Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
458df691
Unverified
Commit
458df691
authored
Feb 10, 2023
by
Adam Osewski
Committed by
GitHub
Feb 10, 2023
Browse files
Merge branch 'develop' into aosewski/ggemm
parents
6c9bdbad
f7d28f3e
Changes
51
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1121 additions
and
130 deletions
+1121
-130
CHANGELOG.md
CHANGELOG.md
+23
-0
Jenkinsfile
Jenkinsfile
+10
-3
client_example/01_gemm/gemm.cpp
client_example/01_gemm/gemm.cpp
+1
-1
client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp
...xample/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp
+1
-1
client_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu.cpp
...nt_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu.cpp
+1
-1
client_example/02_gemm_add_add_fastgelu/gemm_fastgelu.cpp
client_example/02_gemm_add_add_fastgelu/gemm_fastgelu.cpp
+1
-1
client_example/03_gemm_layernorm/CMakeLists.txt
client_example/03_gemm_layernorm/CMakeLists.txt
+5
-2
client_example/03_gemm_layernorm/gemm_add_add_layernorm_naive.cpp
...xample/03_gemm_layernorm/gemm_add_add_layernorm_naive.cpp
+1
-1
client_example/03_gemm_layernorm/gemm_add_relu_add_layernorm_welford.cpp
...03_gemm_layernorm/gemm_add_relu_add_layernorm_welford.cpp
+244
-0
client_example/08_fused_attention/CMakeLists.txt
client_example/08_fused_attention/CMakeLists.txt
+3
-0
client_example/08_fused_attention/fused_attention_bias.cpp
client_example/08_fused_attention/fused_attention_bias.cpp
+226
-0
client_example/15_gemm_add_multiply/gemm_add_multiply.cpp
client_example/15_gemm_add_multiply/gemm_add_multiply.cpp
+1
-1
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
...layernorm/gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
+1
-2
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
...yernorm/gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
+10
-9
example/21_gemm_layernorm/gemm_layernorm_xdl_naive_fp16.cpp
example/21_gemm_layernorm/gemm_layernorm_xdl_naive_fp16.cpp
+1
-2
example/21_gemm_layernorm/gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
...layernorm/gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
+1
-1
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
+1
-0
example/47_gemm_bias_softmax_gemm_permute/gemm_bias_softmax_gemm_permute.cpp
...s_softmax_gemm_permute/gemm_bias_softmax_gemm_permute.cpp
+408
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp
...n/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp
+4
-4
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
...device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
+178
-101
No files found.
CHANGELOG.md
0 → 100644
View file @
458df691
# Change Log for Composable Kernel
Full documentation for Composable Kernel is not yet available.
## CK 0.1.1 for ROCm 5.5.0
### Fixed
-
Fixed a bug in 6-dimensional kernels (#555).
-
Fixed grouped ConvBwdWeight test case failure (#524).
### Optimizations
-
Optimized ...
### Added
-
Added user tutorial (#563).
-
Added more instances for irregular GEMM sizes (#560).
-
Added inter-wave consumer-producer programming model for GEMM kernels (#310).
-
Added multi-D GEMM client APIs (#534).
-
Added multi-embeddings support (#542).
-
Added Navi3x blockwise GEMM and real GEMM support (#541).
### Changed
-
Changed ...
Jenkinsfile
View file @
458df691
...
@@ -19,7 +19,14 @@ def runShell(String command){
...
@@ -19,7 +19,14 @@ def runShell(String command){
}
}
def
getDockerImageName
(){
def
getDockerImageName
(){
def
img
=
"${env.CK_DOCKERHUB}:ck_ub20.04_rocm${params.ROCMVERSION}_${params.COMPILER_VERSION}"
def
img
if
(
params
.
COMPILER_COMMIT
==
""
){
img
=
"${env.CK_DOCKERHUB}:ck_ub20.04_rocm${params.ROCMVERSION}_${params.COMPILER_VERSION}"
}
else
{
def
commit
=
"${params.COMPILER_COMMIT}"
[
0
..
6
]
img
=
"${env.CK_DOCKERHUB}:ck_ub20.04_rocm${params.ROCMVERSION}_${params.COMPILER_VERSION}_${commit}"
}
return
img
return
img
}
}
...
@@ -551,8 +558,8 @@ def process_results(Map conf=[:]){
...
@@ -551,8 +558,8 @@ def process_results(Map conf=[:]){
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
CRON_SETTINGS
=
BRANCH_NAME
==
"develop"
?
'''0 23 * * * % RUN_FULL_QA=true
CRON_SETTINGS
=
BRANCH_NAME
==
"develop"
?
'''0 23 * * * % RUN_FULL_QA=true
0 21 * * * % RUN_FULL_QA=false;COMPILER_VERSION=release;COMPILER_COMMIT=
""
0 21 * * * % RUN_FULL_QA=false;COMPILER_VERSION=release;COMPILER_COMMIT=
0 19 * * * % BUILD_DOCKER=true;COMPILER_VERSION=amd-stg-open;COMPILER_COMMIT=
""
'''
:
""
0 19 * * * % BUILD_DOCKER=true;COMPILER_VERSION=amd-stg-open;COMPILER_COMMIT='''
:
""
pipeline
{
pipeline
{
agent
none
agent
none
...
...
client_example/01_gemm/gemm.cpp
View file @
458df691
...
@@ -83,7 +83,7 @@ int main(int argc, char* argv[])
...
@@ -83,7 +83,7 @@ int main(int argc, char* argv[])
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
}
...
...
client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp
View file @
458df691
...
@@ -92,7 +92,7 @@ int main(int argc, char* argv[])
...
@@ -92,7 +92,7 @@ int main(int argc, char* argv[])
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
}
...
...
client_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu.cpp
View file @
458df691
...
@@ -88,7 +88,7 @@ int main(int argc, char* argv[])
...
@@ -88,7 +88,7 @@ int main(int argc, char* argv[])
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
}
...
...
client_example/02_gemm_add_add_fastgelu/gemm_fastgelu.cpp
View file @
458df691
...
@@ -84,7 +84,7 @@ int main(int argc, char* argv[])
...
@@ -84,7 +84,7 @@ int main(int argc, char* argv[])
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
}
...
...
client_example/03_gemm_layernorm/CMakeLists.txt
View file @
458df691
add_executable
(
client_gemm_add_add_reduce_normalize gemm_add_add_layernorm.cpp
)
add_executable
(
client_gemm_add_add_layernorm_naive gemm_add_add_layernorm_naive.cpp
)
target_link_libraries
(
client_gemm_add_add_reduce_normalize PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_gemm_add_add_layernorm_naive PRIVATE composable_kernel::device_operations
)
add_executable
(
client_gemm_add_relu_add_layernorm_welford gemm_add_relu_add_layernorm_welford.cpp
)
target_link_libraries
(
client_gemm_add_relu_add_layernorm_welford PRIVATE composable_kernel::device_operations
)
client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp
→
client_example/03_gemm_layernorm/gemm_add_add_layernorm
_naive
.cpp
View file @
458df691
...
@@ -190,7 +190,7 @@ int main()
...
@@ -190,7 +190,7 @@ int main()
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
}
...
...
client_example/03_gemm_layernorm/gemm_add_relu_add_layernorm_welford.cpp
0 → 100644
View file @
458df691
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_relu_add_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_layernorm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
F16
=
ck
::
half_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddReluAdd
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
// DataType
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
D0DataType
=
F16
;
using
D1DataType
=
F16
;
using
GammaDataType
=
F16
;
using
BetaDataType
=
F16
;
using
HDataType
=
F16
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D0Layout
=
Row
;
using
D1Layout
=
Row
;
using
HLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddReluAdd
;
using
HElementOp
=
PassThrough
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{},
mMemSize_
(
mem_size
)
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
void
SetZero
()
const
{
(
void
)
hipMemset
(
p_mem_
,
0
,
mMemSize_
);
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
std
::
size_t
mMemSize_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideD0
=
0
;
ck
::
index_t
StrideD1
=
N
;
ck
::
index_t
StrideH
=
N
;
float
epsilon
=
1e-5
;
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
ALayout
{}));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
BLayout
{}));
SimpleDeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideD0
,
D0Layout
{}));
SimpleDeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideD1
,
D1Layout
{}));
SimpleDeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
N
);
SimpleDeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
N
);
SimpleDeviceMem
h_device_buf
(
sizeof
(
HDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideH
,
HLayout
{}));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDLayernorm
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
,
D1Layout
>
,
HLayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
,
D1DataType
>
,
GammaDataType
,
BetaDataType
,
HDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
const
auto
h_element_op
=
HElementOp
{};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
h_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
{
StrideD0
,
StrideD1
},
StrideH
,
epsilon
,
a_element_op
,
b_element_op
,
cde_element_op
,
h_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace_dev
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
h_device_buf
.
SetZero
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
(
sizeof
(
D0DataType
)
+
sizeof
(
D1DataType
)
+
sizeof
(
HDataType
))
*
M
*
N
+
(
sizeof
(
GammaDataType
)
+
sizeof
(
BetaDataType
))
*
N
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
h_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
{
StrideD0
,
StrideD1
},
StrideH
,
epsilon
,
a_element_op
,
b_element_op
,
cde_element_op
,
h_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace_dev
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
h_device_buf
.
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
\ No newline at end of file
client_example/08_fused_attention/CMakeLists.txt
View file @
458df691
add_executable
(
client_fused_attention fused_attention.cpp
)
add_executable
(
client_fused_attention fused_attention.cpp
)
target_link_libraries
(
client_fused_attention PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_fused_attention PRIVATE composable_kernel::device_operations
)
add_executable
(
client_fused_attention_bias fused_attention_bias.cpp
)
target_link_libraries
(
client_fused_attention_bias PRIVATE composable_kernel::device_operations
)
client_example/08_fused_attention/fused_attention_bias.cpp
0 → 100644
View file @
458df691
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_bias_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
B0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
B1ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
static
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
using
ADataType
=
ck
::
half_t
;
using
B0DataType
=
ck
::
half_t
;
using
B1DataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
D0DataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
int
G0
=
48
;
int
G1
=
16
;
int
M
=
1024
;
int
N
=
1024
;
int
K
=
64
;
int
O
=
64
;
// A layout [G0, M, G1, K]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B0 layout [G0, N, G1, K]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
G0
,
G1
,
N
,
K
};
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
{
N
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B1 layout [G0, N, G1, O]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
G0
,
G1
,
O
,
N
};
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
{
N
*
G1
*
O
,
O
,
1
,
G1
*
O
};
// C layout [G0, M, G1, O]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
};
// D layout [G0, M, G1, N]
std
::
vector
<
ck
::
index_t
>
d0_gs_ms_ns_lengths
{
G0
,
G1
,
M
,
N
};
std
::
vector
<
ck
::
index_t
>
d0_gs_ms_ns_strides
{
M
*
G1
*
N
,
N
,
G1
*
N
,
1
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
G0
*
G1
*
M
*
K
);
SimpleDeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
G0
*
G1
*
N
*
K
);
SimpleDeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
G0
*
G1
*
M
*
N
);
SimpleDeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
G0
*
G1
*
O
*
N
);
SimpleDeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
G0
*
G1
*
M
*
O
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute
<
2
,
1
,
1
,
1
,
1
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
ck
::
Tuple
<
D0DataType
>
,
ck
::
Tuple
<>
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
MaskingSpec
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device op instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
void
*
,
1
>
{
d0_device_buf
.
GetDeviceBuffer
()},
// p_acc0_biases
{},
// p_acc1_biases
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
,
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_lengths
},
// acc0_biases_gs_ms_ns_lengths
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_strides
},
// acc0_biases_gs_ms_ns_strides
{},
// acc1_biases_gs_ms_os_lengths
{},
// acc1_biases_gs_ms_os_strides
AElementOp
{},
B0ElementOp
{},
Acc0ElementOp
{
1
/
sqrtf
(
K
)},
B1ElementOp
{},
CElementOp
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
G0
*
G1
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
+
sizeof
(
D0DataType
)
*
M
*
N
)
*
G0
*
G1
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best instance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
void
*
,
1
>
{
d0_device_buf
.
GetDeviceBuffer
()},
// p_acc0_biases
{},
// p_acc1_biases
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
,
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_lengths
},
// acc0_biases_gs_ms_ns_lengths
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_strides
},
// acc0_biases_gs_ms_ns_strides
{},
// acc1_biases_gs_ms_os_lengths
{},
// acc1_biases_gs_ms_os_strides
AElementOp
{},
B0ElementOp
{},
Acc0ElementOp
{
1
/
sqrtf
(
K
)},
B1ElementOp
{},
CElementOp
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/15_gemm_add_multiply/gemm_add_multiply.cpp
View file @
458df691
...
@@ -92,7 +92,7 @@ int main(int argc, char* argv[])
...
@@ -92,7 +92,7 @@ int main(int argc, char* argv[])
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
}
...
...
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
View file @
458df691
...
@@ -4,7 +4,6 @@
...
@@ -4,7 +4,6 @@
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
#include <initializer_list>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
...
@@ -116,7 +115,7 @@ auto f_host_tensor_descriptor2d =
...
@@ -116,7 +115,7 @@ auto f_host_tensor_descriptor2d =
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
}
...
...
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
View file @
458df691
...
@@ -4,7 +4,6 @@
...
@@ -4,7 +4,6 @@
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
#include <initializer_list>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
...
@@ -15,6 +14,7 @@
...
@@ -15,6 +14,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
...
@@ -69,21 +69,20 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleDLayern
...
@@ -69,21 +69,20 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleDLayern
// clang-format on
// clang-format on
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
return
HostTensorDescriptor
({
len
},
{
stride
});
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
};
auto
f_host_tensor_descriptor2d
=
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
using
namespace
ck
::
literals
;
if
constexpr
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
}
else
else
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
}
};
};
...
@@ -97,6 +96,7 @@ void host_gemm_layernorm(Tensor<HDataType>& h_m_n,
...
@@ -97,6 +96,7 @@ void host_gemm_layernorm(Tensor<HDataType>& h_m_n,
AElementOp
a_element_op
,
AElementOp
a_element_op
,
BElementOp
b_element_op
,
BElementOp
b_element_op
,
CDEElementOp
cde_element_op
,
CDEElementOp
cde_element_op
,
HElementOp
h_element_op
,
int
M
,
int
M
,
int
N
,
int
N
,
AccDataType
epsilon
=
1e-5
)
AccDataType
epsilon
=
1e-5
)
...
@@ -145,7 +145,7 @@ void host_gemm_layernorm(Tensor<HDataType>& h_m_n,
...
@@ -145,7 +145,7 @@ void host_gemm_layernorm(Tensor<HDataType>& h_m_n,
auto
ref_layernorm_invoker
=
ref_layernorm
.
MakeInvoker
();
auto
ref_layernorm_invoker
=
ref_layernorm
.
MakeInvoker
();
auto
ref_layernorm_argument
=
ref_layernorm
.
MakeArgument
(
auto
ref_layernorm_argument
=
ref_layernorm
.
MakeArgument
(
e_m_n
,
gamma_n
,
beta_n
,
h_m_n
,
HE
lement
Op
{}
,
{
M
,
N
},
{
1
},
epsilon
);
e_m_n
,
gamma_n
,
beta_n
,
h_m_n
,
h_e
lement
_op
,
{
M
,
N
},
{
1
},
epsilon
);
ref_layernorm_invoker
.
Run
(
ref_layernorm_argument
);
ref_layernorm_invoker
.
Run
(
ref_layernorm_argument
);
}
}
...
@@ -249,6 +249,7 @@ int main()
...
@@ -249,6 +249,7 @@ int main()
a_element_op
,
a_element_op
,
b_element_op
,
b_element_op
,
cde_element_op
,
cde_element_op
,
h_element_op
,
M
,
M
,
N
,
N
,
epsilon
);
epsilon
);
...
...
example/21_gemm_layernorm/gemm_layernorm_xdl_naive_fp16.cpp
View file @
458df691
...
@@ -4,7 +4,6 @@
...
@@ -4,7 +4,6 @@
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
#include <initializer_list>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
...
@@ -115,7 +114,7 @@ auto f_host_tensor_descriptor2d =
...
@@ -115,7 +114,7 @@ auto f_host_tensor_descriptor2d =
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
}
...
...
example/21_gemm_layernorm/gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
View file @
458df691
...
@@ -135,7 +135,7 @@ int main(int argc, char* argv[])
...
@@ -135,7 +135,7 @@ int main(int argc, char* argv[])
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
}
...
...
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
0 → 100644
View file @
458df691
add_example_executable
(
example_gemm_bias_softmax_gemm_permute gemm_bias_softmax_gemm_permute.cpp
)
example/47_gemm_bias_softmax_gemm_permute/gemm_bias_softmax_gemm_permute.cpp
0 → 100644
View file @
458df691
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
B0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
C0DEElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
B1ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
constexpr
static
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
static
constexpr
auto
TensorSpecA
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB0
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB1
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecC
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
B0DataType
=
F16
;
using
B1DataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F16
;
using
D0DataType
=
F16
;
using
Acc0BiasDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
1
;
static
constexpr
ck
::
index_t
NumDimN
=
1
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
static
constexpr
ck
::
index_t
NumDimO
=
1
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc1BiasDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
C0DEElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
64
,
// Gemm1NPerBlock
32
,
// Gemm1KPerBlock
8
,
// AK1
8
,
// BK1
2
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
2
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec
>
;
// MaskingSpecialization
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
AccDataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
>
;
// Ref Softmax: fp32 in, fp16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
AccDataType
,
ADataType
,
AccDataType
>
;
// Ref Gemm1: fp16 in, fp16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
G0
=
3
;
int
G1
=
2
;
int
M
=
1024
;
int
N
=
1024
;
int
K
=
64
;
int
O
=
64
;
float
alpha
=
1
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
11
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
G0
=
std
::
stoi
(
argv
[
8
]);
G1
=
std
::
stoi
(
argv
[
9
]);
alpha
=
std
::
stof
(
argv
[
10
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 11: M, N, K, O, G0, G1
\n
"
);
printf
(
"arg10: scale (alpha)
\n
"
);
exit
(
0
);
}
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// A layout [G0, M, G1, K]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
G0
,
G1
,
N
,
K
};
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
{
N
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B0 layout [G0, N, G1, K]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
G0
,
G1
,
O
,
N
};
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
{
N
*
G1
*
O
,
O
,
1
,
G1
*
O
};
// B1 layout [G0, N, G1, O]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
};
// C layout [G0, M, G1, O]
// D layout [G0, M, G1, N]
std
::
vector
<
ck
::
index_t
>
d0_gs_ms_ns_lengths
{
G0
,
G1
,
M
,
N
};
std
::
vector
<
ck
::
index_t
>
d0_gs_ms_ns_strides
{
M
*
G1
*
N
,
N
,
G1
*
N
,
1
};
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
Tensor
<
B0DataType
>
b0_gs_ns_ks
(
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
);
Tensor
<
B1DataType
>
b1_gs_os_ns
(
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
);
Tensor
<
D0DataType
>
d0_gs_ms_ns
(
d0_gs_ms_ns_lengths
,
d0_gs_ms_ns_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_host_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_device_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_gs_ns_ks: "
<<
b0_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_gs_os_ns: "
<<
b1_gs_os_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_gs_ms_os: "
<<
c_gs_ms_os_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
d0_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
2
,
2
});
break
;
case
2
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
d0_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
1
,
1
});
break
;
case
3
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
d0_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{
1
});
break
;
default:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
2
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
d0_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{
1
});
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
G0
*
G1
*
M
*
K
);
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
G0
*
G1
*
N
*
K
);
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
G0
*
G1
*
M
*
N
);
DeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
G0
*
G1
*
O
*
N
);
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
G0
*
G1
*
M
*
O
);
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_gs_ns_ks
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_gs_os_ns
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_gs_ms_ns
.
mData
.
data
());
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
c0de_element_op
=
C0DEElementOp
{
alpha
};
auto
acc0_element_op
=
Acc0ElementOp
{};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
argument
=
device_op
.
MakeArgument
(
static_cast
<
const
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
B0DataType
*>
(
b0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
B1DataType
*>
(
b1_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
std
::
array
<
void
*
,
1
>
{
d0_device_buf
.
GetDeviceBuffer
()},
// p_acc0_biases
{},
// p_acc1_biases
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
,
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_lengths
},
// acc0_biases_gs_ms_ns_lengths
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_strides
},
// acc0_biases_gs_ms_ns_strides
{},
// acc1_biases_gs_ms_os_lengths
{},
// acc1_biases_gs_ms_os_strides
a_element_op
,
b0_element_op
,
c0de_element_op
,
b1_element_op
,
c_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
BatchCount
=
G0
*
G1
;
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
+
sizeof
(
D0DataType
)
*
M
*
N
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_gs_ms_os_device_result
.
mData
.
data
());
Tensor
<
ADataType
>
a_g_m_k
({
BatchCount
,
M
,
K
});
Tensor
<
B0DataType
>
b0_g_k_n
({
BatchCount
,
K
,
N
});
Tensor
<
B1DataType
>
b1_g_n_o
({
BatchCount
,
N
,
O
});
Tensor
<
AccDataType
>
acc0_g_m_n
({
BatchCount
,
M
,
N
});
// scratch object after gemm0
Tensor
<
ADataType
>
a1_g_m_n
({
BatchCount
,
M
,
N
});
// scratch object after softmax
Tensor
<
CDataType
>
c_g_m_o_host_result
({
BatchCount
,
M
,
O
});
// scratch object after gemm1
Tensor
<
D0DataType
>
d0_g_m_n
({
BatchCount
,
M
,
N
});
// permute
a_gs_ms_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
a_g_m_k
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
b0_gs_ns_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b0_g_k_n
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
b1_gs_os_ns
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b1_g_n_o
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
d0_gs_ms_ns
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
d0_g_m_n
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
// gemm 0
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
acc0_element_op
);
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
acc0_g_m_n
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
c0de_element_op
(
acc0_g_m_n
(
idx
),
acc0_g_m_n
(
idx
),
d0_g_m_n
(
idx
));
});
// masking
const
auto
mask
=
DeviceOpInstance
::
C0MatrixMask
(
N
);
acc0_g_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
if
(
mask
.
IsMaskedElement
(
idx
[
1
],
idx
[
2
]))
self
(
idx
)
=
-
ck
::
NumericLimits
<
float
>::
Infinity
();
});
// softmax
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
// gemm1
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
// permute
c_gs_ms_os_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
const
size_t
&
g0
=
idx
[
0
];
const
size_t
&
g1
=
idx
[
1
];
const
size_t
g
=
g0
*
G1
+
g1
;
self
(
idx
)
=
c_g_m_o_host_result
(
g
,
idx
[
2
],
idx
[
3
]);
});
// default absolute error and relative error is 0.001
double
rtol
=
1e-3
;
double
atol
=
1e-3
;
return
ck
::
utils
::
check_err
(
c_gs_ms_os_device_result
.
mData
,
c_gs_ms_os_host_result
.
mData
,
"Error: Incorrect results!"
,
rtol
,
atol
)
?
0
:
1
;
}
return
0
;
}
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp
View file @
458df691
...
@@ -26,9 +26,9 @@ template <index_t NumDimG,
...
@@ -26,9 +26,9 @@ template <index_t NumDimG,
typename
Acc1BiasDataType
,
typename
Acc1BiasDataType
,
typename
AElementwiseOperation
,
typename
AElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
Acc0
ElementwiseOperation
,
typename
C0DE
ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
typename
C
1DE
ElementwiseOperation
,
MaskingSpecialization
MaskingSpec
>
MaskingSpecialization
MaskingSpec
>
struct
DeviceBatchedGemmSoftmaxGemmPermute
:
public
BaseOperator
struct
DeviceBatchedGemmSoftmaxGemmPermute
:
public
BaseOperator
{
{
...
@@ -58,9 +58,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute : public BaseOperator
...
@@ -58,9 +58,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute : public BaseOperator
acc1_biases_gs_ms_gemm1ns_strides
,
// acc1_biases_gs_ms_os_strides
acc1_biases_gs_ms_gemm1ns_strides
,
// acc1_biases_gs_ms_os_strides
AElementwiseOperation
a_element_op
,
AElementwiseOperation
a_element_op
,
B0ElementwiseOperation
b0_element_op
,
B0ElementwiseOperation
b0_element_op
,
Acc0
ElementwiseOperation
ac
c0_element_op
,
C0DE
ElementwiseOperation
c0
de
_element_op
,
B1ElementwiseOperation
b1_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
=
0
;
C
1DE
ElementwiseOperation
c
1de
_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
};
...
...
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
View file @
458df691
This diff is collapsed.
Click to expand it.
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment