Unverified Commit 49e52bb3 authored by Bartłomiej Kocot's avatar Bartłomiej Kocot Committed by GitHub
Browse files

Support multi AB for grouped conv fwd xdl (#1027)

* Support multi AB for grouped conv fwd xdl

* Add instances

* Add client example

* Add example

* Add interface test

* Minor fixes

Minor fixes

Minor fixes

* Comment fixes

* Fixes

* Reference fix

* Test xdl fixes

* Improve multi_ab interface test
parent 1db75603
......@@ -927,7 +927,7 @@ struct DeviceGroupedConvBwdWeight_Dl : public DeviceGroupedConvBwdWeight<NDimSpa
Block2CTileMap block_2_ctile_map_;
// for computing batch offset
ComputePtrOffsetOfStridedBatch<I0> compute_ptr_offset_of_batch_;
ComputePtrOffsetOfStridedBatch<> compute_ptr_offset_of_batch_;
// element-wise op
OutElementwiseOperation a_element_op_;
......@@ -999,7 +999,7 @@ struct DeviceGroupedConvBwdWeight_Dl : public DeviceGroupedConvBwdWeight<NDimSpa
remove_reference_t<DeviceOp::BGridDesc_B_K0_N0_N1_K1>,
remove_reference_t<DeviceOp::CGridDesc_M0_M10_M11_N0_N10_N11>,
remove_reference_t<DeviceOp::Block2CTileMap>,
ComputePtrOffsetOfStridedBatch<I0>,
ComputePtrOffsetOfStridedBatch<>,
has_main_loop,
has_double_loop>;
......
......@@ -565,7 +565,7 @@ struct DeviceGroupedConvBwdWeight_Wmma_CShuffle
Block2CTileMap block_2_ctile_map_;
// for computing batch offset
ComputePtrOffsetOfStridedBatch<I0> compute_ptr_offset_of_batch_;
ComputePtrOffsetOfStridedBatch<> compute_ptr_offset_of_batch_;
OutElementwiseOperation a_element_op_;
InElementwiseOperation b_element_op_;
......@@ -647,7 +647,7 @@ struct DeviceGroupedConvBwdWeight_Wmma_CShuffle
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
ComputePtrOffsetOfStridedBatch<I0>,
ComputePtrOffsetOfStridedBatch<>,
has_main_loop>;
using EmptyTuple = Tuple<>;
......
......@@ -1197,7 +1197,7 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
Block2CTileMap block_2_ctile_map_;
// for computing batch offset
ComputePtrOffsetOfStridedBatch<I0> compute_ptr_offset_of_batch_;
ComputePtrOffsetOfStridedBatch<> compute_ptr_offset_of_batch_;
index_t M01_;
index_t N01_;
......@@ -1276,7 +1276,7 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
remove_reference_t<DeviceOp::Block2CTileMap>,
ComputePtrOffsetOfStridedBatch<I0>,
ComputePtrOffsetOfStridedBatch<>,
has_main_loop>;
return launch_and_time_kernel(stream_config,
......
......@@ -537,7 +537,7 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
DefaultBlock2CTileMap block_2_ctile_map_;
// for computing batch offset
ComputePtrOffsetOfStridedBatch<NumDTensor> compute_ptr_offset_of_batch_;
ComputePtrOffsetOfStridedBatch<I1, I1, NumDTensor> compute_ptr_offset_of_batch_;
// element-wise op
AElementwiseOperation a_element_op_;
......@@ -601,7 +601,7 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
DeviceOp::DsGridDesc_M0_M10_M11_N0_N10_N11,
DeviceOp::CGridDesc_M0_M10_M11_N0_N10_N11,
DefaultBlock2CTileMap,
ComputePtrOffsetOfStridedBatch<NumDTensor>,
ComputePtrOffsetOfStridedBatch<I1, I1, NumDTensor>,
has_main_loop,
has_double_loop>;
......
......@@ -428,7 +428,7 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
typename GridwiseOp::DefaultBlock2CTileMap block_2_etile_map_;
// for computing batch offset
ComputePtrOffsetOfStridedBatch<NumDTensor> compute_ptr_offset_of_batch_;
ComputePtrOffsetOfStridedBatch<I1, I1, NumDTensor> compute_ptr_offset_of_batch_;
// element-wise op
AElementwiseOperation a_element_op_;
......@@ -485,7 +485,7 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
typename GridwiseOp::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseOp::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
remove_reference_t<typename GridwiseOp::DefaultBlock2CTileMap>,
ComputePtrOffsetOfStridedBatch<NumDTensor>,
ComputePtrOffsetOfStridedBatch<I1, I1, NumDTensor>,
has_main_loop>;
return launch_and_time_kernel(stream_config,
......
......@@ -9,8 +9,77 @@ namespace ck {
namespace tensor_operation {
namespace device {
template <index_t NumDTensor>
template <index_t NumATensor = 1, index_t NumBTensor = 1, index_t NumDTensor = 0, typename = void>
struct ComputePtrOffsetOfStridedBatch
{
};
template <index_t NumATensor, index_t NumBTensor, index_t NumDTensor>
struct ComputePtrOffsetOfStridedBatch<NumATensor,
NumBTensor,
NumDTensor,
ck::enable_if_t<(NumATensor > 1 || NumBTensor > 1)>>
{
ComputePtrOffsetOfStridedBatch() = default;
ComputePtrOffsetOfStridedBatch(Array<ck::index_t, NumATensor>& BatchStrideAs,
Array<ck::index_t, NumBTensor>& BatchStrideBs,
Array<ck::index_t, NumDTensor>& BatchStrideDs,
index_t BatchStrideE)
: BatchStrideA_(BatchStrideAs),
BatchStrideB_(BatchStrideBs),
BatchStrideDs_(BatchStrideDs),
BatchStrideE_(BatchStrideE)
{
}
__host__ __device__ constexpr auto GetAsPtrOffset(index_t g_idx) const
{
Array<long_index_t, NumATensor> as_offset;
static_for<0, NumATensor, 1>{}(
[&](auto i) { as_offset(i) = g_idx * static_cast<long_index_t>(BatchStrideA_[i]); });
return as_offset;
}
__host__ __device__ constexpr auto GetBsPtrOffset(index_t g_idx) const
{
Array<long_index_t, NumBTensor> bs_offset;
static_for<0, NumBTensor, 1>{}(
[&](auto i) { bs_offset(i) = g_idx * static_cast<long_index_t>(BatchStrideB_[i]); });
return bs_offset;
}
__host__ __device__ constexpr auto GetDsPtrOffset(index_t g_idx) const
{
Array<long_index_t, NumDTensor> ds_offset;
static_for<0, NumDTensor, 1>{}(
[&](auto i) { ds_offset(i) = g_idx * static_cast<long_index_t>(BatchStrideDs_[i]); });
return ds_offset;
}
[[maybe_unused]] __host__ __device__ constexpr long_index_t GetEPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideE_);
}
// alias for kernels without multiple D
[[maybe_unused]] __host__ __device__ constexpr long_index_t GetCPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideE_);
}
Array<ck::index_t, NumATensor> BatchStrideA_;
Array<ck::index_t, NumBTensor> BatchStrideB_;
Array<ck::index_t, NumDTensor> BatchStrideDs_;
index_t BatchStrideE_;
index_t& BatchStrideC_ = BatchStrideE_; // alias for kernels without multiple D
};
template <index_t NumATensor, index_t NumBTensor, index_t NumDTensor>
struct ComputePtrOffsetOfStridedBatch<NumATensor,
NumBTensor,
NumDTensor,
ck::enable_if_t<(NumATensor == 1 && NumBTensor == 1)>>
{
ComputePtrOffsetOfStridedBatch() = default;
......@@ -54,13 +123,67 @@ struct ComputePtrOffsetOfStridedBatch
return g_idx * static_cast<long_index_t>(BatchStrideE_);
}
index_t BatchStrideA_;
index_t BatchStrideB_;
ck::index_t BatchStrideA_;
ck::index_t BatchStrideB_;
Array<ck::index_t, NumDTensor> BatchStrideDs_;
index_t BatchStrideE_;
index_t& BatchStrideC_ = BatchStrideE_; // alias for kernels without multiple D
};
template <bool isTuple, typename Tensors>
constexpr static auto GetNumABTensors()
{
if constexpr(isTuple)
{
return Number<Tensors::Size()>{};
}
else
{
return Number<1>{};
}
}
template <bool isTuple, typename GridwiseGemm, typename DataType>
constexpr static auto GetAGridPointer()
{
if constexpr(isTuple)
{
return typename GridwiseGemm::AsGridPointer{};
}
else
{
return Tuple<const DataType*>{};
}
}
template <bool isTuple, typename GridwiseGemm, typename DataType>
constexpr static auto GetBGridPointer()
{
if constexpr(isTuple)
{
return typename GridwiseGemm::BsGridPointer{};
}
else
{
return Tuple<const DataType*>{};
}
}
template <bool isTuple, typename Id, typename Type>
constexpr static auto UnpackDataType()
{
if constexpr(isTuple)
{
// unpack if tuple
return tuple_element_t<Id{}, Type>{};
}
else
{
// if no, return Type
return Type{};
}
}
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -142,8 +142,7 @@ struct DeviceImageToColumnImpl
decltype(BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, KPerBlock, OutputGridDesc>(
OutputGridDesc{}))>;
using GridwiseTensorRearrangeKernel =
GridwiseTensorRearrange<InputGridDesc,
using GridwiseTensorRearrangeKernel = GridwiseTensorRearrange<InputGridDesc,
InputDataType,
OutputGridDesc,
OutputDataType,
......@@ -154,7 +153,7 @@ struct DeviceImageToColumnImpl
ScalarPerVector,
InMemoryDataOperationEnum::Set,
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<I0>>;
ComputePtrOffsetOfStridedBatch<>>;
struct Argument : public BaseArgument
{
......@@ -224,7 +223,7 @@ struct DeviceImageToColumnImpl
InputGridDesc in_grid_desc_m_k_;
OutputGridDesc out_grid_desc_m_k_;
ComputePtrOffsetOfStridedBatch<I0> compute_ptr_offset_of_batch_;
ComputePtrOffsetOfStridedBatch<> compute_ptr_offset_of_batch_;
};
struct Invoker : public BaseInvoker
......@@ -246,7 +245,7 @@ struct DeviceImageToColumnImpl
OutputGridDesc,
OutputDataType,
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<I0>,
ComputePtrOffsetOfStridedBatch<>,
GridwiseTensorRearrangeKernel>;
float elapsed_time = launch_and_time_kernel(stream_config,
......
......@@ -85,10 +85,13 @@ struct Add
struct ScaleAdd
{
__host__ __device__ ScaleAdd(float scale) : scale_(scale) {}
__host__ __device__ ScaleAdd(float scale = 1.f) : scale_(scale) {}
template <typename Y, typename X0, typename X1>
__host__ __device__ constexpr void operator()(Y& y, const X0& x0, const X1& x1) const;
__host__ __device__ constexpr void operator()(Y& y, const X0& x0, const X1& x1) const
{
y = ck::type_convert<Y>(scale_ * ck::type_convert<float>(x0) + ck::type_convert<float>(x1));
}
template <>
__host__ __device__ void
......
......@@ -203,7 +203,7 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
// A desc for source in blockwise copy
template <typename AGridDesc_M_K>
__host__ __device__ static constexpr auto
MakeAGridDescriptor_AK0_M_AK1(const AGridDesc_M_K& a_grid_desc_m_k)
MakeDefaultAGridDescriptor_AK0_M_AK1(const AGridDesc_M_K& a_grid_desc_m_k)
{
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
......@@ -219,17 +219,17 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
template <typename AsGridDesc_M_K>
__host__ __device__ static constexpr auto
MakeAsGridDescriptor_AK0_M_AK1(const AsGridDesc_M_K& as_grid_desc_m_k)
MakeDefaultAsGridDescriptor_AK0_M_AK1(const AsGridDesc_M_K& as_grid_desc_m_k)
{
return generate_tuple(
[&](auto i) { return MakeAGridDescriptor_AK0_M_AK1(as_grid_desc_m_k[i]); },
[&](auto i) { return MakeDefaultAGridDescriptor_AK0_M_AK1(as_grid_desc_m_k[i]); },
Number<NumATensor>{});
}
// B desc for source in blockwise copy
template <typename BGridDesc_N_K>
__host__ __device__ static constexpr auto
MakeBGridDescriptor_BK0_N_BK1(const BGridDesc_N_K& b_grid_desc_n_k)
MakeDefaultBGridDescriptor_BK0_N_BK1(const BGridDesc_N_K& b_grid_desc_n_k)
{
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = b_grid_desc_n_k.GetLength(I1);
......@@ -245,10 +245,10 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
template <typename BsGridDesc_N_K>
__host__ __device__ static constexpr auto
MakeBsGridDescriptor_BK0_N_BK1(const BsGridDesc_N_K& bs_grid_desc_n_k)
MakeDefaultBsGridDescriptor_BK0_N_BK1(const BsGridDesc_N_K& bs_grid_desc_n_k)
{
return generate_tuple(
[&](auto i) { return MakeBGridDescriptor_BK0_N_BK1(bs_grid_desc_n_k[i]); },
[&](auto i) { return MakeDefaultBGridDescriptor_BK0_N_BK1(bs_grid_desc_n_k[i]); },
Number<NumBTensor>{});
}
......@@ -288,7 +288,7 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
// return block_id to E matrix tile idx (m0, n0) mapping
template <typename EGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeBlock2ETileMap(const EGridDesc_M_N& e_grid_desc_m_n)
MakeDefaultBlock2ETileMap(const EGridDesc_M_N& e_grid_desc_m_n)
{
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, EGridDesc_M_N>(
e_grid_desc_m_n);
......@@ -591,6 +591,9 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
generate_tuple([&](auto) { return make_multi_index(0, m_block_data_idx_on_grid, 0); },
Number<NumATensor>{});
static_assert(ABlockTransferSrcScalarPerVector == ABlockTransferDstScalarPerVector_AK1,
"Src and Dst ScalarPerVector must be the same");
auto a_blockwise_copy = ThreadGroupTensorSliceTransfer_v7r2<
ThisThreadBlock,
AsDataType,
......@@ -619,6 +622,9 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
generate_tuple([&](auto) { return make_multi_index(0, n_block_data_idx_on_grid, 0); },
Number<NumBTensor>{});
static_assert(BBlockTransferSrcScalarPerVector == BBlockTransferDstScalarPerVector_BK1,
"Src and Dst ScalarPerVector must be the same");
auto b_blockwise_copy = ThreadGroupTensorSliceTransfer_v7r2<
ThisThreadBlock,
BsDataType,
......@@ -1005,9 +1011,9 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
const auto e_grid_desc_m_n = MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
// tensor descriptors for block/thread-wise copy
const auto as_grid_desc_ak0_m_ak1 = MakeAsGridDescriptor_AK0_M_AK1(as_grid_desc_m_k);
const auto as_grid_desc_ak0_m_ak1 = MakeDefaultAsGridDescriptor_AK0_M_AK1(as_grid_desc_m_k);
const auto bs_grid_desc_bk0_n_bk1 = MakeBsGridDescriptor_BK0_N_BK1(bs_grid_desc_n_k);
const auto bs_grid_desc_bk0_n_bk1 = MakeDefaultBsGridDescriptor_BK0_N_BK1(bs_grid_desc_n_k);
const auto ds_grid_desc_mblock_mperblock_nblock_nperblock =
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(ds_grid_desc_m_n);
......
......@@ -3,12 +3,23 @@
#pragma once
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <numeric>
#include <type_traits>
#include <sstream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
namespace ck {
namespace tensor_operation {
......@@ -22,6 +33,7 @@ namespace host {
// Supports both GNCHW/NGCHW as well as GNHWC/NHWGC physical layout
// as long as dimensions in tensor descriptor is in GNCHW order
//
// @tparam NDimSpatial Number of spatial dimensions.
// @tparam InDataType Input tensor data type.
// @tparam WeiDataType Weights tensor data type.
// @tparam OutDataType Output tensor data type.
......@@ -29,7 +41,9 @@ namespace host {
// operation.
// @tparam WeiElementwiseOperation Functor for weights tensor elementwise
// operation.
// @tparam NDimSpatial Number of spatial dimensions.
// @tparam NumAElementwiseTensor Number of A elementwise tensors.
// @tparam NumBElementwiseTensor Number of B elementwise tensors.
// @tparam NumDElementwiseTensor Number of D elementwise tensors.
//
// input descriptor in [G, N, C, Do, Ho, Wo] order
// weight descriptor in [G, K, C, Z, Y, X] order
......@@ -42,14 +56,17 @@ template <ck::index_t NDimSpatial,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ck::index_t NumDTensor = 0,
ck::index_t NumAElementwiseTensor = 0,
ck::index_t NumBElementwiseTensor = 0,
ck::index_t NumDElementwiseTensor = 0,
typename std::enable_if<NDimSpatial >= 1 && NDimSpatial <= 3, bool>::type = false>
struct ReferenceConvFwd : public device::BaseOperator
{
// Argument
struct Argument : public device::BaseArgument
{
Argument(const Tensor<InDataType>& input,
Argument(
const Tensor<InDataType>& input,
const Tensor<WeiDataType>& weight,
Tensor<OutDataType>& output,
std::vector<ck::index_t> conv_filter_strides,
......@@ -59,11 +76,15 @@ struct ReferenceConvFwd : public device::BaseOperator
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
const std::array<Tensor<OutDataType>, NumDTensor>& d_tensors)
const std::array<Tensor<InDataType>, NumAElementwiseTensor>& elementwise_a_tensors,
const std::array<Tensor<WeiDataType>, NumBElementwiseTensor>& elementwise_b_tensors,
const std::array<Tensor<OutDataType>, NumDElementwiseTensor>& elementwise_d_tensors)
: input_{input},
weight_{weight},
output_{output},
d_tensors_{d_tensors},
elementwise_a_tensors_{elementwise_a_tensors},
elementwise_b_tensors_{elementwise_b_tensors},
elementwise_d_tensors_{elementwise_d_tensors},
conv_strides_{conv_filter_strides},
conv_dilations_{conv_filter_dilations},
in_left_pads_{input_left_pads},
......@@ -78,7 +99,9 @@ struct ReferenceConvFwd : public device::BaseOperator
const Tensor<WeiDataType>& weight_;
Tensor<OutDataType>& output_;
const std::array<Tensor<OutDataType>, NumDTensor>& d_tensors_;
const std::array<Tensor<InDataType>, NumAElementwiseTensor>& elementwise_a_tensors_;
const std::array<Tensor<WeiDataType>, NumBElementwiseTensor>& elementwise_b_tensors_;
const std::array<Tensor<OutDataType>, NumDElementwiseTensor>& elementwise_d_tensors_;
std::vector<index_t> conv_strides_;
std::vector<index_t> conv_dilations_;
......@@ -119,42 +142,43 @@ struct ReferenceConvFwd : public device::BaseOperator
if(wi >= 0 &&
ck::type_convert<std::size_t>(wi) < arg.input_.GetLengths()[3])
{
float v_in;
float v_wei;
arg.in_element_op_(
v_in, ck::type_convert<float>(arg.input_(g, n, c, wi)));
arg.wei_element_op_(
v_wei, ck::type_convert<float>(arg.weight_(g, k, c, x)));
v_acc += v_in * v_wei;
InDataType v_in;
WeiDataType v_wei;
ExecuteElementwiseOp(arg.in_element_op_,
arg.elementwise_a_tensors_,
Number<NumAElementwiseTensor>{},
v_in,
arg.input_(g, n, c, wi),
g,
n,
c,
wi);
ExecuteElementwiseOp(arg.wei_element_op_,
arg.elementwise_b_tensors_,
Number<NumBElementwiseTensor>{},
v_wei,
arg.weight_(g, k, c, x),
g,
k,
c,
x);
v_acc +=
ck::type_convert<float>(v_in) * ck::type_convert<float>(v_wei);
}
}
}
OutDataType v_out;
OutDataType v_acc_converted = ck::type_convert<OutDataType>(v_acc);
if constexpr(NumDTensor == 0)
{
arg.out_element_op_(v_out, v_acc_converted);
}
else if constexpr(NumDTensor == 1)
{
arg.out_element_op_(v_out, v_acc_converted, arg.d_tensors_[0](g, n, k, wo));
}
else if constexpr(NumDTensor == 2)
{
arg.out_element_op_(v_out,
OutDataType& v_out = arg.output_(g, n, k, wo);
ExecuteElementwiseOp(arg.out_element_op_,
arg.elementwise_d_tensors_,
Number<NumDElementwiseTensor>{},
v_out,
v_acc_converted,
arg.d_tensors_[0](g, n, k, wo),
arg.d_tensors_[1](g, n, k, wo));
}
else
{
throw std::runtime_error("Output ElementOp not supported in reference.");
}
arg.output_(g, n, k, wo) = v_out;
g,
n,
k,
wo);
};
make_ParallelTensorFunctor(func,
......@@ -191,44 +215,47 @@ struct ReferenceConvFwd : public device::BaseOperator
wi >= 0 &&
ck::type_convert<std::size_t>(wi) < arg.input_.GetLengths()[4])
{
float v_in;
float v_wei;
arg.in_element_op_(
v_in, ck::type_convert<float>(arg.input_(g, n, c, hi, wi)));
arg.wei_element_op_(
v_wei, ck::type_convert<float>(arg.weight_(g, k, c, y, x)));
v_acc += v_in * v_wei;
InDataType v_in;
WeiDataType v_wei;
ExecuteElementwiseOp(arg.in_element_op_,
arg.elementwise_a_tensors_,
Number<NumAElementwiseTensor>{},
v_in,
arg.input_(g, n, c, hi, wi),
g,
n,
c,
hi,
wi);
ExecuteElementwiseOp(arg.wei_element_op_,
arg.elementwise_b_tensors_,
Number<NumBElementwiseTensor>{},
v_wei,
arg.weight_(g, k, c, y, x),
g,
k,
c,
y,
x);
v_acc += ck::type_convert<float>(v_in) *
ck::type_convert<float>(v_wei);
}
}
}
}
OutDataType v_out;
OutDataType v_acc_converted = ck::type_convert<OutDataType>(v_acc);
if constexpr(NumDTensor == 0)
{
arg.out_element_op_(v_out, v_acc_converted);
}
else if constexpr(NumDTensor == 1)
{
arg.out_element_op_(
v_out, v_acc_converted, arg.d_tensors_[0](g, n, k, ho, wo));
}
else if constexpr(NumDTensor == 2)
{
arg.out_element_op_(v_out,
OutDataType& v_out = arg.output_(g, n, k, ho, wo);
ExecuteElementwiseOp(arg.out_element_op_,
arg.elementwise_d_tensors_,
Number<NumDElementwiseTensor>{},
v_out,
v_acc_converted,
arg.d_tensors_[0](g, n, k, ho, wo),
arg.d_tensors_[1](g, n, k, ho, wo));
}
else
{
throw std::runtime_error("Output ElementOp not supported in reference.");
}
arg.output_(g, n, k, ho, wo) = v_out;
g,
n,
k,
ho,
wo);
};
make_ParallelTensorFunctor(func,
......@@ -275,47 +302,51 @@ struct ReferenceConvFwd : public device::BaseOperator
ck::type_convert<std::size_t>(wi) <
arg.input_.GetLengths()[5])
{
float v_in;
float v_wei;
arg.in_element_op_(v_in,
ck::type_convert<float>(
arg.input_(g, n, c, di, hi, wi)));
arg.wei_element_op_(
InDataType v_in;
WeiDataType v_wei;
ExecuteElementwiseOp(arg.in_element_op_,
arg.elementwise_a_tensors_,
Number<NumAElementwiseTensor>{},
v_in,
arg.input_(g, n, c, di, hi, wi),
g,
n,
c,
di,
hi,
wi);
ExecuteElementwiseOp(arg.wei_element_op_,
arg.elementwise_b_tensors_,
Number<NumBElementwiseTensor>{},
v_wei,
ck::type_convert<float>(arg.weight_(g, k, c, z, y, x)));
v_acc += v_in * v_wei;
arg.weight_(g, k, c, z, y, x),
g,
k,
c,
z,
y,
x);
v_acc += ck::type_convert<float>(v_in) *
ck::type_convert<float>(v_wei);
}
}
}
}
}
OutDataType v_out;
OutDataType v_acc_converted = ck::type_convert<OutDataType>(v_acc);
if constexpr(NumDTensor == 0)
{
arg.out_element_op_(v_out, v_acc_converted);
}
else if constexpr(NumDTensor == 1)
{
arg.out_element_op_(
v_out, v_acc_converted, arg.d_tensors_[0](g, n, k, d_o, ho, wo));
}
else if constexpr(NumDTensor == 2)
{
arg.out_element_op_(v_out,
OutDataType& v_out = arg.output_(g, n, k, d_o, ho, wo);
ExecuteElementwiseOp(arg.out_element_op_,
arg.elementwise_d_tensors_,
Number<NumDElementwiseTensor>{},
v_out,
v_acc_converted,
arg.d_tensors_[0](g, n, k, d_o, ho, wo),
arg.d_tensors_[1](g, n, k, d_o, ho, wo));
}
else
{
throw std::runtime_error("Output ElementOp not supported in reference.");
}
arg.output_(g, n, k, d_o, ho, wo) = v_out;
g,
n,
k,
d_o,
ho,
wo);
};
make_ParallelTensorFunctor(func,
......@@ -338,6 +369,36 @@ struct ReferenceConvFwd : public device::BaseOperator
}
};
template <typename... Args,
typename ElementwiseOp,
typename ElementwiseTensor,
typename NumTensor,
typename T>
static void ExecuteElementwiseOp(ElementwiseOp& elementwise_op,
ElementwiseTensor& elementwise_tensors,
NumTensor,
T& y,
const T& x,
Args... dims)
{
if constexpr(NumTensor::value == 0)
{
elementwise_op(y, x);
}
else if constexpr(NumTensor::value == 1)
{
elementwise_op(y, x, elementwise_tensors[0](dims...));
}
else if constexpr(NumTensor::value == 2)
{
elementwise_op(y, x, elementwise_tensors[0](dims...), elementwise_tensors[1](dims...));
}
else
{
throw std::runtime_error("ElementOp not supported in reference.");
}
}
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
......@@ -349,7 +410,8 @@ struct ReferenceConvFwd : public device::BaseOperator
return NDimSpatial >= 1 && NDimSpatial <= 3;
}
static auto MakeArgument(const Tensor<InDataType>& input,
static auto MakeArgument(
const Tensor<InDataType>& input,
const Tensor<WeiDataType>& weight,
Tensor<OutDataType>& output,
std::vector<ck::index_t> conv_filter_strides,
......@@ -359,7 +421,9 @@ struct ReferenceConvFwd : public device::BaseOperator
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
const std::array<Tensor<OutDataType>, NumDTensor>& d_tensors = {})
const std::array<Tensor<InDataType>, NumAElementwiseTensor>& elementwise_a_tensors = {},
const std::array<Tensor<WeiDataType>, NumBElementwiseTensor>& elementwise_b_tensors = {},
const std::array<Tensor<OutDataType>, NumDElementwiseTensor>& elementwise_d_tensors = {})
{
return Argument{input,
weight,
......@@ -371,7 +435,9 @@ struct ReferenceConvFwd : public device::BaseOperator
in_element_op,
wei_element_op,
out_element_op,
d_tensors};
elementwise_a_tensors,
elementwise_b_tensors,
elementwise_d_tensors};
}
static auto MakeInvoker() { return Invoker{}; }
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
#ifdef CK_ENABLE_BF16
// grouped conv3d forward multi AB scaleadd, NDHWGC/GKZYXC/NDHWGK
void add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ck::Tuple<BF16, BF16>,
ck::Tuple<BF16, BF16>,
ck::Tuple<>,
BF16,
ScaleAdd,
ScaleAdd,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ck::Tuple<F16, F16>,
ck::Tuple<F16, F16>,
ck::Tuple<>,
F16,
ScaleAdd,
ScaleAdd,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ck::Tuple<F32, F32>,
ck::Tuple<F32, F32>,
ck::Tuple<>,
F32,
ScaleAdd,
ScaleAdd,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_INT8
void add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ck::Tuple<int8_t, int8_t>,
ck::Tuple<int8_t, int8_t>,
ck::Tuple<>,
int8_t,
ScaleAdd,
ScaleAdd,
PassThrough>>>& instances);
#endif
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename DLayouts,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename DDataTypes,
typename OutDataType,
typename ComputeType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
NumDimSpatial,
InLayout,
WeiLayout,
DLayouts,
OutLayout,
InDataType,
WeiDataType,
DDataTypes,
OutDataType,
ck::tensor_operation::element_wise::ScaleAdd,
ck::tensor_operation::element_wise::ScaleAdd,
ck::tensor_operation::element_wise::PassThrough,
ComputeType>>
{
using DeviceOp = DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
DLayouts,
OutLayout,
InDataType,
WeiDataType,
DDataTypes,
OutDataType,
ck::tensor_operation::element_wise::ScaleAdd,
ck::tensor_operation::element_wise::ScaleAdd,
ck::tensor_operation::element_wise::PassThrough,
ComputeType>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWGC> &&
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, NDHWGK>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, ck::Tuple<float, float>> &&
is_same_v<WeiDataType, ck::Tuple<float, float>> &&
is_same_v<OutDataType, float> && is_same_v<ComputeType, float>)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f32_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, ck::Tuple<half_t, half_t>> &&
is_same_v<WeiDataType, ck::Tuple<half_t, half_t>> &&
is_same_v<OutDataType, half_t> && is_same_v<ComputeType, half_t>)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f16_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_BF16
if constexpr(is_same_v<InDataType, ck::Tuple<ck::bhalf_t, ck::bhalf_t>> &&
is_same_v<WeiDataType, ck::Tuple<ck::bhalf_t, ck::bhalf_t>> &&
is_same_v<OutDataType, ck::bhalf_t> && is_same_v<ComputeType, ck::bhalf_t>)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_INT8
if constexpr(is_same_v<InDataType, ck::Tuple<int8_t, int8_t>> &&
is_same_v<WeiDataType, ck::Tuple<int8_t, int8_t>> &&
is_same_v<OutDataType, int8_t> && is_same_v<ComputeType, int8_t>)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_int8_instances(
op_ptrs);
}
#endif
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
set(GROUPED_CONV3D_FWD_SCALEADD_AB
xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp)
add_instance_library(device_grouped_conv3d_fwd_scaleadd_ab_instance ${GROUPED_CONV3D_FWD_SCALEADD_AB})
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ck::Tuple<BF16, BF16>,
ck::Tuple<BF16, BF16>,
ck::Tuple<>,
BF16,
ScaleAdd,
ScaleAdd,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_bf16_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_bf16_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_bf16_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1S1P0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ck::Tuple<F16, F16>,
ck::Tuple<F16, F16>,
ck::Tuple<>,
F16,
ScaleAdd,
ScaleAdd,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_f16_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_f16_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_f16_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1S1P0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ck::Tuple<F32, F32>,
ck::Tuple<F32, F32>,
ck::Tuple<>,
F32,
ScaleAdd,
ScaleAdd,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_f32_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_f32_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_f32_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1S1P0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
ck::Tuple<int8_t, int8_t>,
ck::Tuple<int8_t, int8_t>,
ck::Tuple<>,
int8_t,
ScaleAdd,
ScaleAdd,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_int8_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwdDefault>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_int8_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_scaleadd_ab_int8_instances<3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvFwd1x1S1P0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_gtest_executable(test_grouped_convnd_fwd test_grouped_convnd_fwd.cpp)
target_link_libraries(test_grouped_convnd_fwd PRIVATE utility device_grouped_conv1d_fwd_instance device_grouped_conv2d_fwd_instance device_grouped_conv3d_fwd_instance)
add_gtest_executable(test_grouped_convnd_fwd_multi_ab_interface test_grouped_convnd_fwd_multi_ab_interface.cpp)
target_link_libraries(test_grouped_convnd_fwd_multi_ab_interface PRIVATE utility)
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include <gtest/gtest.h>
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
template <typename DataType,
typename InDataTypes,
typename WeiDataTypes,
typename InElementOp,
typename WeiElementOp>
class TestGroupedConvndFwdMultiABInterfaceBase : public ::testing::Test
{
protected:
static constexpr ck::index_t NDimSpatial = 3;
static constexpr ck::index_t NumAs = 2;
static constexpr ck::index_t NumBs = 2;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
using OutElementOp = PassThrough;
using DeviceGroupedConvNDMultiABFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataTypes,
WeiDataTypes,
DataType,
DataType,
ck::Tuple<>,
DataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
const ck::utils::conv::ConvParam conv_param{
3, 1, 16, 16, 8, {3, 3, 3}, {17, 17, 17}, {2, 2, 2}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}};
void SetUp() override
{
if(!ck::is_xdl_supported())
{
GTEST_SKIP();
}
}
template <typename ADataType, typename BDataType>
bool Run(ADataType as, BDataType bs)
{
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
std::array<const void*, 0> ds{};
// do Conv
auto conv = DeviceGroupedConvNDMultiABFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(as,
bs,
ds,
nullptr,
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
{},
{},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
return conv.IsSupportedArgument(argument);
}
};
class TestGroupedConvndFwdMultiAInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float,
ck::Tuple<float, float>,
float,
ScaleAdd,
PassThrough>
{
};
class TestGroupedConvndFwdMultiBInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float,
float,
ck::Tuple<float, float>,
PassThrough,
ScaleAdd>
{
};
class TestGroupedConvndFwdMultiABInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float,
ck::Tuple<float, float>,
ck::Tuple<float, float>,
ScaleAdd,
ScaleAdd>
{
};
class TestGroupedConvndFwdInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float, float, float, PassThrough, PassThrough>
{
};
TEST_F(TestGroupedConvndFwdMultiAInterface, MultiA)
{
std::array<const void*, NumAs> as{nullptr, nullptr};
const void* b = nullptr;
EXPECT_TRUE(this->template Run(as, b));
}
TEST_F(TestGroupedConvndFwdMultiBInterface, MultiB)
{
const void* a = nullptr;
std::array<const void*, NumBs> bs{nullptr, nullptr};
EXPECT_TRUE(this->template Run(a, bs));
}
TEST_F(TestGroupedConvndFwdMultiABInterface, MultiAB)
{
std::array<const void*, NumAs> as{nullptr, nullptr};
std::array<const void*, NumBs> bs{nullptr, nullptr};
EXPECT_TRUE(this->template Run(as, bs));
}
TEST_F(TestGroupedConvndFwdInterface, SingleAB)
{
const void* a = nullptr;
const void* b = nullptr;
EXPECT_TRUE(this->template Run(a, b));
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment