Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
4746e11b
Commit
4746e11b
authored
Jun 02, 2022
by
Chao Liu
Browse files
add contraction example
parent
68f8ecdb
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
1077 additions
and
101 deletions
+1077
-101
example/23_contraction/contraction_xdl_fp32.cpp
example/23_contraction/contraction_xdl_fp32.cpp
+233
-92
include/ck/tensor_operation/gpu/device/device_contraction.hpp
...ude/ck/tensor_operation/gpu/device/device_contraction.hpp
+39
-0
include/ck/tensor_operation/gpu/device/device_contraction_xdl_cshuffle.hpp
..._operation/gpu/device/device_contraction_xdl_cshuffle.hpp
+802
-0
include/ck/utility/sequence_helper.hpp
include/ck/utility/sequence_helper.hpp
+1
-3
include/ck/utility/tuple.hpp
include/ck/utility/tuple.hpp
+1
-3
include/ck/utility/tuple_helper.hpp
include/ck/utility/tuple_helper.hpp
+1
-3
No files found.
example/23_contraction/contraction_xdl_fp32.cpp
View file @
4746e11b
...
...
@@ -9,7 +9,7 @@
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_
gemm
_xdl_cshuffle.hpp"
#include "device_
contraction
_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
...
...
@@ -29,9 +29,9 @@ using BDataType = float;
using
CDataType
=
float
;
using
AccDataType
=
float
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
...
@@ -40,16 +40,159 @@ using CElementOp = ck::tensor_operation::element_wise::PassThrough;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
Device
Gemm
Instance
=
ck
::
tensor_operation
::
device
::
//#####################
| ALayout| BLayout| CLayout
| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Device
Gemm
_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
using
Device
Op
Instance
=
ck
::
tensor_operation
::
device
::
//#####################
#######| NumDimM| NumDimN| NumDimK
| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################
#######
| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################
#######
| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################
#######
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Device
Contraction
_Xdl_CShuffle
<
NumDimM
,
NumDimN
,
NumDimK
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
ck
::
enable_if_t
<
NumDimM
==
2
&&
NumDimN
==
2
&&
NumDimK
==
2
,
bool
>
=
false
>
struct
ReferenceContraction_M2_N2_K2
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ks_ns
,
Tensor
<
CDataType
>&
c_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
a_ms_ks_
{
a_ms_ks
},
b_ks_ns_
{
b_ks_ns
},
c_ms_ns_
{
c_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_ms_ks_
;
const
Tensor
<
BDataType
>&
b_ks_ns_
;
Tensor
<
CDataType
>&
c_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_M2_N2_K2
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_ms_ns
=
[
&
](
auto
m0
,
auto
m1
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
2
];
const
int
K1
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
3
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
for
(
int
k1
=
0
;
k1
<
K1
;
++
k1
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
static_cast
<
const
AccDataType
>
(
arg
.
a_ms_ks_
(
m0
,
m1
,
k0
,
k1
)));
arg
.
b_element_op_
(
v_b
,
static_cast
<
const
AccDataType
>
(
arg
.
b_ks_ns_
(
k0
,
k1
,
n0
,
n1
)));
v_acc
+=
v_a
*
v_b
;
}
}
AccDataType
v_c
;
arg
.
c_element_op_
(
v_c
,
v_acc
);
arg
.
c_ms_ns_
(
m0
,
m1
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_ms_ns
,
arg
.
c_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
c_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
c_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
c_ms_ns_
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ks_ns
,
Tensor
<
CDataType
>&
c_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
a_ms_ks
,
b_ks_ns
,
c_ms_ns
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_M2_N2_K2"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
using
ReferenceOpInstance
=
ReferenceContraction_M2_N2_K2
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
...
...
@@ -57,119 +200,117 @@ int main(int argc, char* argv[])
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
128
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[K0, K1, N0, N1]
std
::
vector
<
ck
::
index_t
>
b_ks_ns_lengths
{
32
,
128
,
32
,
128
};
std
::
vector
<
ck
::
index_t
>
b_ks_ns_strides
{
128
,
1
,
524288
,
4096
};
// C[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
c_ms_ns_lengths
{
30
,
128
,
32
,
128
};
std
::
vector
<
ck
::
index_t
>
c_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
Tensor
<
ADataType
>
a_ms_ks
(
std
::
vector
<
std
::
size_t
>
(
a_ms_ks_lengths
.
begin
(),
a_ms_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
a_ms_ks_strides
.
begin
(),
a_ms_ks_strides
.
end
()));
Tensor
<
BDataType
>
b_ks_ns
(
std
::
vector
<
std
::
size_t
>
(
b_ks_ns_lengths
.
begin
(),
b_ks_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
b_ks_ns_strides
.
begin
(),
b_ks_ns_strides
.
end
()));
Tensor
<
CDataType
>
c_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
c_ms_ns_lengths
.
begin
(),
c_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
c_ms_ns_strides
.
begin
(),
c_ms_ns_strides
.
end
()));
Tensor
<
CDataType
>
c_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
c_ms_ns_lengths
.
begin
(),
c_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
c_ms_ns_strides
.
begin
(),
c_ms_ns_strides
.
end
()));
std
::
cout
<<
"a_ms_ks: "
<<
a_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_ks_ns: "
<<
b_ks_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_ms_ns: "
<<
c_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
a_m
s
_k
s
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k
s
_n
s
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
a_m
s
_k
s
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k
s
_n
s
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_m
s
_k
s
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_k
s
_n
s
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
a_ms_ks_device_buf
(
sizeof
(
ADataType
)
*
a_ms_ks
.
mDesc
.
GetElementSpace
());
DeviceMem
b_ks_ns_device_buf
(
sizeof
(
BDataType
)
*
b_ks_ns
.
mDesc
.
GetElementSpace
());
DeviceMem
c_ms_ns_device_buf
(
sizeof
(
CDataType
)
*
c_ms_ns_device_result
.
mDesc
.
GetElementSpace
());
a_ms_ks_device_buf
.
ToDevice
(
a_ms_ks
.
mData
.
data
());
b_ks_ns_device_buf
.
ToDevice
(
b_ks_ns
.
mData
.
data
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k
_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
()
);
// set zero
c_ms
_n
s
_device_buf
.
SetZero
(
);
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// d
o GEMM
auto
gemm
=
Device
Gemm
Instance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
S
tride
A
,
StrideB
,
S
tride
C
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
// d
evice operation
auto
op
=
Device
Op
Instance
{};
auto
invoker
=
op
.
MakeInvoker
();
auto
argument
=
op
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m
s
_k
s
_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k
s
_n
s
_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m
s
_n
s
_device_buf
.
GetDeviceBuffer
()),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ks_ns_lengths
,
b_ks_ns_s
tride
s
,
c_ms_ns_lengths
,
c_ms_ns_s
tride
s
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
std
::
cout
<<
op
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
M
=
std
::
accumulate
(
c_ms_ns_lengths
.
begin
(),
c_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
std
::
accumulate
(
c_ms_ns_lengths
.
begin
()
+
NumDimM
,
c_ms_ns_lengths
.
begin
()
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
a_ms_ks_lengths
.
begin
()
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
...
...
@@ -179,21 +320,21 @@ int main(int argc, char* argv[])
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
<<
op
.
GetTypeString
()
<<
std
::
endl
;
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
c_m
s
_n
s
_device_buf
.
FromDevice
(
c_m
s
_n
s
_device_result
.
mData
.
data
());
if
(
do_verification
)
{
auto
ref_gemm
=
Reference
Gemm
Instance
{};
auto
ref_gemm
=
Reference
Op
Instance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
a_m
s
_k
s
,
b_k
s
_n
s
,
c_m
s
_n
s
_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
return
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
)
?
0
:
1
;
return
ck
::
utils
::
check_err
(
c_m
s
_n
s
_device_result
.
mData
,
c_m
s
_n
s
_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
...
...
include/ck/tensor_operation/gpu/device/device_contraction.hpp
0 → 100644
View file @
4746e11b
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceContraction
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
std
::
vector
<
index_t
>
a_lengths
,
std
::
vector
<
index_t
>
a_strides
,
std
::
vector
<
index_t
>
b_lengths
,
std
::
vector
<
index_t
>
b_strides
,
std
::
vector
<
index_t
>
c_lengths
,
std
::
vector
<
index_t
>
c_strides
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_contraction_xdl_cshuffle.hpp
0 → 100644
View file @
4746e11b
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_contraction.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdl_cshuffle_v1.hpp"
#include "tensor_operation/gpu/device/gemm_specialization.hpp"
#include "device_prop.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Assume:
// A[M0, M1, M2, ..., K0, K1, K2...]
// B[K0, K1, K2, ..., N0, N1, N2...]
// C[M0, M1, M2, ..., N0, N1, N2...]
template
<
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceContraction_Xdl_CShuffle
:
public
DeviceContraction
<
NumDimM
,
NumDimN
,
NumDimK
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
using
DeviceOp
=
DeviceContraction_Xdl_CShuffle
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
// assume A[M0, M1, M2, ..., K0, K1, K2...]
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
const
std
::
vector
<
index_t
>&
a_lengths_vec
,
const
std
::
vector
<
index_t
>&
a_strides_vec
)
{
assert
(
a_lengths_vec
.
size
()
==
NumDimM
+
NumDimK
&&
a_strides_vec
.
size
()
==
NumDimM
+
NumDimK
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
Num
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
i
];
},
Num
);
};
const
auto
a_lengths
=
to_tuple
(
a_lengths_vec
,
Number
<
NumDimM
+
NumDimK
>
{});
const
auto
a_strides
=
to_tuple
(
a_strides_vec
,
Number
<
NumDimM
+
NumDimK
>
{});
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimM
,
1
>::
type
{};
// dimension Ids for K0, K1, ...
constexpr
auto
kDimIds
=
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimK
,
1
>::
type
{};
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
a_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
kLengths
=
get_container_subset
(
a_lengths
,
kDimIds
);
// naive tensor A[M0, M1, M2, ..., K0, K1, K2...]
const
auto
a_grid_desc_ms_ks
=
make_naive_tensor_descriptor
(
a_lengths
,
a_strides
);
// transformed tensor A[MRaw = M0 * M1 * M2 * ... , KRaw = K0 * K1 * K2 * ...]
const
auto
a_grid_desc_mraw_kraw
=
transform_tensor_descriptor
(
a_grid_desc_ms_ks
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
kLengths
)),
make_tuple
(
mDimIds
,
kDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
MRaw
=
a_grid_desc_mraw_kraw
.
GetLength
(
I0
);
const
auto
KRaw
=
a_grid_desc_mraw_kraw
.
GetLength
(
I1
);
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
assert
(
K
%
AK1
==
0
);
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
assert
(
KRaw
%
AK1
==
0
);
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_right_pad_transform
(
MRaw
,
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
assert
(
K
%
AK1
==
0
);
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
// not pad M or K
assert
(
KRaw
%
AK1
==
0
);
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
}
// assume B[K0, K1, K2, ..., N0, N1, N2...]
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
const
std
::
vector
<
index_t
>&
b_lengths_vec
,
const
std
::
vector
<
index_t
>&
b_strides_vec
)
{
assert
(
b_lengths_vec
.
size
()
==
NumDimN
+
NumDimK
&&
b_strides_vec
.
size
()
==
NumDimN
+
NumDimK
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
Num
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
i
];
},
Num
);
};
const
auto
b_lengths
=
to_tuple
(
b_lengths_vec
,
Number
<
NumDimN
+
NumDimK
>
{});
const
auto
b_strides
=
to_tuple
(
b_strides_vec
,
Number
<
NumDimN
+
NumDimK
>
{});
// dimension Ids for K0, K1, ...
constexpr
auto
kDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimK
,
1
>::
type
{};
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDimK
,
NumDimK
+
NumDimN
,
1
>::
type
{};
// lengths for K0, K1, ...
const
auto
kLengths
=
get_container_subset
(
b_lengths
,
kDimIds
);
// lengths for N0, N1, ...
const
auto
nLengths
=
get_container_subset
(
b_lengths
,
nDimIds
);
// naive tensor B[K0, K1, K2..., N0, N1, N2, ...]
const
auto
b_grid_desc_ks_ns
=
make_naive_tensor_descriptor
(
b_lengths
,
b_strides
);
// transformed tensor B[KRaw = K0 * K1 * K2 * ... , NRaw = N0 * N1 * N2 * ... ]
const
auto
b_grid_desc_nraw_kraw
=
transform_tensor_descriptor
(
b_grid_desc_ks_ns
,
make_tuple
(
make_merge_transform
(
kLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
kDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
NRaw
=
b_grid_desc_nraw_kraw
.
GetLength
(
I0
);
const
auto
KRaw
=
b_grid_desc_nraw_kraw
.
GetLength
(
I1
);
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
NPad
=
N
-
NRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both N and K
assert
(
K
%
BK1
==
0
);
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
NRaw
,
NPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
assert
(
KRaw
%
BK1
==
0
);
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
assert
(
K
%
BK1
==
0
);
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
NRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
assert
(
KRaw
%
BK1
==
0
);
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
}
// assume C[M0, M1, M2, ..., N0, N1, N2...]
static
auto
MakeCGridDescriptor_M_N
(
const
std
::
vector
<
index_t
>&
c_lengths_vec
,
const
std
::
vector
<
index_t
>&
c_strides_vec
)
{
assert
(
c_lengths_vec
.
size
()
==
NumDimM
+
NumDimN
&&
c_strides_vec
.
size
()
==
NumDimM
+
NumDimN
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
Num
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
i
];
},
Num
);
};
const
auto
c_lengths
=
to_tuple
(
c_lengths_vec
,
Number
<
NumDimM
+
NumDimN
>
{});
const
auto
c_strides
=
to_tuple
(
c_strides_vec
,
Number
<
NumDimM
+
NumDimN
>
{});
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimM
,
1
>::
type
{};
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimN
,
1
>::
type
{};
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
c_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
nLengths
=
get_container_subset
(
c_lengths
,
nDimIds
);
// naive tensor C[M0, M1, M2, ..., N0, N1, N2...]
const
auto
c_grid_desc_ms_ns
=
make_naive_tensor_descriptor
(
c_lengths
,
c_strides
);
// transformed tensor C[MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 * N2 * ...]
const
auto
c_grid_desc_mraw_nraw
=
transform_tensor_descriptor
(
c_grid_desc_ms_ns
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
MRaw
=
c_grid_desc_mraw_nraw
.
GetLength
(
I0
);
const
auto
NRaw
=
c_grid_desc_mraw_nraw
.
GetLength
(
I1
);
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
NPad
=
N
-
NRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad M, but not N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad N, but not M
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
// not pad M or N
return
c_grid_desc_mraw_nraw
;
}
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
(
std
::
vector
<
index_t
>
{},
std
::
vector
<
index_t
>
{}));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
(
std
::
vector
<
index_t
>
{},
std
::
vector
<
index_t
>
{}));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
(
std
::
vector
<
index_t
>
{},
std
::
vector
<
index_t
>
{}));
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
<
ADataType
,
// TODO: distinguish A/B datatype
GemmAccDataType
,
CShuffleDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
CGridDesc_M_N
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
CDataType
*
p_c_grid
,
std
::
vector
<
index_t
>
a_lengths
,
std
::
vector
<
index_t
>
a_strides
,
std
::
vector
<
index_t
>
b_lengths
,
std
::
vector
<
index_t
>
b_strides
,
std
::
vector
<
index_t
>
c_lengths
,
std
::
vector
<
index_t
>
c_strides
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
p_a_grid_
{
p_a_grid
},
p_b_grid_
{
p_b_grid
},
p_c_grid_
{
p_c_grid
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
},
a_grid_desc_ak0_m_ak1_
{
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
a_lengths
,
a_strides
)},
b_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
b_lengths
,
b_strides
)},
c_grid_desc_m_n_
{
DeviceOp
::
MakeCGridDescriptor_M_N
(
c_lengths
,
c_strides
)},
c_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_ctile_map_
{
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
c_grid_desc_m_n_
)},
a_mz_length_
{},
a_mz_stride_
{},
a_kz_length_
{},
a_kz_stride_
{},
b_nz_length_
{},
b_nz_stride_
{},
b_kz_length_
{},
b_kz_stride_
{},
c_mz_length_
{},
c_mz_stride_
{},
c_nz_length_
{},
c_nz_stride_
{}
{
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
b_grid_desc_bk0_n_bk1_
,
c_grid_desc_m_n_
,
block_2_ctile_map_
))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n_
);
}
// for sanity check of vector load/store
a_mz_length_
=
a_lengths
[
NumDimM
-
1
];
a_mz_stride_
=
a_strides
[
NumDimM
-
1
];
a_kz_length_
=
a_lengths
[
NumDimM
+
NumDimK
-
1
];
a_kz_stride_
=
a_strides
[
NumDimM
+
NumDimK
-
1
];
b_nz_length_
=
b_lengths
[
NumDimK
-
1
];
b_nz_stride_
=
b_strides
[
NumDimK
-
1
];
b_kz_length_
=
b_lengths
[
NumDimK
+
NumDimN
-
1
];
b_kz_stride_
=
b_strides
[
NumDimK
+
NumDimN
-
1
];
c_mz_length_
=
b_lengths
[
NumDimM
-
1
];
c_mz_stride_
=
b_strides
[
NumDimM
-
1
];
c_nz_length_
=
b_lengths
[
NumDimM
+
NumDimN
-
1
];
c_nz_stride_
=
b_strides
[
NumDimM
+
NumDimN
-
1
];
}
// private:
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
CDataType
*
p_c_grid_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemm
::
DefaultBlock2CTileMap
block_2_ctile_map_
;
// for sanity check of vector load/store
index_t
a_mz_length_
;
index_t
a_mz_stride_
;
index_t
a_kz_length_
;
index_t
a_kz_stride_
;
index_t
b_nz_length_
;
index_t
b_nz_stride_
;
index_t
b_kz_length_
;
index_t
b_kz_stride_
;
index_t
c_mz_length_
;
index_t
c_mz_stride_
;
index_t
c_nz_length_
;
index_t
c_nz_stride_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
#if 0
{
std::cout << "arg.a_grid_desc_ak0_m_ak1_{"
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I1) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_bk0_n_bk1_{"
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I0) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I1) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
#endif
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_ctile_map_
.
CalculateGridSize
(
arg
.
c_grid_desc_m_n_
);
const
auto
K
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
float
ave_time
=
0
;
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v1
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
DefaultBlock2CTileMap
,
true
>
;
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_ctile_map_
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v1
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
DefaultBlock2CTileMap
,
false
>
;
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_ctile_map_
);
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
{
return
false
;
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
))
{
return
false
;
}
// FIXME check vector load/store
return
true
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
std
::
vector
<
index_t
>
a_lengths
,
std
::
vector
<
index_t
>
a_strides
,
std
::
vector
<
index_t
>
b_lengths
,
std
::
vector
<
index_t
>
b_strides
,
std
::
vector
<
index_t
>
c_lengths
,
std
::
vector
<
index_t
>
c_strides
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_c
,
a_lengths
,
a_strides
,
b_lengths
,
b_strides
,
c_lengths
,
c_strides
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
std
::
vector
<
index_t
>
a_lengths
,
std
::
vector
<
index_t
>
a_strides
,
std
::
vector
<
index_t
>
b_lengths
,
std
::
vector
<
index_t
>
b_strides
,
std
::
vector
<
index_t
>
c_lengths
,
std
::
vector
<
index_t
>
c_strides
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
CDataType
*>
(
p_c
),
a_lengths
,
a_strides
,
b_lengths
,
b_strides
,
c_lengths
,
c_strides
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceContraction_Xdl_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/utility/sequence_helper.hpp
View file @
4746e11b
#ifndef CK_SEQUENCE_HELPER_HPP
#define CK_SEQUENCE_HELPER_HPP
#pragma once
#include "tuple.hpp"
...
...
@@ -33,4 +32,3 @@ __host__ __device__ constexpr auto to_sequence(Tuple<Number<Is>...>)
}
}
// namespace ck
#endif
include/ck/utility/tuple.hpp
View file @
4746e11b
#ifndef CK_TUPLE_HPP
#define CK_TUPLE_HPP
#pragma once
#include "integral_constant.hpp"
#include "sequence.hpp"
...
...
@@ -173,4 +172,3 @@ constexpr Tuple<Args&...> tie(Args&... args) noexcept
}
}
// namespace ck
#endif
include/ck/utility/tuple_helper.hpp
View file @
4746e11b
#ifndef CK_TUPLE_HELPER_HPP
#define CK_TUPLE_HELPER_HPP
#pragma once
#include "functional4.hpp"
#include "tuple.hpp"
...
...
@@ -66,4 +65,3 @@ __host__ __device__ constexpr auto transform_tuples(F f, const X& x, const Y& y,
}
}
// namespace ck
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment