Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
463e2aa1
Commit
463e2aa1
authored
Nov 30, 2022
by
aska-0096
Browse files
Merge branch 'develop' of
https://github.com/ROCmSoftwarePlatform/composable_kernel
into wmma_op
parents
6e106c19
236bd148
Changes
83
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1991 additions
and
272 deletions
+1991
-272
client_example/02_gemm_add_add_fastgelu/CMakeLists.txt
client_example/02_gemm_add_add_fastgelu/CMakeLists.txt
+11
-0
client_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu.cpp
...nt_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu.cpp
+233
-0
client_example/02_gemm_add_add_fastgelu/gemm_fastgelu.cpp
client_example/02_gemm_add_add_fastgelu/gemm_fastgelu.cpp
+225
-0
client_example/12_elementwise_normalization/CMakeLists.txt
client_example/12_elementwise_normalization/CMakeLists.txt
+0
-0
client_example/12_elementwise_normalization/elementwise_layernorm2d.cpp
.../12_elementwise_normalization/elementwise_layernorm2d.cpp
+0
-0
client_example/13_batchnorm/CMakeLists.txt
client_example/13_batchnorm/CMakeLists.txt
+2
-0
client_example/13_batchnorm/batchnorm_fwd_nhwc.cpp
client_example/13_batchnorm/batchnorm_fwd_nhwc.cpp
+197
-0
example/17_convnd_bwd_data/CMakeLists.txt
example/17_convnd_bwd_data/CMakeLists.txt
+3
-0
example/17_convnd_bwd_data/convnd_bwd_data_common.hpp
example/17_convnd_bwd_data/convnd_bwd_data_common.hpp
+7
-4
example/17_convnd_bwd_data/convnd_bwd_data_dl_fp16.cpp
example/17_convnd_bwd_data/convnd_bwd_data_dl_fp16.cpp
+180
-0
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
+4
-0
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp
...gemm/batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp
+159
-0
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_bf16.cpp
...softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_bf16.cpp
+143
-0
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
...softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
+2
-257
example/32_batched_gemm_scale_softmax_gemm/run_batched_gemm_scale_softmax_gemm.inc
...cale_softmax_gemm/run_batched_gemm_scale_softmax_gemm.inc
+261
-0
example/32_batched_gemm_scale_softmax_gemm/run_batched_gemm_scale_softmax_gemm_permute.inc
...tmax_gemm/run_batched_gemm_scale_softmax_gemm_permute.inc
+17
-1
example/34_batchnorm/CMakeLists.txt
example/34_batchnorm/CMakeLists.txt
+3
-2
example/34_batchnorm/README.md
example/34_batchnorm/README.md
+25
-0
example/34_batchnorm/batchnorm_backward_nhwc.cpp
example/34_batchnorm/batchnorm_backward_nhwc.cpp
+502
-0
example/34_batchnorm/batchnorm_forward_inferring_nhwc.cpp
example/34_batchnorm/batchnorm_forward_inferring_nhwc.cpp
+17
-8
No files found.
client_example/02_gemm_add_add_fastgelu/CMakeLists.txt
View file @
463e2aa1
add_custom_target
(
client_gemm_fastgelu_examples
)
add_executable
(
client_gemm_add_add_fastgelu gemm_add_add_fastgelu.cpp
)
target_link_libraries
(
client_gemm_add_add_fastgelu PRIVATE composable_kernel::device_operations
)
add_executable
(
client_gemm_add_fastgelu gemm_add_fastgelu.cpp
)
target_link_libraries
(
client_gemm_add_fastgelu PRIVATE composable_kernel::device_operations
)
add_executable
(
client_gemm_fastgelu gemm_fastgelu.cpp
)
target_link_libraries
(
client_gemm_fastgelu PRIVATE composable_kernel::device_operations
)
add_dependencies
(
client_gemm_fastgelu_examples client_gemm_add_add_fastgelu client_gemm_add_fastgelu
client_gemm_fastgelu
)
client_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu.cpp
0 → 100644
View file @
463e2aa1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_fastgelu.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddFastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddFastGelu
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
D0DataType
=
F16
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D0Layout
=
Row
;
using
ELayout
=
Row
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideD0
=
0
;
ck
::
index_t
StrideE
=
4096
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
8
)
{
M
=
std
::
stoi
(
argv
[
1
]);
N
=
std
::
stoi
(
argv
[
2
]);
K
=
std
::
stoi
(
argv
[
3
]);
StrideA
=
std
::
stoi
(
argv
[
4
]);
StrideB
=
std
::
stoi
(
argv
[
5
]);
StrideD0
=
std
::
stoi
(
argv
[
6
]);
StrideE
=
std
::
stoi
(
argv
[
8
]);
}
else
{
printf
(
"arg1 to 7: M, N, K, StrideA, StrideB, StrideD0, StrideE
\n
"
);
exit
(
0
);
}
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
ALayout
{}));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
BLayout
{}));
SimpleDeviceMem
d0_m_n_device_buf
(
sizeof
(
D0DataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideD0
,
D0Layout
{}));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideE
,
ELayout
{}));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddFastGelu
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d0_m_n_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
1
>
{
StrideD0
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d0_m_n_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
1
>
{
StrideD0
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/02_gemm_add_add_fastgelu/gemm_fastgelu.cpp
0 → 100644
View file @
463e2aa1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_fastgelu.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
FastGelu
=
ck
::
tensor_operation
::
element_wise
::
FastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
FastGelu
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideE
=
4096
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
7
)
{
M
=
std
::
stoi
(
argv
[
1
]);
N
=
std
::
stoi
(
argv
[
2
]);
K
=
std
::
stoi
(
argv
[
3
]);
StrideA
=
std
::
stoi
(
argv
[
4
]);
StrideB
=
std
::
stoi
(
argv
[
5
]);
StrideE
=
std
::
stoi
(
argv
[
8
]);
}
else
{
printf
(
"arg1 to 6: M, N, K, StrideA, StrideB, StrideE
\n
"
);
exit
(
0
);
}
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
ALayout
{}));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
BLayout
{}));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideE
,
ELayout
{}));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
FastGelu
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/1
0
_elementwise_normalization/CMakeLists.txt
→
client_example/1
2
_elementwise_normalization/CMakeLists.txt
View file @
463e2aa1
File moved
client_example/1
0
_elementwise_normalization/elementwise_layernorm2d.cpp
→
client_example/1
2
_elementwise_normalization/elementwise_layernorm2d.cpp
View file @
463e2aa1
File moved
client_example/13_batchnorm/CMakeLists.txt
0 → 100644
View file @
463e2aa1
add_executable
(
client_batchnorm_fwd_nhwc batchnorm_fwd_nhwc.cpp
)
target_link_libraries
(
client_batchnorm_fwd_nhwc PRIVATE composable_kernel::device_operations
)
client_example/13_batchnorm/batchnorm_fwd_nhwc.cpp
0 → 100644
View file @
463e2aa1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batchnorm_forward.hpp"
using
XDataType
=
float
;
using
YDataType
=
float
;
using
AccDataType
=
float
;
using
ScaleDataType
=
AccDataType
;
using
BiasDataType
=
AccDataType
;
using
MeanVarDataType
=
AccDataType
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
int
Rank
=
4
;
constexpr
int
NumBatchNormReduceDim
=
3
;
const
double
epsilon
=
std
::
numeric_limits
<
float
>::
epsilon
();
const
double
averageFactor
=
0.1
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
Rank
>
xyLengths
{
16
,
8
,
128
,
256
};
std
::
array
<
ck
::
index_t
,
Rank
>
xyStrides
{
8
*
128
*
256
,
128
*
256
,
256
,
1
};
std
::
array
<
ck
::
index_t
,
Rank
-
NumBatchNormReduceDim
>
scaleBiasMeanVarLengths
{
256
};
std
::
array
<
ck
::
index_t
,
Rank
-
NumBatchNormReduceDim
>
scaleBiasMeanVarStrides
{
1
};
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
{
0
,
1
,
2
};
ck
::
index_t
numXYElement
=
std
::
accumulate
(
xyLengths
.
begin
(),
xyLengths
.
end
(),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
ck
::
index_t
numScaleBiasMeanVarElement
=
std
::
accumulate
(
scaleBiasMeanVarLengths
.
begin
(),
scaleBiasMeanVarLengths
.
end
(),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
SimpleDeviceMem
x
(
sizeof
(
XDataType
)
*
numXYElement
);
SimpleDeviceMem
y
(
sizeof
(
YDataType
)
*
numXYElement
);
SimpleDeviceMem
scale
(
sizeof
(
ScaleDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
bias
(
sizeof
(
BiasDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
mean
(
sizeof
(
MeanVarDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
invVariance
(
sizeof
(
MeanVarDataType
)
*
numScaleBiasMeanVarElement
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceBatchNormFwd
<
XDataType
,
YDataType
,
AccDataType
,
ScaleDataType
,
BiasDataType
,
MeanVarDataType
,
PassThrough
,
Rank
,
NumBatchNormReduceDim
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
xyLengths
,
xyStrides
,
xyStrides
,
reduceDims
,
scaleBiasMeanVarLengths
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
x
.
GetDeviceBuffer
(),
scale
.
GetDeviceBuffer
(),
bias
.
GetDeviceBuffer
(),
epsilon
,
PassThrough
{},
y
.
GetDeviceBuffer
(),
mean
.
GetDeviceBuffer
(),
invVariance
.
GetDeviceBuffer
(),
averageFactor
,
nullptr
,
nullptr
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
numXYElement
*
(
sizeof
(
XDataType
)
+
sizeof
(
YDataType
))
+
numScaleBiasMeanVarElement
*
(
sizeof
(
ScaleDataType
)
+
sizeof
(
BiasDataType
)
+
sizeof
(
MeanVarDataType
)
+
sizeof
(
MeanVarDataType
));
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
found
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
xyLengths
,
xyStrides
,
xyStrides
,
reduceDims
,
scaleBiasMeanVarLengths
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
x
.
GetDeviceBuffer
(),
scale
.
GetDeviceBuffer
(),
bias
.
GetDeviceBuffer
(),
epsilon
,
PassThrough
{},
y
.
GetDeviceBuffer
(),
mean
.
GetDeviceBuffer
(),
invVariance
.
GetDeviceBuffer
(),
averageFactor
,
nullptr
,
nullptr
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
example/17_convnd_bwd_data/CMakeLists.txt
View file @
463e2aa1
add_example_executable
(
example_convnd_bwd_data_xdl_fp16 convnd_bwd_data_xdl_fp16.cpp
)
target_link_libraries
(
example_convnd_bwd_data_xdl_fp16 PRIVATE utility
)
add_example_executable
(
example_convnd_bwd_data_dl_fp16 convnd_bwd_data_dl_fp16.cpp
)
target_link_libraries
(
example_convnd_bwd_data_dl_fp16 PRIVATE utility
)
example/17_convnd_bwd_data/convnd_bwd_data_common.hpp
View file @
463e2aa1
...
...
@@ -61,9 +61,13 @@ int run_conv_bwd_data(bool do_verification,
out
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
break
;
default
:
case
2
:
out
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
break
;
default:
out
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
});
wei
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
1
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_device
.
mDesc
.
GetElementSpaceSize
());
...
...
@@ -98,9 +102,8 @@ int run_conv_bwd_data(bool do_verification,
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
std
::
cout
<<
"Not support,please check parameters or device"
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
...
...
example/17_convnd_bwd_data/convnd_bwd_data_dl_fp16.cpp
0 → 100644
View file @
463e2aa1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_bwd_data_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_convnd_bwd_data_nwc_kxc_nwk_dl.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvBwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Default
;
template
<
ck
::
index_t
NDimSpatial
>
// clang-format off
using
DeviceConvNdBwdDataInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvNdBwdDataNwcKxcNwk_Dl
<
// ######| NDim| InData| WeiData| OutData| AccData| In| Wei| Out| Convolution| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| Spatial| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Forward| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvBwdDefault
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
1
,
1
,
8
,
2
>
,
S
<
16
,
1
,
16
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
8
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
1
,
128
,
256
,
256
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
using
InLayout
=
ctc
::
GNWC
;
using
WeiLayout
=
ctc
::
GKXC
;
using
OutLayout
=
ctc
::
GNWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_data
<
1
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvNdBwdDataInstance
<
1
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
using
InLayout
=
ctc
::
GNHWC
;
using
WeiLayout
=
ctc
::
GKYXC
;
using
OutLayout
=
ctc
::
GNHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_data
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvNdBwdDataInstance
<
2
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
using
InLayout
=
ctc
::
GNDHWC
;
using
WeiLayout
=
ctc
::
GKZYXC
;
using
OutLayout
=
ctc
::
GNDHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_data
<
3
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvNdBwdDataInstance
<
3
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
return
0
;
}
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
View file @
463e2aa1
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_bf16 batched_gemm_scale_softmax_gemm_xdl_bf16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16 batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_custom_target
(
example_gemm_scale_softmax_gemm
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_bf16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16
)
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp
0 → 100644
View file @
463e2aa1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
BF16
;
using
B0DataType
=
BF16
;
using
B1DataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
BF16
;
using
Acc0BiasDataType
=
ck
::
Tuple
<>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
1
;
static
constexpr
ck
::
index_t
NumDimN
=
1
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
static
constexpr
ck
::
index_t
NumDimO
=
1
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
static
constexpr
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
static
constexpr
auto
TensorSpecA
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB0
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB1
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecC
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc1BiasDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
64
,
// Gemm1NPerBlock
32
,
// Gemm1KPerBlock
8
,
// AK1
8
,
// BK1
2
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
2
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec
>
;
// MaskingSpecialization
// Ref Gemm0: bf16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
AccDataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
>
;
// Ref Softmax: fp32 in, bf16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
AccDataType
,
ADataType
,
AccDataType
>
;
// Ref Gemm1: bf16 in, bf16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
#include "run_batched_gemm_scale_softmax_gemm_permute.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_bf16.cpp
0 → 100644
View file @
463e2aa1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
BF16
;
using
B0DataType
=
BF16
;
using
B1DataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
BF16
;
using
ALayout
=
Row
;
using
B0Layout
=
Col
;
using
B1Layout
=
Row
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
64
,
// Gemm1NPerBlock
32
,
// Gemm1KPerBlock
8
,
// AK1
8
,
// BK1
2
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
2
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
false
>
;
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
AccDataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
>
;
// Ref Softmax: fp32 in, fp16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
AccDataType
,
ADataType
,
AccDataType
>
;
// Ref Gemm1: fp16 in, fp16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
#include "run_batched_gemm_scale_softmax_gemm.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
View file @
463e2aa1
...
...
@@ -139,261 +139,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
B1ElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
#include "run_batched_gemm_scale_softmax_gemm.inc"
// GEMM shape
ck
::
index_t
M
=
1020
;
ck
::
index_t
N
=
1020
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
128
;
ck
::
index_t
BatchCount
=
4
;
ck
::
index_t
StrideA
=
-
1
;
ck
::
index_t
StrideB0
=
-
1
;
ck
::
index_t
StrideB1
=
-
1
;
ck
::
index_t
StrideC
=
-
1
;
ck
::
index_t
BatchStrideA
=
-
1
;
ck
::
index_t
BatchStrideB0
=
-
1
;
ck
::
index_t
BatchStrideB1
=
-
1
;
ck
::
index_t
BatchStrideC
=
-
1
;
float
alpha
=
1
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
9
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
BatchCount
=
std
::
stoi
(
argv
[
8
]);
}
else
if
(
argc
==
18
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
BatchCount
=
std
::
stoi
(
argv
[
8
]);
StrideA
=
std
::
stoi
(
argv
[
9
]);
StrideB0
=
std
::
stoi
(
argv
[
10
]);
StrideB1
=
std
::
stoi
(
argv
[
11
]);
StrideC
=
std
::
stoi
(
argv
[
12
]);
BatchStrideA
=
std
::
stoi
(
argv
[
13
]);
BatchStrideB0
=
std
::
stoi
(
argv
[
14
]);
BatchStrideB1
=
std
::
stoi
(
argv
[
15
]);
BatchStrideC
=
std
::
stoi
(
argv
[
16
]);
alpha
=
std
::
stof
(
argv
[
17
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 16: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC
\n
"
);
printf
(
"arg17: scale (alpha)
\n
"
);
exit
(
0
);
}
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB0
=
ck
::
is_same_v
<
B0Layout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideB1
=
ck
::
is_same_v
<
B1Layout
,
Row
>
?
O
:
N
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
O
:
M
;
StrideA
=
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
;
StrideB0
=
(
StrideB0
<
0
)
?
DefaultStrideB0
:
StrideB0
;
StrideB1
=
(
StrideB1
<
0
)
?
DefaultStrideB1
:
StrideB1
;
StrideC
=
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
;
const
int
DefaultBatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Col
>
?
K
:
M
)
*
StrideA
;
const
int
DefaultBatchStrideB0
=
(
ck
::
is_same_v
<
B0Layout
,
Col
>
?
N
:
K
)
*
StrideB0
;
const
int
DefaultBatchStrideB1
=
(
ck
::
is_same_v
<
B1Layout
,
Col
>
?
O
:
N
)
*
StrideB1
;
const
int
DefaultBatchStrideC
=
(
ck
::
is_same_v
<
CLayout
,
Col
>
?
O
:
M
)
*
StrideC
;
BatchStrideA
=
BatchStrideA
<
0
?
DefaultBatchStrideA
:
BatchStrideA
;
BatchStrideB0
=
BatchStrideB0
<
0
?
DefaultBatchStrideB0
:
BatchStrideB0
;
BatchStrideB1
=
BatchStrideB1
<
0
?
DefaultBatchStrideB1
:
BatchStrideB1
;
BatchStrideC
=
BatchStrideC
<
0
?
DefaultBatchStrideC
:
BatchStrideC
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
Row
>::
value
)
{
return
HostTensorDescriptor
({
batch_count
,
row
,
col
},
{
batch_stride
,
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
batch_count
,
row
,
col
},
{
batch_stride
,
1
_uz
,
stride
});
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
Tensor
<
B0DataType
>
b0_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB0
,
BatchStrideB0
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_g_n_o
(
f_host_tensor_descriptor
(
BatchCount
,
N
,
O
,
StrideB1
,
BatchStrideB1
,
B1Layout
{}));
Tensor
<
CDataType
>
c_g_m_o_host_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_o_device_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_g_k_n: "
<<
b0_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_g_n_o: "
<<
b1_g_n_o
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_o: "
<<
c_g_m_o_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
5
,
5
});
break
;
case
2
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
DeviceMem
a_g_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_g_k_n_device_buf
(
sizeof
(
B0DataType
)
*
b0_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_g_n_o_device_buf
(
sizeof
(
B1DataType
)
*
b1_g_n_o
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_g_m_o_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_o_device_result
.
mDesc
.
GetElementSpaceSize
());
a_g_m_k_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b0_g_k_n_device_buf
.
ToDevice
(
b0_g_k_n
.
mData
.
data
());
b1_g_n_o_device_buf
.
ToDevice
(
b1_g_n_o
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{
alpha
};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_g_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
b0_g_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B1DataType
*>
(
b1_g_n_o_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_g_m_o_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
O
,
BatchCount
,
StrideA
,
StrideB0
,
StrideB1
,
StrideC
,
BatchStrideA
,
BatchStrideB0
,
BatchStrideB1
,
BatchStrideC
,
a_element_op
,
b0_element_op
,
acc0_element_op
,
b1_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_g_m_o_device_buf
.
FromDevice
(
c_g_m_o_device_result
.
mData
.
data
());
if
(
do_verification
)
{
// Output of Gemm0 is input A of Gemm1
Tensor
<
AccDataType
>
acc0_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
Tensor
<
ADataType
>
a1_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
acc0_element_op
);
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
return
ck
::
utils
::
check_err
(
c_g_m_o_device_result
,
c_g_m_o_host_result
)
?
0
:
1
;
}
return
0
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/run_batched_gemm_scale_softmax_gemm.inc
0 → 100644
View file @
463e2aa1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
int
run
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
2
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
1020
;
ck
::
index_t
N
=
1020
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
128
;
ck
::
index_t
BatchCount
=
4
;
ck
::
index_t
StrideA
=
-
1
;
ck
::
index_t
StrideB0
=
-
1
;
ck
::
index_t
StrideB1
=
-
1
;
ck
::
index_t
StrideC
=
-
1
;
ck
::
index_t
BatchStrideA
=
-
1
;
ck
::
index_t
BatchStrideB0
=
-
1
;
ck
::
index_t
BatchStrideB1
=
-
1
;
ck
::
index_t
BatchStrideC
=
-
1
;
float
alpha
=
1
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
9
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
BatchCount
=
std
::
stoi
(
argv
[
8
]);
}
else
if
(
argc
==
18
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
BatchCount
=
std
::
stoi
(
argv
[
8
]);
StrideA
=
std
::
stoi
(
argv
[
9
]);
StrideB0
=
std
::
stoi
(
argv
[
10
]);
StrideB1
=
std
::
stoi
(
argv
[
11
]);
StrideC
=
std
::
stoi
(
argv
[
12
]);
BatchStrideA
=
std
::
stoi
(
argv
[
13
]);
BatchStrideB0
=
std
::
stoi
(
argv
[
14
]);
BatchStrideB1
=
std
::
stoi
(
argv
[
15
]);
BatchStrideC
=
std
::
stoi
(
argv
[
16
]);
alpha
=
std
::
stof
(
argv
[
17
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 16: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC
\n
"
);
printf
(
"arg17: scale (alpha)
\n
"
);
exit
(
0
);
}
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB0
=
ck
::
is_same_v
<
B0Layout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideB1
=
ck
::
is_same_v
<
B1Layout
,
Row
>
?
O
:
N
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
O
:
M
;
StrideA
=
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
;
StrideB0
=
(
StrideB0
<
0
)
?
DefaultStrideB0
:
StrideB0
;
StrideB1
=
(
StrideB1
<
0
)
?
DefaultStrideB1
:
StrideB1
;
StrideC
=
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
;
const
int
DefaultBatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Col
>
?
K
:
M
)
*
StrideA
;
const
int
DefaultBatchStrideB0
=
(
ck
::
is_same_v
<
B0Layout
,
Col
>
?
N
:
K
)
*
StrideB0
;
const
int
DefaultBatchStrideB1
=
(
ck
::
is_same_v
<
B1Layout
,
Col
>
?
O
:
N
)
*
StrideB1
;
const
int
DefaultBatchStrideC
=
(
ck
::
is_same_v
<
CLayout
,
Col
>
?
O
:
M
)
*
StrideC
;
BatchStrideA
=
BatchStrideA
<
0
?
DefaultBatchStrideA
:
BatchStrideA
;
BatchStrideB0
=
BatchStrideB0
<
0
?
DefaultBatchStrideB0
:
BatchStrideB0
;
BatchStrideB1
=
BatchStrideB1
<
0
?
DefaultBatchStrideB1
:
BatchStrideB1
;
BatchStrideC
=
BatchStrideC
<
0
?
DefaultBatchStrideC
:
BatchStrideC
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
Row
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
1
,
stride
}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
Tensor
<
B0DataType
>
b0_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB0
,
BatchStrideB0
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_g_n_o
(
f_host_tensor_descriptor
(
BatchCount
,
N
,
O
,
StrideB1
,
BatchStrideB1
,
B1Layout
{}));
Tensor
<
CDataType
>
c_g_m_o_host_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_o_device_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_g_k_n: "
<<
b0_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_g_n_o: "
<<
b1_g_n_o
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_o: "
<<
c_g_m_o_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
5
,
5
});
break
;
case
2
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
default
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
DeviceMem
a_g_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_g_k_n_device_buf
(
sizeof
(
B0DataType
)
*
b0_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_g_n_o_device_buf
(
sizeof
(
B1DataType
)
*
b1_g_n_o
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_g_m_o_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_o_device_result
.
mDesc
.
GetElementSpaceSize
());
a_g_m_k_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b0_g_k_n_device_buf
.
ToDevice
(
b0_g_k_n
.
mData
.
data
());
b1_g_n_o_device_buf
.
ToDevice
(
b1_g_n_o
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{
alpha
};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_g_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
b0_g_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B1DataType
*>
(
b1_g_n_o_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_g_m_o_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
O
,
BatchCount
,
StrideA
,
StrideB0
,
StrideB1
,
StrideC
,
BatchStrideA
,
BatchStrideB0
,
BatchStrideB1
,
BatchStrideC
,
a_element_op
,
b0_element_op
,
acc0_element_op
,
b1_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_g_m_o_device_buf
.
FromDevice
(
c_g_m_o_device_result
.
mData
.
data
());
if
(
do_verification
)
{
// Output of Gemm0 is input A of Gemm1
Tensor
<
AccDataType
>
acc0_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
Tensor
<
ADataType
>
a1_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
acc0_element_op
);
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
return
ck
::
utils
::
check_err
(
c_g_m_o_device_result
.
mData
,
c_g_m_o_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
}
example/32_batched_gemm_scale_softmax_gemm/run_batched_gemm_scale_softmax_gemm_permute.inc
View file @
463e2aa1
...
...
@@ -253,7 +253,23 @@ int run(int argc, char* argv[])
self
(
idx
)
=
c_g_m_o_host_result
(
g
,
idx
[
2
],
idx
[
3
]);
});
return
ck
::
utils
::
check_err
(
c_gs_ms_os_device_result
.
mData
,
c_gs_ms_os_host_result
.
mData
)
// default absolute error and relative error is 0.001
double
rtol
=
1
e
-
3
;
double
atol
=
1
e
-
3
;
// when BF16 is taken, set absolute error and relative error to 0.01
if
(
std
::
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
B0DataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
B1DataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
CDataType
,
ck
::
bhalf_t
>
)
{
rtol
=
1
e
-
2
;
atol
=
1
e
-
2
;
}
return
ck
::
utils
::
check_err
(
c_gs_ms_os_device_result
.
mData
,
c_gs_ms_os_host_result
.
mData
,
"Error: Incorrect results!"
,
rtol
,
atol
)
?
0
:
1
;
}
...
...
example/34_batchnorm/CMakeLists.txt
View file @
463e2aa1
add_example_executable
(
example_batchnorm_forward batchnorm_forward_nhwc.cpp
)
add_example_executable
(
example_batchnorm_infer batchnorm_infer_nhwc.cpp
)
add_example_executable
(
example_batchnorm_forward_training batchnorm_forward_training_nhwc.cpp
)
add_example_executable
(
example_batchnorm_forward_inferring batchnorm_forward_inferring_nhwc.cpp
)
add_example_executable
(
example_batchnorm_backward batchnorm_backward_nhwc.cpp
)
example/34_batchnorm/README.md
View file @
463e2aa1
...
...
@@ -53,4 +53,29 @@ Start running 10 times...
Perf: 1.28235 ms, 523.329 GB/s
```
## Run ```batchnorm backward nhwc```
```
bash
# -D <xxx> : input 4-d tensor lengths
# -v <x> : verification (0=no, 1=yes)
Arg1: data
type
(
0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64
)
Arg2
--
1/0 to indicate whether to use saved mean and invVariance
Arg3
--
init method used
for
dy and bnScale
(
0
=
no init,
1
=
single integer value,
2
=
scope integer value,
3
=
decimal value
)
Arg4
--
time
kernel
(
0
=
no,
1
=
yes
)
Arg5: use multi-block welford
(
0
=
n0,
1
=
yes
)
./bin/example_batchnorm_backward
-D
128,16,3,1024
-v
1 0 0 3 1 1
```
Result
```
./bin/example_batchnorm_backward -D 128,16,3,1024 -v 1 0 0 3 1 1
launch_and_time_kernel: grid_dim {6144, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
launch_and_time_kernel: grid_dim {6144, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
launch_and_time_kernel: grid_dim {6144, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.411026 ms, 91.8702 GB/s
```
example/34_batchnorm/batchnorm_backward_nhwc.cpp
0 → 100644
View file @
463e2aa1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <limits>
#include <iostream>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_backward_nhwc_c.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp"
static
struct
option
long_options
[]
=
{{
"inOutLengths"
,
required_argument
,
nullptr
,
'D'
},
{
"verify"
,
required_argument
,
nullptr
,
'v'
},
{
"help"
,
no_argument
,
nullptr
,
'?'
},
{
nullptr
,
0
,
nullptr
,
0
}};
class
BatchNormBwdArg
{
private:
int
option_index
=
0
;
public:
std
::
vector
<
size_t
>
inOutLengths
;
bool
do_verification
=
false
;
bool
haveSavedMeanInvVar
;
int
data_type
=
0
;
int
init_method
=
3
;
bool
time_kernel
=
false
;
bool
use_multiblock_welford
=
false
;
public:
void
show_usage
(
const
char
*
cmd
)
{
// clang-format off
std
::
cout
<<
"Usage of "
<<
cmd
<<
std
::
endl
;
std
::
cout
<<
"--inOutLengths or -D, comma separated list of input tensor dimension lengths, must have 4 integers for nhwc"
<<
std
::
endl
;
std
::
cout
<<
"--verify or -v, 1/0 to indicate whether to verify the result by comparing with the host-based batch-normalization"
<<
std
::
endl
;
std
::
cout
<<
"Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64)"
<<
std
::
endl
;
std
::
cout
<<
"Arg2 -- 1/0 to indicate whether to use saved mean and invVariance"
<<
std
::
endl
;
std
::
cout
<<
"Arg3 -- init method used for dy and bnScale (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)"
<<
std
::
endl
;
std
::
cout
<<
"Arg4 -- time kernel (0=no, 1=yes)"
<<
std
::
endl
;
std
::
cout
<<
"Arg5: use multi-block welford (0=n0, 1=yes)"
<<
std
::
endl
;
// clang-format on
};
int
processArgs
(
int
argc
,
char
*
argv
[])
{
using
ck
::
host_common
::
getTypeValuesFromString
;
int
ch
;
while
(
1
)
{
ch
=
getopt_long
(
argc
,
argv
,
"D:v:"
,
long_options
,
&
option_index
);
if
(
ch
==
-
1
)
break
;
switch
(
ch
)
{
case
'D'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
inOutLengths
=
getTypeValuesFromString
<
size_t
>
(
optarg
);
if
(
inOutLengths
.
size
()
!=
4
)
throw
std
::
runtime_error
(
"NHWC tensor layout should have 4 length values specified!"
);
break
;
case
'v'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
do_verification
=
static_cast
<
bool
>
(
std
::
atoi
(
optarg
));
break
;
case
'?'
:
if
(
std
::
string
(
long_options
[
option_index
].
name
)
==
"help"
)
{
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
break
;
default:
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
};
if
(
optind
+
5
>
argc
)
throw
std
::
runtime_error
(
"Invalid cmd-line arguments, more argumetns are needed!"
);
data_type
=
std
::
atoi
(
argv
[
optind
++
]);
haveSavedMeanInvVar
=
std
::
atoi
(
argv
[
optind
++
]);
init_method
=
std
::
atoi
(
argv
[
optind
++
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
atoi
(
argv
[
optind
++
]));
use_multiblock_welford
=
static_cast
<
bool
>
(
std
::
atoi
(
argv
[
optind
]));
return
(
0
);
};
};
using
namespace
ck
;
template
<
typename
InOutDataType
,
typename
AccDataType
,
bool
UseMultiblockInK
>
bool
bnorm_bwd_nhwc_test
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
std
::
vector
<
size_t
>
inOutLengths
,
bool
haveSavedMeanInvVar
,
double
epsilon
)
{
// for NHWC BatchNorm calculation of mean and meansquare
constexpr
index_t
Rank
=
4
;
constexpr
index_t
NumReduceDim
=
3
;
const
std
::
vector
<
size_t
>
scaleBiasMeanVarLengths
=
{
inOutLengths
[
3
]};
// input data of the batchnorm backward algorithm
Tensor
<
InOutDataType
>
x
(
inOutLengths
);
Tensor
<
InOutDataType
>
dy
(
inOutLengths
);
Tensor
<
AccDataType
>
bnScale
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
savedMean
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
savedInvVar
(
scaleBiasMeanVarLengths
);
// savedVariance is only used for initializing savedInvVar
Tensor
<
AccDataType
>
savedVariance
(
scaleBiasMeanVarLengths
);
// output data of the batchnorm backward algorithm
Tensor
<
InOutDataType
>
dx_ref
(
inOutLengths
);
Tensor
<
InOutDataType
>
dx
(
inOutLengths
);
Tensor
<
AccDataType
>
dscale
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
dbias
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
dscale_ref
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
dbias_ref
(
scaleBiasMeanVarLengths
);
auto
inOutStrides
=
dy
.
mDesc
.
GetStrides
();
auto
scaleBiasMeanVarStrides
=
dscale
.
mDesc
.
GetStrides
();
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
();
if
(
haveSavedMeanInvVar
)
{
const
float
x_mean
=
0.0
f
;
const
float
x_stddev
=
1.0
f
;
const
float
noise_stddev
=
0.0001
f
;
// input data in normal distribution
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
InOutDataType
>
{
x_mean
,
x_stddev
},
num_thread
);
// initialize the savedMean to be values with tiny variation to the mean of the x values
savedMean
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_mean
,
noise_stddev
},
num_thread
);
// initialize the variance to be values with tiny variation to the variance of the x values
savedVariance
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_stddev
*
x_stddev
,
noise_stddev
},
num_thread
);
auto
it_src
=
savedVariance
.
mData
.
begin
();
auto
it_dst
=
savedInvVar
.
mData
.
begin
();
float
tmp_epsilon
=
std
::
numeric_limits
<
float
>::
epsilon
();
while
(
it_src
!=
savedVariance
.
mData
.
end
())
{
*
it_dst
=
type_convert
<
AccDataType
>
(
1.0
f
/
std
::
sqrtf
(
type_convert
<
float
>
(
*
it_src
)
+
tmp_epsilon
));
it_src
++
;
it_dst
++
;
};
}
else
{
const
float
x_mean
=
0.0
f
;
const
float
x_stddev
=
1.0
f
;
// input data in normal distribution
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
InOutDataType
>
{
x_mean
,
x_stddev
},
num_thread
);
};
if
(
do_verification
)
{
switch
(
init_method
)
{
case
0
:
dy
.
GenerateTensorValue
(
GeneratorTensor_0
<
InOutDataType
>
{},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_0
<
InOutDataType
>
{},
num_thread
);
break
;
case
1
:
dy
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
break
;
case
2
:
dy
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
0.2
f
,
0.2
f
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
0.5
f
,
0.5
f
},
num_thread
);
}
};
// input data of the batchnorm backward algorithm
DeviceMem
x_dev
(
sizeof
(
InOutDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dy_dev
(
sizeof
(
InOutDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bnScale_dev
(
sizeof
(
AccDataType
)
*
bnScale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
savedMean_dev
(
sizeof
(
AccDataType
)
*
savedMean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
savedInvVar_dev
(
sizeof
(
AccDataType
)
*
savedInvVar
.
mDesc
.
GetElementSpaceSize
());
// output data of the batchnorm backward algorithm
DeviceMem
dx_dev
(
sizeof
(
InOutDataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dscale_dev
(
sizeof
(
AccDataType
)
*
dscale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbias_dev
(
sizeof
(
AccDataType
)
*
dbias
.
mDesc
.
GetElementSpaceSize
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
bnScale_dev
.
ToDevice
(
bnScale
.
mData
.
data
());
if
(
haveSavedMeanInvVar
)
{
savedMean_dev
.
ToDevice
(
savedMean
.
mData
.
data
());
savedInvVar_dev
.
ToDevice
(
savedInvVar
.
mData
.
data
());
};
std
::
array
<
index_t
,
Rank
>
i_inOutLengths
;
std
::
array
<
index_t
,
Rank
>
i_inOutStrides
;
std
::
array
<
index_t
,
Rank
-
NumReduceDim
>
i_scaleBiasMeanVarLengths
;
std
::
array
<
index_t
,
Rank
-
NumReduceDim
>
i_scaleBiasMeanVarStrides
;
std
::
copy
(
inOutLengths
.
begin
(),
inOutLengths
.
end
(),
i_inOutLengths
.
begin
());
std
::
copy
(
inOutStrides
.
begin
(),
inOutStrides
.
end
(),
i_inOutStrides
.
begin
());
std
::
copy
(
scaleBiasMeanVarLengths
.
begin
(),
scaleBiasMeanVarLengths
.
end
(),
i_scaleBiasMeanVarLengths
.
begin
());
std
::
copy
(
scaleBiasMeanVarStrides
.
begin
(),
scaleBiasMeanVarStrides
.
end
(),
i_scaleBiasMeanVarStrides
.
begin
());
using
PassThroughOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceBatchNormBwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchNormBwdImpl
<
InOutDataType
,
InOutDataType
,
InOutDataType
,
AccDataType
,
AccDataType
,
// ScaleDataType
AccDataType
,
// BiasDataType
AccDataType
,
// MeanVarDataType
PassThroughOp
,
Rank
,
NumReduceDim
,
UseMultiblockInK
,
256
,
16
,
16
,
1
,
2
,
0
,
1
,
// XSrcVectorSize
1
,
// DySrcVectorSize
1
,
// DxDstVectorSize
1
,
// ScaleSrcDstVectorSize
1
,
// BiasDstVectorSize
1
>
;
// MeanVarSrcVectorSize
auto
batchnorm_bwd
=
DeviceBatchNormBwdInstance
{};
auto
argument_ptr
=
batchnorm_bwd
.
MakeArgumentPointer
(
i_inOutLengths
,
i_inOutStrides
,
i_inOutStrides
,
i_inOutStrides
,
{
0
,
1
,
2
},
i_scaleBiasMeanVarLengths
,
i_scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
,
x_dev
.
GetDeviceBuffer
(),
dy_dev
.
GetDeviceBuffer
(),
bnScale_dev
.
GetDeviceBuffer
(),
haveSavedMeanInvVar
?
savedMean_dev
.
GetDeviceBuffer
()
:
nullptr
,
haveSavedMeanInvVar
?
savedInvVar_dev
.
GetDeviceBuffer
()
:
nullptr
,
epsilon
,
PassThroughOp
{},
dx_dev
.
GetDeviceBuffer
(),
dscale_dev
.
GetDeviceBuffer
(),
dbias_dev
.
GetDeviceBuffer
());
if
(
!
batchnorm_bwd
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters seems not supported by the BatchNorm device instance, "
"exiting!"
<<
std
::
endl
;
return
(
false
);
};
size_t
workspace_sz
=
batchnorm_bwd
.
GetWorkSpaceSize
(
argument_ptr
.
get
());
DeviceMem
workspace_dev
(
workspace_sz
);
batchnorm_bwd
.
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
auto
invoker_ptr
=
batchnorm_bwd
.
MakeInvokerPointer
();
if
(
time_kernel
)
{
float
avg_time
=
0.0
f
;
size_t
num_bytes
=
0
;
size_t
total_length
=
inOutLengths
[
0
]
*
inOutLengths
[
1
]
*
inOutLengths
[
2
]
*
inOutLengths
[
3
];
size_t
invariant_length
=
inOutLengths
[
3
];
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
// inputing of x, dy, scale, outputing of dx, dscale, dbias
num_bytes
+=
total_length
*
sizeof
(
InOutDataType
)
*
3
+
invariant_length
*
sizeof
(
AccDataType
)
*
3
;
// outputing of mean, inv-variance
num_bytes
+=
haveSavedMeanInvVar
?
invariant_length
*
sizeof
(
AccDataType
)
*
2
:
0
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
}
else
(
void
)
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
bool
pass
=
true
;
if
(
do_verification
)
{
using
ReferenceBatchNormBwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchNormBwd_Input_N_H_W_C_Output_C
<
InOutDataType
,
InOutDataType
,
InOutDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
PassThroughOp
>
;
auto
batchNormBwd_ref
=
ReferenceBatchNormBwdInstance
{};
auto
argument_ptr_ref
=
batchNormBwd_ref
.
MakeArgumentPointer
(
i_inOutLengths
,
i_inOutStrides
,
i_inOutStrides
,
i_inOutStrides
,
{
0
,
1
,
2
},
i_scaleBiasMeanVarLengths
,
i_scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
,
x
.
mData
.
data
(),
dy
.
mData
.
data
(),
bnScale
.
mData
.
data
(),
haveSavedMeanInvVar
?
savedMean
.
mData
.
data
()
:
nullptr
,
haveSavedMeanInvVar
?
savedInvVar
.
mData
.
data
()
:
nullptr
,
epsilon
,
PassThroughOp
{},
dx_ref
.
mData
.
data
(),
dscale_ref
.
mData
.
data
(),
dbias_ref
.
mData
.
data
());
if
(
!
batchNormBwd_ref
.
IsSupportedArgument
(
argument_ptr_ref
.
get
()))
{
std
::
cout
<<
"The runtime parameters seems not supported by the device instance, exiting!"
<<
std
::
endl
;
return
(
false
);
};
auto
invoker_ptr_ref
=
batchNormBwd_ref
.
MakeInvokerPointer
();
(
void
)
invoker_ptr_ref
->
Run
(
argument_ptr_ref
.
get
());
dx_dev
.
FromDevice
(
dx
.
mData
.
data
());
dscale_dev
.
FromDevice
(
dscale
.
data
());
dbias_dev
.
FromDevice
(
dbias
.
data
());
// clang-format off
pass
=
pass
&&
ck
::
utils
::
check_err
(
dbias
.
mData
,
dbias_ref
.
mData
,
"dBias result:"
,
1e-5
,
1e-5
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dscale
.
mData
,
dscale_ref
.
mData
,
"dScale result:"
,
1e-5
,
2e-4
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dx
.
mData
,
dx_ref
.
mData
,
"dx result:"
);
// clang-format on
};
return
(
pass
);
};
static
const
double
epsilon
=
std
::
numeric_limits
<
float
>::
epsilon
();
int
main
(
int
argc
,
char
*
argv
[])
{
bool
pass
=
true
;
if
(
argc
>
1
)
{
BatchNormBwdArg
arg
;
if
(
arg
.
processArgs
(
argc
,
argv
)
<
0
)
return
(
-
1
);
if
(
arg
.
data_type
==
0
)
{
if
(
arg
.
use_multiblock_welford
)
pass
=
bnorm_bwd_nhwc_test
<
ck
::
half_t
,
float
,
true
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
haveSavedMeanInvVar
,
epsilon
);
else
pass
=
bnorm_bwd_nhwc_test
<
ck
::
half_t
,
float
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
haveSavedMeanInvVar
,
epsilon
);
}
else
if
(
arg
.
data_type
==
1
)
{
if
(
arg
.
use_multiblock_welford
)
pass
=
bnorm_bwd_nhwc_test
<
float
,
float
,
true
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
haveSavedMeanInvVar
,
epsilon
);
else
pass
=
bnorm_bwd_nhwc_test
<
float
,
float
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
haveSavedMeanInvVar
,
epsilon
);
}
else
if
(
arg
.
data_type
==
5
)
{
if
(
arg
.
use_multiblock_welford
)
pass
=
bnorm_bwd_nhwc_test
<
ck
::
bhalf_t
,
float
,
true
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
haveSavedMeanInvVar
,
epsilon
);
else
pass
=
bnorm_bwd_nhwc_test
<
ck
::
bhalf_t
,
float
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
haveSavedMeanInvVar
,
epsilon
);
}
else
if
(
arg
.
data_type
==
6
)
{
if
(
arg
.
use_multiblock_welford
)
pass
=
bnorm_bwd_nhwc_test
<
double
,
double
,
true
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
haveSavedMeanInvVar
,
epsilon
);
else
pass
=
bnorm_bwd_nhwc_test
<
double
,
double
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
haveSavedMeanInvVar
,
epsilon
);
}
}
else
{
pass
=
bnorm_bwd_nhwc_test
<
ck
::
half_t
,
float
,
true
>
(
true
,
3
,
false
,
// don't time kernel
{
128
,
16
,
6
,
512
},
false
,
epsilon
);
pass
=
pass
&&
bnorm_bwd_nhwc_test
<
ck
::
half_t
,
float
,
false
>
(
true
,
3
,
false
,
// don't time kernel
{
128
,
16
,
3
,
1024
},
false
,
epsilon
);
};
return
(
pass
?
0
:
1
);
}
example/34_batchnorm/batchnorm_infer_nhwc.cpp
→
example/34_batchnorm/batchnorm_
forward_
infer
ring
_nhwc.cpp
View file @
463e2aa1
...
...
@@ -15,7 +15,8 @@
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_infer_nhwc_c.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_infer.hpp"
#include "batchnorm_infer_impl.hpp"
...
...
@@ -124,6 +125,8 @@ bool bnorm_infer_nhwc_test(bool do_verification,
constexpr
int
Rank
=
4
;
constexpr
int
NumReduceDim
=
3
;
// when using lengths[] to create a tensor, lengths[0] is the length of highest dimension
// eg. N of NHWC, so lengths[3] is the dimension C length of NHWC
const
std
::
vector
<
size_t
>
scaleBiasMeanVarLengths
=
{
inOutLengths
[
3
]};
// input data of the batchnorm forward algorithm
...
...
@@ -260,20 +263,25 @@ bool bnorm_infer_nhwc_test(bool do_verification,
if
(
do_verification
)
{
using
PassThroughOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ReferenceBatchNormInferInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchNormInfer_Input_N_H_W_C_Output_C
<
InOutDataType
,
ck
::
tensor_operation
::
host
::
ReferenceBatchNormInfer
<
InOutDataType
,
InOutDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
AccDataType
>
;
AccDataType
,
PassThroughOp
,
Rank
,
NumReduceDim
>
;
auto
batchNormInfer_ref
=
ReferenceBatchNormInferInstance
{};
auto
argument_ptr_ref
=
batchNormInfer_ref
.
MakeArgumentPointer
(
i_inOutLengths
,
i_inOutStrides
,
i_inOutStrides
,
{
0
,
1
,
2
},
i_scaleBiasMeanVarLengths
,
i_scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
,
...
...
@@ -282,6 +290,7 @@ bool bnorm_infer_nhwc_test(bool do_verification,
bnScale
.
mData
.
data
(),
bnBias
.
mData
.
data
(),
epsilon
,
PassThroughOp
{},
estimatedMean
.
mData
.
data
(),
estimatedVariance
.
mData
.
data
(),
y_ref
.
mData
.
data
());
...
...
Prev
1
2
3
4
5
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment