Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
4698993d
Unverified
Commit
4698993d
authored
Nov 15, 2022
by
Po Yen Chen
Committed by
GitHub
Nov 15, 2022
Browse files
Merge branch 'develop' into wmma_op
parents
ab663329
7038723a
Changes
202
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
983 additions
and
1614 deletions
+983
-1614
example/26_contraction/contraction_scale_xdl_fp32.cpp
example/26_contraction/contraction_scale_xdl_fp32.cpp
+13
-28
example/27_layernorm/layernorm_blockwise.cpp
example/27_layernorm/layernorm_blockwise.cpp
+6
-6
example/28_grouped_gemm_bias_e_permute/grouped_gemm_bias_e_permute_xdl_fp16.cpp
...m_bias_e_permute/grouped_gemm_bias_e_permute_xdl_fp16.cpp
+17
-34
example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_xdl_fp16.cpp
...m_bias_e_permute/batched_gemm_bias_e_permute_xdl_fp16.cpp
+16
-37
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
+22
-0
example/30_grouped_conv_fwd_multiple_d/README.md
example/30_grouped_conv_fwd_multiple_d/README.md
+30
-0
example/30_grouped_conv_fwd_multiple_d/common.hpp
example/30_grouped_conv_fwd_multiple_d/common.hpp
+355
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
...wd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
+26
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
...wd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
+26
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
...wd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
+26
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
...wd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
+31
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
...wd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
+26
-0
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_xdl_fp16.cpp
...grouped_conv_fwd_multiple_d/grouped_conv_fwd_xdl_fp16.cpp
+24
-0
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
...multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
+142
-87
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_example.inc
...uped_conv_fwd_multiple_d/run_grouped_conv_fwd_example.inc
+223
-0
example/30_grouped_convnd_fwd_bias_relu_add/CMakeLists.txt
example/30_grouped_convnd_fwd_bias_relu_add/CMakeLists.txt
+0
-11
example/30_grouped_convnd_fwd_bias_relu_add/README.md
example/30_grouped_convnd_fwd_bias_relu_add/README.md
+0
-34
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
+0
-459
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
+0
-459
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
+0
-459
No files found.
example/26_contraction/contraction_scale_xdl_fp32.cpp
View file @
4698993d
...
...
@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
@@ -277,18 +278,10 @@ int main(int argc, char* argv[])
exit
(
0
);
}
Tensor
<
ADataType
>
a_ms_ks
(
std
::
vector
<
std
::
size_t
>
(
a_ms_ks_lengths
.
begin
(),
a_ms_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
a_ms_ks_strides
.
begin
(),
a_ms_ks_strides
.
end
()));
Tensor
<
BDataType
>
b_ns_ks
(
std
::
vector
<
std
::
size_t
>
(
b_ns_ks_lengths
.
begin
(),
b_ns_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
b_ns_ks_strides
.
begin
(),
b_ns_ks_strides
.
end
()));
Tensor
<
EDataType
>
e_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
Tensor
<
ADataType
>
a_ms_ks
(
a_ms_ks_lengths
,
a_ms_ks_strides
);
Tensor
<
BDataType
>
b_ns_ks
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
Tensor
<
EDataType
>
e_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
EDataType
>
e_ms_ns_device_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
std
::
cout
<<
"a_ms_ks: "
<<
a_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_ns_ks: "
<<
b_ns_ks
.
mDesc
<<
std
::
endl
;
...
...
@@ -349,20 +342,14 @@ int main(int argc, char* argv[])
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
M
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
e_ms_ns_lengths
.
begin
()
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
a_ms_ks_lengths
.
begin
()
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
...
...
@@ -379,9 +366,7 @@ int main(int argc, char* argv[])
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
using
ReferenceOpInstance
=
ReferenceContraction_M2_N2_K2
<
NumDimM
,
NumDimN
,
...
...
@@ -417,7 +402,7 @@ int main(int argc, char* argv[])
}
}
return
ck
::
utils
::
check_err
(
e_ms_ns_device_result
.
mData
,
e_ms_ns_host_result
.
mData
)
?
0
:
1
;
return
ck
::
utils
::
check_err
(
e_ms_ns_device_result
,
e_ms_ns_host_result
)
?
0
:
1
;
}
return
0
;
...
...
example/27_layernorm/layernorm_blockwise.cpp
View file @
4698993d
...
...
@@ -17,6 +17,7 @@
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
using
XDataType
=
ck
::
half_t
;
...
...
@@ -60,13 +61,13 @@ int main()
ck
::
index_t
Stride
=
N
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
return
HostTensorDescriptor
({
len
},
{
stride
});
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
using
namespace
ck
::
literals
;
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
};
Tensor
<
XDataType
>
x
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
...
...
@@ -132,8 +133,7 @@ int main()
ref_invoker
.
Run
(
ref_argument
);
y_dev
.
FromDevice
(
y
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
y
.
mData
,
host_y
.
mData
,
"Error: Incorrect results d1"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
y
,
host_y
,
"Error: Incorrect results d1"
,
1e-3
,
1e-3
);
}
return
(
pass
?
0
:
1
);
}
example/28_grouped_gemm_bias_e_permute/grouped_gemm_bias_e_permute_xdl_fp16.cpp
View file @
4698993d
...
...
@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
@@ -297,33 +298,19 @@ int main(int argc, char* argv[])
const
auto
e_ms_ns_lengths
=
contraction_descs
[
i
].
e_ms_ns_lengths
;
const
auto
e_ms_ns_strides
=
contraction_descs
[
i
].
e_ms_ns_strides
;
Tensor
<
ADataType
>
a_ms_ks
(
std
::
vector
<
std
::
size_t
>
(
a_ms_ks_lengths
.
begin
(),
a_ms_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
a_ms_ks_strides
.
begin
(),
a_ms_ks_strides
.
end
()));
Tensor
<
BDataType
>
b_ns_ks
(
std
::
vector
<
std
::
size_t
>
(
b_ns_ks_lengths
.
begin
(),
b_ns_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
b_ns_ks_strides
.
begin
(),
b_ns_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_ms_ns
(
std
::
vector
<
std
::
size_t
>
(
d_ms_ns_lengths
.
begin
(),
d_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
d_ms_ns_strides
.
begin
(),
d_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
ck
::
index_t
M_
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N_
=
std
::
accumulate
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
e_ms_ns_lengths
.
begin
()
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K_
=
std
::
accumulate
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
a_ms_ks_lengths
.
begin
()
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
Tensor
<
ADataType
>
a_ms_ks
(
a_ms_ks_lengths
,
a_ms_ks_strides
);
Tensor
<
BDataType
>
b_ns_ks
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
Tensor
<
DDataType
>
d_ms_ns
(
d_ms_ns_lengths
,
d_ms_ns_strides
);
Tensor
<
EDataType
>
e_ms_ns_device_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
ck
::
index_t
M_
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N_
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K_
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
a_tensors
.
push_back
(
a_ms_ks
);
b_tensors
.
push_back
(
b_ns_ks
);
...
...
@@ -423,13 +410,9 @@ int main(int argc, char* argv[])
const
auto
e_ms_ns_lengths
=
contraction_descs
[
i
].
e_ms_ns_lengths
;
const
auto
e_ms_ns_strides
=
contraction_descs
[
i
].
e_ms_ns_strides
;
Tensor
<
EDataType
>
c_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
EDataType
>
e_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_lengths
.
begin
(),
e_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_ms_ns_strides
.
begin
(),
e_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
e_tensors_device
[
i
]
->
FromDevice
(
e_device_tensors
[
i
].
mData
.
data
());
...
...
@@ -475,7 +458,7 @@ int main(int argc, char* argv[])
}
}
pass
&=
ck
::
utils
::
check_err
(
e_device_tensors
[
i
]
.
mData
,
e_ms_ns_host_result
.
mData
);
pass
&=
ck
::
utils
::
check_err
(
e_device_tensors
[
i
],
e_ms_ns_host_result
);
}
}
...
...
example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_xdl_fp16.cpp
View file @
4698993d
...
...
@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
@@ -246,21 +247,11 @@ int main(int argc, char* argv[])
exit
(
0
);
}
Tensor
<
ADataType
>
a_gs_ms_ks
(
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_lengths
.
begin
(),
a_gs_ms_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_strides
.
begin
(),
a_gs_ms_ks_strides
.
end
()));
Tensor
<
BDataType
>
b_gs_ns_ks
(
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_lengths
.
begin
(),
b_gs_ns_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_strides
.
begin
(),
b_gs_ns_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_gs_ms_ns
(
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_lengths
.
begin
(),
d_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_strides
.
begin
(),
d_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
Tensor
<
BDataType
>
b_gs_ns_ks
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
);
Tensor
<
DDataType
>
d_gs_ms_ns
(
d_gs_ms_ns_lengths
,
d_gs_ms_ns_strides
);
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
...
...
@@ -327,25 +318,17 @@ int main(int argc, char* argv[])
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
G
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
G
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
NumDimG
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
M
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
G
*
M
*
K
+
sizeof
(
BDataType
)
*
G
*
K
*
N
+
...
...
@@ -362,9 +345,7 @@ int main(int argc, char* argv[])
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
using
ReferenceOpInstance
=
ReferenceContraction_G2_M2_N2_K1
<
NumDimG
,
NumDimM
,
...
...
@@ -409,9 +390,7 @@ int main(int argc, char* argv[])
}
}
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
.
mData
,
e_gs_ms_ns_host_result
.
mData
)
?
0
:
1
;
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
,
e_gs_ms_ns_host_result
)
?
0
:
1
;
}
return
0
;
...
...
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
0 → 100644
View file @
4698993d
add_custom_target
(
example_grouped_conv_fwd_multiple_d
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int4 grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4
)
endif
()
# USE_BITINT_EXTENSION_INT4
add_example_executable
(
example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16
)
example/30_grouped_conv_fwd_multiple_d/README.md
0 → 100644
View file @
4698993d
Command
```
bash
arg1: verification
(
0
=
no,
1
=
yes
)
arg2: initialization
(
0
=
no init,
1
=
integer value,
2
=
decimal value
)
arg3:
time
kernel
(
0
=
no,
1
=
yes
)
Following arguments
(
depending on number of spatial dims
)
:
Number of spatial dimensions
(
1
=
Conv1d,
2
=
Conv2d,
3
=
Conv3d
)
G, N, K, C,
<filter spatial dimensions>,
(
ie Y, X
for
2D
)
<input image spatial dimensions>,
(
ie Hi, Wi
for
2D
)
<strides>,
(
ie Sy, Sx
for
2D
)
<dilations>,
(
ie Dy, Dx
for
2D
)
<left padding>,
(
ie LeftPy, LeftPx
for
2D
)
<right padding>,
(
ie RightPy, RightPx
for
2D
)
./bin/example_grouped_conv_fwd_bias_relu_add_xdl_fp16 1 1 1
```
Result (MI100)
```
in: dim 5, lengths {1, 128, 192, 71, 71}, strides {192, 967872, 1, 13632, 192}
wei: dim 5, lengths {1, 256, 192, 3, 3}, strides {442368, 1728, 1, 576, 192}
bias: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
residual: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
out: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 331776, 1, 9216, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 1.55981 ms, 94.0927 TFlops, 213.868 GB/s, DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<256, 128, 256, 16, Default>
```
example/30_grouped_conv
nd
_fwd_
bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int4.c
pp
→
example/30_grouped_conv_fwd_
multiple_d/common.h
pp
View file @
4698993d
This diff is collapsed.
Click to expand it.
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
0 → 100644
View file @
4698993d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
BF16
;
using
WeiKernelDataType
=
BF16
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP32
;
using
BiasKernelDataType
=
BF16
;
using
ResidualKernelDataType
=
BF16
;
using
OutKernelDataType
=
BF16
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
0 → 100644
View file @
4698993d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
FP16
;
using
WeiKernelDataType
=
FP16
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP16
;
using
BiasKernelDataType
=
FP16
;
using
ResidualKernelDataType
=
FP16
;
using
OutKernelDataType
=
FP16
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
0 → 100644
View file @
4698993d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
FP32
;
using
WeiKernelDataType
=
FP32
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP32
;
using
BiasKernelDataType
=
FP32
;
using
ResidualKernelDataType
=
FP32
;
using
OutKernelDataType
=
FP32
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
0 → 100644
View file @
4698993d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
I8
;
using
WeiKernelDataType
=
I8
;
using
AccDataType
=
I32
;
using
CShuffleDataType
=
I8
;
using
BiasKernelDataType
=
I8
;
using
ResidualKernelDataType
=
I8
;
using
OutKernelDataType
=
I8
;
// tensor data types
using
InUserDataType
=
I4
;
using
WeiUserDataType
=
I4
;
using
OutUserDataType
=
I4
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
#define BUILD_INT4_EXAMPLE
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
0 → 100644
View file @
4698993d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
I8
;
using
WeiKernelDataType
=
I8
;
using
AccDataType
=
I32
;
using
CShuffleDataType
=
I8
;
using
BiasKernelDataType
=
I8
;
using
ResidualKernelDataType
=
I8
;
using
OutKernelDataType
=
I8
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_xdl_fp16.cpp
0 → 100644
View file @
4698993d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
FP16
;
using
WeiKernelDataType
=
FP16
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP16
;
using
OutKernelDataType
=
FP16
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
PassThrough
;
#include "run_grouped_conv_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_example
(
argc
,
argv
);
}
example/30_grouped_conv
nd
_fwd_
bias_relu_add/
grouped_conv
nd
_fwd_bias_relu_add_
common.hpp
→
example/30_grouped_conv_fwd_
multiple_d/run_
grouped_conv_fwd_bias_relu_add_
example.inc
View file @
4698993d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
void
print_helper_msg
()
template
<
typename
BiasLay
,
typename
ResidualLay
>
struct
LayoutSetting
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
using
BiasLayout
=
BiasLay
;
using
ResidualLayout
=
ResidualLay
;
};
template
<
ck
::
index_t
NDimSpatial
>
struct
LayoutSettingSelector
;
template
<>
struct
LayoutSettingSelector
<
1
>
final
:
LayoutSetting
<
ctl
::
G_K
,
ctl
::
G_NW_K
>
{
};
template
<>
struct
LayoutSettingSelector
<
2
>
final
:
LayoutSetting
<
ctl
::
G_K
,
ctl
::
G_NHW_K
>
{
};
template
<>
struct
LayoutSettingSelector
<
3
>
final
:
LayoutSetting
<
ctl
::
G_K
,
ctl
::
G_NDHW_K
>
{
};
template
<
ck
::
index_t
NDimSpatial
>
using
BiasLayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
BiasLayout
;
template
<
ck
::
index_t
NDimSpatial
>
using
ResidualLayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
ResidualLayout
;
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InputLayout
<
NDimSpatial
>
,
WeightLayout
<
NDimSpatial
>
,
ck
::
Tuple
<
BiasLayout
<
NDimSpatial
>
,
ResidualLayout
<
NDimSpatial
>>
,
OutputLayout
<
NDimSpatial
>
,
InKernelDataType
,
WeiKernelDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasKernelDataType
,
ResidualKernelDataType
>
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
16
,
// KPerBlock
4
,
// AK1
4
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
4
,
// ABlockTransferSrcScalarPerVector
4
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
4
,
// BBlockTransferSrcScalarPerVector
4
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InKernelDataType
,
typename
WeiKernelDataType
,
typename
CShuffleDataType
,
typename
OutKernelDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
InUserDataType
,
typename
WeiUserDataType
,
typename
OutUserDataType
,
typename
DeviceConvNDFwdInstance
>
int
run_grouped_conv_fwd_bias_relu_add
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
bias_g_n_k_wos_desc
,
const
HostTensorDescriptor
&
residual_g_n_k_wos_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
template
<
ck
::
index_t
NDimSpatial
>
using
HostConvFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InUserDataType
,
WeiUserDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
;
template
<
ck
::
index_t
NDimSpatial
>
bool
run_grouped_conv_fwd_bias_relu_add
(
const
ExecutionConfig
&
config
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
static_assert
(
1
<=
NDimSpatial
&&
NDimSpatial
<=
3
,
"Unsupported NDimSpatial"
);
const
auto
in_g_n_c_wis_desc
=
make_input_descriptor
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
make_weight_descriptor
(
conv_param
);
const
auto
bias_g_n_k_wos_desc
=
make_bias_descriptor
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
make_output_descriptor
(
conv_param
);
Tensor
<
InUserDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiUserDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
OutUserDataType
>
bias
(
bias_g_n_k_wos_desc
);
Tensor
<
OutUserDataType
>
residual
(
residual
_g_n_k_wos_desc
);
Tensor
<
OutUserDataType
>
residual
(
bias
_g_n_k_wos_desc
);
Tensor
<
OutUserDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutKernelDataType
>
out_device
(
out_g_n_k_wos_desc
);
...
...
@@ -63,7 +114,7 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
std
::
cout
<<
"residual: "
<<
residual
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
...
...
@@ -83,7 +134,7 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
DeviceMem
residual_device_buf
(
sizeof
(
OutKernelDataType
)
*
residual
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutKernelDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
#ifdef
CK_EXPERIMENTAL_BIT
_INT_EX
TENSION_INT4
#ifdef
BUILD
_INT
4
_EX
AMPLE
const
Tensor
<
InKernelDataType
>
in_converted
(
in
);
const
Tensor
<
WeiKernelDataType
>
wei_converted
(
wei
);
const
Tensor
<
OutKernelDataType
>
bias_converted
(
bias
);
...
...
@@ -93,12 +144,12 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
wei_device_buf
.
ToDevice
(
wei_converted
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_converted
.
mData
.
data
());
residual_device_buf
.
ToDevice
(
residual_converted
.
mData
.
data
());
#else
// CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#else
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias
.
mData
.
data
());
residual_device_buf
.
ToDevice
(
residual
.
mData
.
data
());
#endif
// CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#endif
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
...
...
@@ -115,7 +166,7 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
()
,
y
.
begin
());
};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
...
...
@@ -123,8 +174,8 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
bias_g_n_k_wos_desc
.
GetLengths
(),
d0_g_n_k_wos_lengths
);
copy
(
bias_g_n_k_wos_desc
.
GetStrides
(),
d0_g_n_k_wos_strides
);
copy
(
residual
_g_n_k_wos_desc
.
GetLengths
(),
d1_g_n_k_wos_lengths
);
copy
(
residual
_g_n_k_wos_desc
.
GetStrides
(),
d1_g_n_k_wos_strides
);
copy
(
bias
_g_n_k_wos_desc
.
GetLengths
(),
d1_g_n_k_wos_lengths
);
copy
(
bias
_g_n_k_wos_desc
.
GetStrides
(),
d1_g_n_k_wos_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
...
...
@@ -133,7 +184,7 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// do Conv
auto
conv
=
DeviceConv
ND
FwdInstance
{};
auto
conv
=
DeviceConvFwdInstance
<
NDimSpatial
>
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
...
...
@@ -155,9 +206,9 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_e
lement
_op
,
w
ei
_e
lement
_op
,
o
ut
_e
lement
_op
);
InE
lement
Op
{}
,
W
ei
E
lement
Op
{}
,
O
ut
E
lement
Op
{}
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
...
...
@@ -166,7 +217,7 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InUserDataType
,
WeiUserDataType
,
OutUserDataType
>
();
...
...
@@ -176,20 +227,11 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
if
(
config
.
do_verification
)
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
Tensor
<
CShuffleDataType
>
c_host
(
out_g_n_k_wos_desc
);
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InUserDataType
,
WeiUserDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
();
auto
ref_conv
=
HostConvFwdInstance
<
NDimSpatial
>
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
...
...
@@ -198,36 +240,49 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_e
lement
_op
,
w
ei
_e
lement
_op
,
InE
lement
Op
{}
,
W
ei
E
lement
Op
{}
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
// TODO: implement elementwise operation for host
out_host
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
o
ut
_e
lement
_op
(
out_host
(
idx
),
c_host
(
idx
),
bias
(
idx
),
residual
(
idx
));
O
ut
E
lement
Op
{}
(
out_host
(
idx
),
c_host
(
idx
),
bias
(
idx
),
residual
(
idx
));
});
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
#ifdef
CK_EXPERIMENTAL_BIT
_INT_EX
TENSION_INT4
#ifdef
BUILD
_INT
4
_EX
AMPLE
const
Tensor
<
OutUserDataType
>
out_device_converted
(
out_device
);
return
ck
::
utils
::
check_err
(
out_device_converted
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
)
?
0
:
1
;
#else // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
return
ck
::
utils
::
check_err
(
out_device
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
)
?
0
:
1
;
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
out_device_converted
,
out_host
,
"Error: incorrect results!"
,
1
e
-
5
f
,
1
e
-
4
f
);
#else
return
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
,
1
e
-
5
f
,
1
e
-
4
f
);
#endif
}
return
true
;
}
bool
run_grouped_conv_fwd_bias_relu_add_example
(
int
argc
,
char
*
argv
[])
{
ExecutionConfig
config
;
ck
::
utils
::
conv
::
ConvParam
conv_param
=
DefaultConvParam
;
if
(
!
parse_cmd_args
(
argc
,
argv
,
config
,
conv_param
))
{
return
false
;
}
switch
(
conv_param
.
num_dim_spatial_
)
{
case
1
:
return
run_grouped_conv_fwd_bias_relu_add
<
1
>
(
config
,
conv_param
);
case
2
:
return
run_grouped_conv_fwd_bias_relu_add
<
2
>
(
config
,
conv_param
);
case
3
:
return
run_grouped_conv_fwd_bias_relu_add
<
3
>
(
config
,
conv_param
);
}
return
0
;
return
false
;
}
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_example.inc
0 → 100644
View file @
4698993d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InputLayout
<
NDimSpatial
>
,
WeightLayout
<
NDimSpatial
>
,
ck
::
Tuple
<>
,
OutputLayout
<
NDimSpatial
>
,
InKernelDataType
,
WeiKernelDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
16
,
// KPerBlock
4
,
// AK1
4
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
4
,
// ABlockTransferSrcScalarPerVector
4
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
4
,
// BBlockTransferSrcScalarPerVector
4
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
template
<
ck
::
index_t
NDimSpatial
>
using
HostConvFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InUserDataType
,
WeiUserDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
;
template
<
ck
::
index_t
NDimSpatial
>
bool
run_grouped_conv_fwd
(
const
ExecutionConfig
&
config
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
static_assert
(
1
<=
NDimSpatial
&&
NDimSpatial
<=
3
,
"Unsupported NDimSpatial"
);
const
auto
in_g_n_c_wis_desc
=
make_input_descriptor
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
make_weight_descriptor
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
make_output_descriptor
(
conv_param
);
Tensor
<
InUserDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiUserDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
OutUserDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutKernelDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InUserDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiUserDataType
>
{
-
5
,
5
});
break
;
default
:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InUserDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiUserDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InKernelDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiKernelDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutKernelDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
#ifdef BUILD_INT4_EXAMPLE
const
Tensor
<
InKernelDataType
>
in_converted
(
in
);
const
Tensor
<
WeiKernelDataType
>
wei_converted
(
wei
);
in_device_buf
.
ToDevice
(
in_converted
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_converted
.
mData
.
data
());
#else
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
#endif
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// do Conv
auto
conv
=
DeviceConvFwdInstance
<
NDimSpatial
>
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InUserDataType
,
WeiUserDataType
,
OutUserDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
config
.
do_verification
)
{
auto
ref_conv
=
HostConvFwdInstance
<
NDimSpatial
>
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
out_host
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
#ifdef BUILD_INT4_EXAMPLE
const
Tensor
<
OutUserDataType
>
out_device_converted
(
out_device
);
return
ck
::
utils
::
check_err
(
out_device_converted
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1
e
-
5
f
,
1
e
-
4
f
);
#else
return
ck
::
utils
::
check_err
(
out_device
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1
e
-
5
f
,
1
e
-
4
f
);
#endif
}
return
true
;
}
bool
run_grouped_conv_fwd_example
(
int
argc
,
char
*
argv
[])
{
ExecutionConfig
config
;
ck
::
utils
::
conv
::
ConvParam
conv_param
=
DefaultConvParam
;
if
(
!
parse_cmd_args
(
argc
,
argv
,
config
,
conv_param
))
{
return
false
;
}
switch
(
conv_param
.
num_dim_spatial_
)
{
case
1
:
return
run_grouped_conv_fwd
<
1
>
(
config
,
conv_param
);
case
2
:
return
run_grouped_conv_fwd
<
2
>
(
config
,
conv_param
);
case
3
:
return
run_grouped_conv_fwd
<
3
>
(
config
,
conv_param
);
}
return
false
;
}
example/30_grouped_convnd_fwd_bias_relu_add/CMakeLists.txt
deleted
100644 → 0
View file @
ab663329
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_fp16 grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_fp32 grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_bf16 grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_int8 grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_int4 grouped_convnd_fwd_bias_relu_add_xdl_int4.cpp
)
endif
()
# USE_BITINT_EXTENSION_INT4
example/30_grouped_convnd_fwd_bias_relu_add/README.md
deleted
100644 → 0
View file @
ab663329
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: time kernel (0=no, 1=yes)
#Following arguments (depending on number of spatial dims):
# N spatial dimensions
# G, N, K, C,
# <filter spatial dimensions>, (ie Y, X for 2D)
# <input image spatial dimensions>, (ie Hi, Wi for 2D)
# <strides>, (ie Sy, Sx for 2D)
# <dilations>, (ie Dy, Dx for 2D)
# <left padding>, (ie LeftPy, LeftPx for 2D)
# <right padding>, (ie RightPy, RightPx for 2D)
bin/example_grouped_convnd_fwd_bias_relu_add_xdl_fp16 1 1 1
```
Result (MI100)
```
in: dim 5, lengths {2, 128, 192, 71, 71}, strides {192, 1935744, 1, 27264, 384}
wei: dim 5, lengths {2, 256, 192, 3, 3}, strides {442368, 1728, 1, 576, 192}
bias: dim 5, lengths {2, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
residual: dim 5, lengths {2, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
out: dim 5, lengths {2, 128, 256, 36, 36}, strides {256, 663552, 1, 18432, 512}
A[M, K]: {165888, 1728}
B[N, K]: {256, 1728}
Ds[M, N]: {165888, 256}
Ds[M, N]: {165888, 256}
E[M, N]: {165888, 256}
launch_and_time_kernel: grid_dim {2592, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 2.48075 ms, 118.325 TFlops, 268.946 GB/s, DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<256, 128, 256, 32, Default>
```
\ No newline at end of file
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
deleted
100644 → 0
View file @
ab663329
This diff is collapsed.
Click to expand it.
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
deleted
100644 → 0
View file @
ab663329
This diff is collapsed.
Click to expand it.
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
deleted
100644 → 0
View file @
ab663329
This diff is collapsed.
Click to expand it.
Prev
1
2
3
4
5
6
7
8
…
11
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment