_op(B, B1...)
* E = cde_op(C, D0, D1, ...)
*
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam ALayout Input layout (also for a1, a2...).
* \tparam BLayout Weight layout (also for b1, b2...).
* \tparam DsLayout Ds layouts.
* \tparam ELayout Output layout.
* \tparam ADataType Input data type. Pass tuple if there is multiple A.
* \tparam BDataType Weight data type. Pass tuple if there is multiple B.
* \tparam DsDataType D data types.
* \tparam EDataType Output data type.
* \tparam AElementwiseOperation A elementwise operation.
* \tparam BElementwiseOperation B elementwise operation.
* \tparam CDEElementwiseOperation CDE elementwise operation.
* \tparam ComputeType Compute data type (default: ADataType, first if tuple passed).
*/
template <index_t NDimSpatial, template <index_t NDimSpatial,
typename ALayout, typename ALayout,
typename BLayout, typename BLayout,
...@@ -30,18 +54,60 @@ template <index_t NDimSpatial, ...@@ -30,18 +54,60 @@ template <index_t NDimSpatial,
typename AElementwiseOperation, typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CDEElementwiseOperation, typename CDEElementwiseOperation,
typename ComputeType = ADataType> typename ComputeType =
decltype(UnpackDataType<is_detected<is_tuple, ADataType>::value,
Number<0>,
ADataType>())> // ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
struct DeviceGroupedConvFwdMultipleD : public BaseOperator struct DeviceGroupedConvFwdMultipleD : public BaseOperator
{ {
static constexpr bool isMultiA = is_detected<is_tuple, ADataType>::value;
static constexpr bool isMultiB = is_detected<is_tuple, BDataType>::value;
static constexpr index_t NumATensor = GetNumABTensors<isMultiA, ADataType>();
static constexpr index_t NumBTensor = GetNumABTensors<isMultiB, BDataType>();
static constexpr index_t NumDTensor = DsDataType::Size(); static constexpr index_t NumDTensor = DsDataType::Size();
static_assert(NumDTensor == DsLayout::Size(), "wrong! Inconsistent NumDTensor"); static_assert(NumDTensor == DsLayout::Size(), "wrong! Inconsistent NumDTensor");
// If DataType is tuple, user has to pass std::array with pointers.
using APointers =
std::conditional_t<isMultiA, std::array<const void*, NumATensor>&, const void*>;
using BPointers =
std::conditional_t<isMultiB, std::array<const void*, NumBTensor>&, const void*>;
/**
* \brief Make argument pointer for grouped conv fwd.
*
* \param p_a A pointer to the input (std::array<const void*, NumA> with
pointers for multiple A).
* \param p_b A pointer to the weight (std::array<const void*, NumA> with
pointers for multiple B).
* \param p_ds A pointers to the Ds.
* \param p_e A pointers to the output.
* \param a_g_n_c_wis_lengths Input lengths [G, N, C, Spatial...] (for 3d).
* \param a_g_n_c_wis_strides Input strides [G, N, C, Spatial...] (for 3d).
* \param b_g_k_c_xs_lengths Weight lengths [G, K, C, Spatial...] (for 3d).
* \param b_g_k_c_xs_strides Weight strides [G, K, C, Spatial...] (for 3d).
* \param ds_g_n_k_wos_lengths Ds lengths [G, N, K, Spatial...] (for 3d).
* \param ds_g_n_k_wos_strides Ds strides [G, N, K, Spatial...] (for 3d).
* \param e_g_n_k_wos_lengths Output lengths [G, N, K, Spatial...] (for 3d).
* \param e_g_n_k_wos_strides Output strides [G, N, K, Spatial...] (for 3d).
* \param conv_filter_strides Convolution filter strides.
* \param conv_filter_dilations Convolution filter dilations.
* \param input_left_pads Input left paddings.
* \param input_right_pads Input right paddings.
* \param a_element_op A elementwise operation object.
* \param b_element_op B elementwise operation object.
* \param cde_element_op CDE elementwise operation object.
* \return Pointer to the argument.
*/
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer( virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(
const void* p_a, // input image APointers p_a,
const void* p_b, // weight BPointers p_b,
const std::array<const void*, NumDTensor>& p_ds, const std::array<const void*, NumDTensor>& p_ds,
void* p_e, // output image void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths, const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides, const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths, const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
......
...@@ -263,8 +263,7 @@ struct DeviceColumnToImageImpl ...@@ -263,8 +263,7 @@ struct DeviceColumnToImageImpl
decltype(BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, KPerBlock, InputGridDesc>( decltype(BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, KPerBlock, InputGridDesc>(
InputGridDesc{}))>; InputGridDesc{}))>;
using GridwiseTensorRearrangeKernel = using GridwiseTensorRearrangeKernel = GridwiseTensorRearrange<InputGridDesc,
GridwiseTensorRearrange<InputGridDesc,
InputDataType, InputDataType,
OutputGridDesc, OutputGridDesc,
OutputDataType, OutputDataType,
...@@ -275,7 +274,7 @@ struct DeviceColumnToImageImpl ...@@ -275,7 +274,7 @@ struct DeviceColumnToImageImpl
ScalarPerVector, ScalarPerVector,
InMemoryDataOperationEnum::Add, InMemoryDataOperationEnum::Add,
Block2ETileMap, Block2ETileMap,
ComputePtrOffsetOfStridedBatch<I0>>; ComputePtrOffsetOfStridedBatch<>>;
struct Argument : public BaseArgument struct Argument : public BaseArgument
{ {
...@@ -453,7 +452,7 @@ struct DeviceColumnToImageImpl ...@@ -453,7 +452,7 @@ struct DeviceColumnToImageImpl
std::vector<const InputDataType*> p_in_container_; std::vector<const InputDataType*> p_in_container_;
std::vector<OutputDataType*> p_out_container_; std::vector<OutputDataType*> p_out_container_;
ComputePtrOffsetOfStridedBatch<I0> compute_ptr_offset_of_batch_; ComputePtrOffsetOfStridedBatch<> compute_ptr_offset_of_batch_;
}; };
struct Invoker : public BaseInvoker struct Invoker : public BaseInvoker
...@@ -471,7 +470,7 @@ struct DeviceColumnToImageImpl ...@@ -471,7 +470,7 @@ struct DeviceColumnToImageImpl
OutputGridDesc, OutputGridDesc,
OutputDataType, OutputDataType,
Block2ETileMap, Block2ETileMap,
ComputePtrOffsetOfStridedBatch<I0>, ComputePtrOffsetOfStridedBatch<>,
GridwiseTensorRearrangeKernel>; GridwiseTensorRearrangeKernel>;
// Execute each set of independent filters // Execute each set of independent filters
......
...@@ -385,9 +385,11 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle ...@@ -385,9 +385,11 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
// desc for blockwise copy // desc for blockwise copy
using AsGridDesc_AK0_M_AK1 = using AsGridDesc_AK0_M_AK1 =
remove_cvref_t<decltype(GridwiseGemm::MakeAsGridDescriptor_AK0_M_AK1(AsGridDesc_M_K{}))>; remove_cvref_t<decltype(GridwiseGemm::MakeDefaultAsGridDescriptor_AK0_M_AK1(
AsGridDesc_M_K{}))>;
using BsGridDesc_BK0_N_BK1 = using BsGridDesc_BK0_N_BK1 =
remove_cvref_t<decltype(GridwiseGemm::MakeBsGridDescriptor_BK0_N_BK1(BsGridDesc_N_K{}))>; remove_cvref_t<decltype(GridwiseGemm::MakeDefaultBsGridDescriptor_BK0_N_BK1(
BsGridDesc_N_K{}))>;
using DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t< using DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<
decltype(GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock( decltype(GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
DsGridDesc_M_N{}))>; DsGridDesc_M_N{}))>;
...@@ -397,7 +399,7 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle ...@@ -397,7 +399,7 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
// block-to-e-tile map // block-to-e-tile map
using Block2ETileMap = using Block2ETileMap =
remove_cvref_t<decltype(GridwiseGemm::MakeBlock2ETileMap(EGridDesc_M_N{}))>; remove_cvref_t<decltype(GridwiseGemm::MakeDefaultBlock2ETileMap(EGridDesc_M_N{}))>;
// Argument // Argument
struct Argument : public BaseArgument struct Argument : public BaseArgument
...@@ -429,7 +431,7 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle ...@@ -429,7 +431,7 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
bs_grid_desc_bk0_n_bk1_{}, bs_grid_desc_bk0_n_bk1_{},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{}, ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_mblock_mperblock_nblock_nperblock_{}, e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseGemm::MakeBlock2ETileMap(e_grid_desc_m_n_)}, block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
a_element_op_{a_element_op}, a_element_op_{a_element_op},
b_element_op_{b_element_op}, b_element_op_{b_element_op},
cde_element_op_{cde_element_op} cde_element_op_{cde_element_op}
...@@ -481,10 +483,10 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle ...@@ -481,10 +483,10 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
block_2_etile_map_)) block_2_etile_map_))
{ {
as_grid_desc_ak0_m_ak1_ = as_grid_desc_ak0_m_ak1_ =
GridwiseGemm::MakeAsGridDescriptor_AK0_M_AK1(as_grid_desc_m_k_); GridwiseGemm::MakeDefaultAsGridDescriptor_AK0_M_AK1(as_grid_desc_m_k_);
bs_grid_desc_bk0_n_bk1_ = bs_grid_desc_bk0_n_bk1_ =
GridwiseGemm::MakeBsGridDescriptor_BK0_N_BK1(bs_grid_desc_n_k_); GridwiseGemm::MakeDefaultBsGridDescriptor_BK0_N_BK1(bs_grid_desc_n_k_);
ds_grid_desc_mblock_mperblock_nblock_nperblock_ = ds_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock( GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
......
...@@ -305,9 +305,11 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou ...@@ -305,9 +305,11 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
// desc for blockwise copy // desc for blockwise copy
using AsGridDesc_AK0_M_AK1 = using AsGridDesc_AK0_M_AK1 =
remove_cvref_t<decltype(GridwiseGemm::MakeAsGridDescriptor_AK0_M_AK1(AsGridDesc_M_K{}))>; remove_cvref_t<decltype(GridwiseGemm::MakeDefaultAsGridDescriptor_AK0_M_AK1(
AsGridDesc_M_K{}))>;
using BsGridDesc_BK0_N_BK1 = using BsGridDesc_BK0_N_BK1 =
remove_cvref_t<decltype(GridwiseGemm::MakeBsGridDescriptor_BK0_N_BK1(BsGridDesc_N_K{}))>; remove_cvref_t<decltype(GridwiseGemm::MakeDefaultBsGridDescriptor_BK0_N_BK1(
BsGridDesc_N_K{}))>;
using DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t< using DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<
decltype(GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock( decltype(GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
DsGridDesc_M_N{}))>; DsGridDesc_M_N{}))>;
...@@ -317,7 +319,7 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou ...@@ -317,7 +319,7 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
// block-to-e-tile map // block-to-e-tile map
using Block2ETileMap = using Block2ETileMap =
remove_cvref_t<decltype(GridwiseGemm::MakeBlock2ETileMap(EGridDesc_M_N{}))>; remove_cvref_t<decltype(GridwiseGemm::MakeDefaultBlock2ETileMap(EGridDesc_M_N{}))>;
// Argument // Argument
struct Argument : public BaseArgument struct Argument : public BaseArgument
...@@ -349,7 +351,7 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou ...@@ -349,7 +351,7 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
bs_grid_desc_bk0_n_bk1_{}, bs_grid_desc_bk0_n_bk1_{},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{}, ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_mblock_mperblock_nblock_nperblock_{}, e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseGemm::MakeBlock2ETileMap(e_grid_desc_m_n_)}, block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
a_element_op_{a_element_op}, a_element_op_{a_element_op},
b_element_op_{b_element_op}, b_element_op_{b_element_op},
cde_element_op_{cde_element_op}, cde_element_op_{cde_element_op},
...@@ -407,10 +409,10 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou ...@@ -407,10 +409,10 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
block_2_etile_map_)) block_2_etile_map_))
{ {
as_grid_desc_ak0_m_ak1_ = as_grid_desc_ak0_m_ak1_ =
GridwiseGemm::MakeAsGridDescriptor_AK0_M_AK1(as_grid_desc_m_k_); GridwiseGemm::MakeDefaultAsGridDescriptor_AK0_M_AK1(as_grid_desc_m_k_);
bs_grid_desc_bk0_n_bk1_ = bs_grid_desc_bk0_n_bk1_ =
GridwiseGemm::MakeBsGridDescriptor_BK0_N_BK1(bs_grid_desc_n_k_); GridwiseGemm::MakeDefaultBsGridDescriptor_BK0_N_BK1(bs_grid_desc_n_k_);
ds_grid_desc_mblock_mperblock_nblock_nperblock_ = ds_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock( GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
......
...@@ -517,7 +517,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle ...@@ -517,7 +517,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
std::vector<typename GridwiseGemm::DefaultBlock2CTileMap> block_2_ctile_map_container_; std::vector<typename GridwiseGemm::DefaultBlock2CTileMap> block_2_ctile_map_container_;
// for computing batch offset // for computing batch offset
ComputePtrOffsetOfStridedBatch<NumDTensor> compute_ptr_offset_of_batch_; ComputePtrOffsetOfStridedBatch<I1, I1, NumDTensor> compute_ptr_offset_of_batch_;
// element-wise op // element-wise op
AElementwiseOp a_element_op_; AElementwiseOp a_element_op_;
...@@ -579,7 +579,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle ...@@ -579,7 +579,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
typename GridwiseGemm::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock, typename GridwiseGemm::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock, typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>, remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
ComputePtrOffsetOfStridedBatch<NumDTensor>, ComputePtrOffsetOfStridedBatch<I1, I1, NumDTensor>,
has_main_loop>; has_main_loop>;
return launch_and_time_kernel( return launch_and_time_kernel(
......
...@@ -677,7 +677,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1 ...@@ -677,7 +677,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
std::vector<Block2ETileMap> block_2_etile_map_container_; std::vector<Block2ETileMap> block_2_etile_map_container_;
// for computing batch offset // for computing batch offset
ComputePtrOffsetOfStridedBatch<NumDTensor> compute_ptr_offset_of_batch_; ComputePtrOffsetOfStridedBatch<I1, I1, NumDTensor> compute_ptr_offset_of_batch_;
// element-wise op // element-wise op
AElementwiseOp a_element_op_; AElementwiseOp a_element_op_;
...@@ -746,7 +746,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1 ...@@ -746,7 +746,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
DeviceOp::DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock, DeviceOp::DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock, DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
Block2ETileMap, Block2ETileMap,
ComputePtrOffsetOfStridedBatch<NumDTensor>, ComputePtrOffsetOfStridedBatch<I1, I1, NumDTensor>,
has_main_loop>; has_main_loop>;
return launch_and_time_kernel( return launch_and_time_kernel(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment