Unverified Commit 44789d99 authored by Qianfeng's avatar Qianfeng Committed by GitHub
Browse files

BatchNorm backward implementation (#461)

* Implemented batchnorm-backward Blockwise and Multiblock kernels

* Add batchnorm-backward device op

* Add batchnorm-backward host-reference op

* Add batchnorm-backward example

* Parameters renaming in batchnorm backward kernels and device op

* Change in the example to loose the threshold for ScaleDiff checking

* Add comments to explain the implementation of batchnorm-backward

* Parameters renaming again in batchnorm backward kernels

* Improve the expression calculation for performance

* Add batchnorm backward to README

* Add comments to explain inv-variance in batchnorm forward and backward

* Renaming the batchnorm forward training and inferring examples

* Add/update the comments for batchnorm-backward kernels

* Renaming again

* Add block_sync_lds between two consecutive blockwise reductions

* Move common expression 1/N out of the static_for loops

* Add dy_elementwise_op

* Renaming in backward example again

* Add checking for reduceDims in reference_batchnorm_backward

* Update to comments and codes format

* Rename in the comments

* Remove common expression out of the loop in reference_batchnorm_backward_nhwc_c

* Add block_sync_lds() between blockwise reduction again

* Fix comments again

* Remove int8 from batchnorm-forward instances since it is not needed for forward training and could fail test
parent 5bf0475a
add_example_executable(example_batchnorm_forward batchnorm_forward_nhwc.cpp) add_example_executable(example_batchnorm_forward_training batchnorm_forward_training_nhwc.cpp)
add_example_executable(example_batchnorm_infer batchnorm_infer_nhwc.cpp) add_example_executable(example_batchnorm_forward_inferring batchnorm_forward_inferring_nhwc.cpp)
add_example_executable(example_batchnorm_backward batchnorm_backward_nhwc.cpp)
...@@ -53,4 +53,29 @@ Start running 10 times... ...@@ -53,4 +53,29 @@ Start running 10 times...
Perf: 1.28235 ms, 523.329 GB/s Perf: 1.28235 ms, 523.329 GB/s
``` ```
## Run ```batchnorm backward nhwc```
```bash
# -D <xxx> : input 4-d tensor lengths
# -v <x> : verification (0=no, 1=yes)
Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64)
Arg2 -- 1/0 to indicate whether to use saved mean and invVariance
Arg3 -- init method used for dy and bnScale (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
Arg4 -- time kernel (0=no, 1=yes)
Arg5: use multi-block welford (0=n0, 1=yes)
./bin/example_batchnorm_backward -D 128,16,3,1024 -v 1 0 0 3 1 1
```
Result
```
./bin/example_batchnorm_backward -D 128,16,3,1024 -v 1 0 0 3 1 1
launch_and_time_kernel: grid_dim {6144, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
launch_and_time_kernel: grid_dim {6144, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
launch_and_time_kernel: grid_dim {6144, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.411026 ms, 91.8702 GB/s
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <limits>
#include <iostream>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_backward_nhwc_c.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp"
static struct option long_options[] = {{"inOutLengths", required_argument, nullptr, 'D'},
{"verify", required_argument, nullptr, 'v'},
{"help", no_argument, nullptr, '?'},
{nullptr, 0, nullptr, 0}};
class BatchNormBwdArg
{
private:
int option_index = 0;
public:
std::vector<size_t> inOutLengths;
bool do_verification = false;
bool haveSavedMeanInvVar;
int data_type = 0;
int init_method = 3;
bool time_kernel = false;
bool use_multiblock_welford = false;
public:
void show_usage(const char* cmd)
{
// clang-format off
std::cout << "Usage of " << cmd << std::endl;
std::cout << "--inOutLengths or -D, comma separated list of input tensor dimension lengths, must have 4 integers for nhwc" << std::endl;
std::cout << "--verify or -v, 1/0 to indicate whether to verify the result by comparing with the host-based batch-normalization" << std::endl;
std::cout << "Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64)" << std::endl;
std::cout << "Arg2 -- 1/0 to indicate whether to use saved mean and invVariance" << std::endl;
std::cout << "Arg3 -- init method used for dy and bnScale (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)" << std::endl;
std::cout << "Arg4 -- time kernel (0=no, 1=yes)" << std::endl;
std::cout << "Arg5: use multi-block welford (0=n0, 1=yes)" << std::endl;
// clang-format on
};
int processArgs(int argc, char* argv[])
{
using ck::host_common::getTypeValuesFromString;
int ch;
while(1)
{
ch = getopt_long(argc, argv, "D:v:", long_options, &option_index);
if(ch == -1)
break;
switch(ch)
{
case 'D':
if(!optarg)
throw std::runtime_error("Invalid option format!");
inOutLengths = getTypeValuesFromString<size_t>(optarg);
if(inOutLengths.size() != 4)
throw std::runtime_error(
"NHWC tensor layout should have 4 length values specified!");
break;
case 'v':
if(!optarg)
throw std::runtime_error("Invalid option format!");
do_verification = static_cast<bool>(std::atoi(optarg));
break;
case '?':
if(std::string(long_options[option_index].name) == "help")
{
show_usage(argv[0]);
return (-1);
};
break;
default: show_usage(argv[0]); return (-1);
};
};
if(optind + 5 > argc)
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
data_type = std::atoi(argv[optind++]);
haveSavedMeanInvVar = std::atoi(argv[optind++]);
init_method = std::atoi(argv[optind++]);
time_kernel = static_cast<bool>(std::atoi(argv[optind++]));
use_multiblock_welford = static_cast<bool>(std::atoi(argv[optind]));
return (0);
};
};
using namespace ck;
template <typename InOutDataType, typename AccDataType, bool UseMultiblockInK>
bool bnorm_bwd_nhwc_test(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t> inOutLengths,
bool haveSavedMeanInvVar,
double epsilon)
{
// for NHWC BatchNorm calculation of mean and meansquare
constexpr index_t Rank = 4;
constexpr index_t NumReduceDim = 3;
const std::vector<size_t> scaleBiasMeanVarLengths = {inOutLengths[3]};
// input data of the batchnorm backward algorithm
Tensor<InOutDataType> x(inOutLengths);
Tensor<InOutDataType> dy(inOutLengths);
Tensor<AccDataType> bnScale(scaleBiasMeanVarLengths);
Tensor<AccDataType> savedMean(scaleBiasMeanVarLengths);
Tensor<AccDataType> savedInvVar(scaleBiasMeanVarLengths);
// savedVariance is only used for initializing savedInvVar
Tensor<AccDataType> savedVariance(scaleBiasMeanVarLengths);
// output data of the batchnorm backward algorithm
Tensor<InOutDataType> dx_ref(inOutLengths);
Tensor<InOutDataType> dx(inOutLengths);
Tensor<AccDataType> dscale(scaleBiasMeanVarLengths);
Tensor<AccDataType> dbias(scaleBiasMeanVarLengths);
Tensor<AccDataType> dscale_ref(scaleBiasMeanVarLengths);
Tensor<AccDataType> dbias_ref(scaleBiasMeanVarLengths);
auto inOutStrides = dy.mDesc.GetStrides();
auto scaleBiasMeanVarStrides = dscale.mDesc.GetStrides();
std::size_t num_thread = std::thread::hardware_concurrency();
if(haveSavedMeanInvVar)
{
const float x_mean = 0.0f;
const float x_stddev = 1.0f;
const float noise_stddev = 0.0001f;
// input data in normal distribution
x.GenerateTensorValue(GeneratorTensor_4<InOutDataType>{x_mean, x_stddev}, num_thread);
// initialize the savedMean to be values with tiny variation to the mean of the x values
savedMean.GenerateTensorValue(GeneratorTensor_4<AccDataType>{x_mean, noise_stddev},
num_thread);
// initialize the variance to be values with tiny variation to the variance of the x values
savedVariance.GenerateTensorValue(
GeneratorTensor_4<AccDataType>{x_stddev * x_stddev, noise_stddev}, num_thread);
auto it_src = savedVariance.mData.begin();
auto it_dst = savedInvVar.mData.begin();
float tmp_epsilon = std::numeric_limits<float>::epsilon();
while(it_src != savedVariance.mData.end())
{
*it_dst = type_convert<AccDataType>(
1.0f / std::sqrtf(type_convert<float>(*it_src) + tmp_epsilon));
it_src++;
it_dst++;
};
}
else
{
const float x_mean = 0.0f;
const float x_stddev = 1.0f;
// input data in normal distribution
x.GenerateTensorValue(GeneratorTensor_4<InOutDataType>{x_mean, x_stddev}, num_thread);
};
if(do_verification)
{
switch(init_method)
{
case 0:
dy.GenerateTensorValue(GeneratorTensor_0<InOutDataType>{}, num_thread);
bnScale.GenerateTensorValue(GeneratorTensor_0<InOutDataType>{}, num_thread);
break;
case 1:
dy.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
bnScale.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
break;
case 2:
dy.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
bnScale.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
break;
default:
dy.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-0.2f, 0.2f}, num_thread);
bnScale.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-0.5f, 0.5f}, num_thread);
}
};
// input data of the batchnorm backward algorithm
DeviceMem x_dev(sizeof(InOutDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem dy_dev(sizeof(InOutDataType) * dy.mDesc.GetElementSpaceSize());
DeviceMem bnScale_dev(sizeof(AccDataType) * bnScale.mDesc.GetElementSpaceSize());
DeviceMem savedMean_dev(sizeof(AccDataType) * savedMean.mDesc.GetElementSpaceSize());
DeviceMem savedInvVar_dev(sizeof(AccDataType) * savedInvVar.mDesc.GetElementSpaceSize());
// output data of the batchnorm backward algorithm
DeviceMem dx_dev(sizeof(InOutDataType) * dx.mDesc.GetElementSpaceSize());
DeviceMem dscale_dev(sizeof(AccDataType) * dscale.mDesc.GetElementSpaceSize());
DeviceMem dbias_dev(sizeof(AccDataType) * dbias.mDesc.GetElementSpaceSize());
x_dev.ToDevice(x.mData.data());
dy_dev.ToDevice(dy.mData.data());
bnScale_dev.ToDevice(bnScale.mData.data());
if(haveSavedMeanInvVar)
{
savedMean_dev.ToDevice(savedMean.mData.data());
savedInvVar_dev.ToDevice(savedInvVar.mData.data());
};
std::array<index_t, Rank> i_inOutLengths;
std::array<index_t, Rank> i_inOutStrides;
std::array<index_t, Rank - NumReduceDim> i_scaleBiasMeanVarLengths;
std::array<index_t, Rank - NumReduceDim> i_scaleBiasMeanVarStrides;
std::copy(inOutLengths.begin(), inOutLengths.end(), i_inOutLengths.begin());
std::copy(inOutStrides.begin(), inOutStrides.end(), i_inOutStrides.begin());
std::copy(scaleBiasMeanVarLengths.begin(),
scaleBiasMeanVarLengths.end(),
i_scaleBiasMeanVarLengths.begin());
std::copy(scaleBiasMeanVarStrides.begin(),
scaleBiasMeanVarStrides.end(),
i_scaleBiasMeanVarStrides.begin());
using PassThroughOp = ck::tensor_operation::element_wise::PassThrough;
using DeviceBatchNormBwdInstance =
ck::tensor_operation::device::DeviceBatchNormBwdImpl<InOutDataType,
InOutDataType,
InOutDataType,
AccDataType,
AccDataType, // ScaleDataType
AccDataType, // BiasDataType
AccDataType, // MeanVarDataType
PassThroughOp,
Rank,
NumReduceDim,
UseMultiblockInK,
256,
16,
16,
1,
2,
0,
1, // XSrcVectorSize
1, // DySrcVectorSize
1, // DxDstVectorSize
1, // ScaleSrcDstVectorSize
1, // BiasDstVectorSize
1>; // MeanVarSrcVectorSize
auto batchnorm_bwd = DeviceBatchNormBwdInstance{};
auto argument_ptr = batchnorm_bwd.MakeArgumentPointer(
i_inOutLengths,
i_inOutStrides,
i_inOutStrides,
i_inOutStrides,
{0, 1, 2},
i_scaleBiasMeanVarLengths,
i_scaleBiasMeanVarStrides,
i_scaleBiasMeanVarStrides,
i_scaleBiasMeanVarStrides,
x_dev.GetDeviceBuffer(),
dy_dev.GetDeviceBuffer(),
bnScale_dev.GetDeviceBuffer(),
haveSavedMeanInvVar ? savedMean_dev.GetDeviceBuffer() : nullptr,
haveSavedMeanInvVar ? savedInvVar_dev.GetDeviceBuffer() : nullptr,
epsilon,
PassThroughOp{},
dx_dev.GetDeviceBuffer(),
dscale_dev.GetDeviceBuffer(),
dbias_dev.GetDeviceBuffer());
if(!batchnorm_bwd.IsSupportedArgument(argument_ptr.get()))
{
std::cout << "The runtime parameters seems not supported by the BatchNorm device instance, "
"exiting!"
<< std::endl;
return (false);
};
size_t workspace_sz = batchnorm_bwd.GetWorkSpaceSize(argument_ptr.get());
DeviceMem workspace_dev(workspace_sz);
batchnorm_bwd.SetWorkSpacePointer(argument_ptr.get(), workspace_dev.GetDeviceBuffer());
auto invoker_ptr = batchnorm_bwd.MakeInvokerPointer();
if(time_kernel)
{
float avg_time = 0.0f;
size_t num_bytes = 0;
size_t total_length = inOutLengths[0] * inOutLengths[1] * inOutLengths[2] * inOutLengths[3];
size_t invariant_length = inOutLengths[3];
avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
// inputing of x, dy, scale, outputing of dx, dscale, dbias
num_bytes +=
total_length * sizeof(InOutDataType) * 3 + invariant_length * sizeof(AccDataType) * 3;
// outputing of mean, inv-variance
num_bytes += haveSavedMeanInvVar ? invariant_length * sizeof(AccDataType) * 2 : 0;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s" << std::endl;
}
else
(void)invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
bool pass = true;
if(do_verification)
{
using ReferenceBatchNormBwdInstance =
ck::tensor_operation::host::ReferenceBatchNormBwd_Input_N_H_W_C_Output_C<InOutDataType,
InOutDataType,
InOutDataType,
AccDataType,
AccDataType,
AccDataType,
AccDataType,
PassThroughOp>;
auto batchNormBwd_ref = ReferenceBatchNormBwdInstance{};
auto argument_ptr_ref = batchNormBwd_ref.MakeArgumentPointer(
i_inOutLengths,
i_inOutStrides,
i_inOutStrides,
i_inOutStrides,
{0, 1, 2},
i_scaleBiasMeanVarLengths,
i_scaleBiasMeanVarStrides,
i_scaleBiasMeanVarStrides,
i_scaleBiasMeanVarStrides,
x.mData.data(),
dy.mData.data(),
bnScale.mData.data(),
haveSavedMeanInvVar ? savedMean.mData.data() : nullptr,
haveSavedMeanInvVar ? savedInvVar.mData.data() : nullptr,
epsilon,
PassThroughOp{},
dx_ref.mData.data(),
dscale_ref.mData.data(),
dbias_ref.mData.data());
if(!batchNormBwd_ref.IsSupportedArgument(argument_ptr_ref.get()))
{
std::cout
<< "The runtime parameters seems not supported by the device instance, exiting!"
<< std::endl;
return (false);
};
auto invoker_ptr_ref = batchNormBwd_ref.MakeInvokerPointer();
(void)invoker_ptr_ref->Run(argument_ptr_ref.get());
dx_dev.FromDevice(dx.mData.data());
dscale_dev.FromDevice(dscale.data());
dbias_dev.FromDevice(dbias.data());
// clang-format off
pass = pass && ck::utils::check_err(dbias.mData, dbias_ref.mData, "dBias result:", 1e-5, 1e-5);
pass = pass && ck::utils::check_err(dscale.mData, dscale_ref.mData, "dScale result:", 1e-5, 2e-4);
pass = pass && ck::utils::check_err(dx.mData, dx_ref.mData, "dx result:");
// clang-format on
};
return (pass);
};
static const double epsilon = std::numeric_limits<float>::epsilon();
int main(int argc, char* argv[])
{
bool pass = true;
if(argc > 1)
{
BatchNormBwdArg arg;
if(arg.processArgs(argc, argv) < 0)
return (-1);
if(arg.data_type == 0)
{
if(arg.use_multiblock_welford)
pass = bnorm_bwd_nhwc_test<ck::half_t, float, true>(arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inOutLengths,
arg.haveSavedMeanInvVar,
epsilon);
else
pass = bnorm_bwd_nhwc_test<ck::half_t, float, false>(arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inOutLengths,
arg.haveSavedMeanInvVar,
epsilon);
}
else if(arg.data_type == 1)
{
if(arg.use_multiblock_welford)
pass = bnorm_bwd_nhwc_test<float, float, true>(arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inOutLengths,
arg.haveSavedMeanInvVar,
epsilon);
else
pass = bnorm_bwd_nhwc_test<float, float, false>(arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inOutLengths,
arg.haveSavedMeanInvVar,
epsilon);
}
else if(arg.data_type == 5)
{
if(arg.use_multiblock_welford)
pass = bnorm_bwd_nhwc_test<ck::bhalf_t, float, true>(arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inOutLengths,
arg.haveSavedMeanInvVar,
epsilon);
else
pass = bnorm_bwd_nhwc_test<ck::bhalf_t, float, false>(arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inOutLengths,
arg.haveSavedMeanInvVar,
epsilon);
}
else if(arg.data_type == 6)
{
if(arg.use_multiblock_welford)
pass = bnorm_bwd_nhwc_test<double, double, true>(arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inOutLengths,
arg.haveSavedMeanInvVar,
epsilon);
else
pass = bnorm_bwd_nhwc_test<double, double, false>(arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inOutLengths,
arg.haveSavedMeanInvVar,
epsilon);
}
}
else
{
pass = bnorm_bwd_nhwc_test<ck::half_t, float, true>(true,
3,
false, // don't time kernel
{128, 16, 6, 512},
false,
epsilon);
pass = pass && bnorm_bwd_nhwc_test<ck::half_t, float, false>(true,
3,
false, // don't time kernel
{128, 16, 3, 1024},
false,
epsilon);
};
return (pass ? 0 : 1);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <index_t Rank, index_t NumBatchNormReduceDim, typename DyElementwiseOp>
struct DeviceBatchNormBwd : public BaseOperator
{
static constexpr index_t NumInvariantDim = Rank - NumBatchNormReduceDim;
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::array<index_t, Rank> xyLengths,
const std::array<index_t, Rank> xStrides,
const std::array<index_t, Rank> dyStrides,
const std::array<index_t, Rank> dxStrides,
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<ck::index_t, NumInvariantDim> bnScaleBiasMeanVarLengths,
const std::array<ck::index_t, NumInvariantDim> bnScaleStrides,
const std::array<ck::index_t, NumInvariantDim> bnBiasStrides,
const std::array<ck::index_t, NumInvariantDim> bnMeanVarStrides,
const void* p_x,
const void* p_dy,
const void* p_scale,
const void* p_savedMean,
const void* p_savedInvVar,
double epsilon,
const DyElementwiseOp dy_elementwise_op,
void* p_dx,
void* p_dscale,
void* p_dbias) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <index_t Rank, index_t NumBatchNormReduceDim, typename DyElementwiseOp>
using DeviceBatchNormBwdPtr =
std::unique_ptr<DeviceBatchNormBwd<Rank, NumBatchNormReduceDim, DyElementwiseOp>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batchnorm_backward_blockwise_welford.hpp"
#include "ck/tensor_operation/gpu/grid/batchnorm_multiblock/gridwise_multiblock_welford_first_half.hpp"
#include "ck/tensor_operation/gpu/grid/batchnorm_multiblock/gridwise_multiblock_welford_second_half_multiblock_reduce_first_half.hpp"
#include "ck/tensor_operation/gpu/grid/batchnorm_multiblock/gridwise_multiblock_reduce_second_half_batchnorm_backward_final.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/welford_helper.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename XDataType,
typename DxDataType,
typename DyDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
index_t Rank,
index_t NumBatchNormReduceDim,
bool UseMultiblockInK,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t XDyDxVectorDim,
index_t XSrcVectorSize,
index_t DySrcVectorSize,
index_t DxDstVectorSize,
index_t ScaleSrcDstVectorSize,
index_t BiasDstVectorSize,
index_t MeanVarSrcVectorSize>
struct DeviceBatchNormBwdImpl
: public DeviceBatchNormBwd<Rank, NumBatchNormReduceDim, DyElementwiseOp>
{
static_assert(Rank <= 6, "Bigger Rank size is not supported!");
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
"Invalid thread cluster size assignments!");
static_assert((XDyDxVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0 &&
MThreadSliceSize % DySrcVectorSize == 0 &&
MThreadSliceSize % DxDstVectorSize == 0) ||
(XDyDxVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0 &&
KThreadSliceSize % DySrcVectorSize == 0 &&
KThreadSliceSize % DxDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static constexpr index_t NumInvariantDim = Rank - NumBatchNormReduceDim;
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
static auto MakeXY2dDescriptor(const std::array<index_t, Rank>& xyLengths,
const std::array<index_t, Rank>& xyStrides,
int blkGroupSize,
int numBlockTileIteration)
{
const auto tupleXYLengths =
generate_tuple([&](auto I) { return xyLengths[I]; }, Number<Rank>{});
const auto tupleXYStrides =
generate_tuple([&](auto I) { return xyStrides[I]; }, Number<Rank>{});
const auto raw_grid_desc = make_naive_tensor_descriptor(tupleXYLengths, tupleXYStrides);
const auto grid_desc_m_k = [&]() {
using InvariantDims = typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type;
using ReduceDims = typename arithmetic_sequence_gen<NumInvariantDim, Rank, 1>::type;
const auto reduceDimLengths =
generate_tuple([&](auto I) { return xyLengths[NumInvariantDim + I]; },
Number<NumBatchNormReduceDim>{});
const auto invariantDimLengths =
generate_tuple([&](auto I) { return xyLengths[I]; }, Number<NumInvariantDim>{});
return transform_tensor_descriptor(raw_grid_desc,
make_tuple(make_merge_transform(invariantDimLengths),
make_merge_transform(reduceDimLengths)),
make_tuple(InvariantDims{}, ReduceDims{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}();
const auto invariantLength = grid_desc_m_k.GetLength(Number<0>{});
const auto reduceLength = grid_desc_m_k.GetLength(Number<1>{});
const int workSizePerBlock = K_BlockTileSize * numBlockTileIteration;
const auto mPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto kPad = workSizePerBlock * blkGroupSize - reduceLength;
auto grid_desc_m_k_padded =
transform_tensor_descriptor(grid_desc_m_k,
make_tuple(make_right_pad_transform(invariantLength, mPad),
make_right_pad_transform(reduceLength, kPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return (grid_desc_m_k_padded);
};
static auto MakeMultiblockFirstReduceOutputMG2dDescriptor(int invariantLength, int blkGroupSize)
{
const auto grid_desc_m_g =
make_naive_tensor_descriptor_packed(make_tuple(invariantLength, blkGroupSize));
const auto mPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto grid_desc_m_g_padded =
transform_tensor_descriptor(grid_desc_m_g,
make_tuple(make_right_pad_transform(invariantLength, mPad),
make_pass_through_transform(blkGroupSize)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return (grid_desc_m_g_padded);
};
static auto MakeMultiblockFinalReduceInputMK2dDescriptor(int invariantLength, int blkGroupSize)
{
const auto reduceLength = blkGroupSize;
const auto grid_desc_m_k =
make_naive_tensor_descriptor_packed(make_tuple(invariantLength, reduceLength));
const auto mPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto kPad =
math::integer_least_multiple(reduceLength, KThreadClusterSize) - reduceLength;
auto grid_desc_m_k_padded =
transform_tensor_descriptor(grid_desc_m_k,
make_tuple(make_right_pad_transform(invariantLength, mPad),
make_right_pad_transform(reduceLength, kPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return (grid_desc_m_k_padded);
};
static auto
MakeScaleBiasMeanVar1dDescriptor(const std::array<index_t, NumInvariantDim>& lengths,
const std::array<index_t, NumInvariantDim>& strides)
{
const auto tupleLengths =
generate_tuple([&](auto I) { return lengths[I]; }, Number<NumInvariantDim>{});
const auto tupleStrides =
generate_tuple([&](auto I) { return strides[I]; }, Number<NumInvariantDim>{});
auto raw_grid_desc = make_naive_tensor_descriptor(tupleLengths, tupleStrides);
auto grid_desc_m = transform_tensor_descriptor(
raw_grid_desc,
make_tuple(make_merge_transform(tupleLengths)),
make_tuple(typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type{}),
make_tuple(Sequence<0>{}));
const auto invariantLength = grid_desc_m.GetLength(Number<0>{});
const auto mPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto grid_desc_m_padded =
transform_tensor_descriptor(grid_desc_m,
make_tuple(make_right_pad_transform(invariantLength, mPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return (grid_desc_m_padded);
};
using XYGridDesc_M_K = decltype(MakeXY2dDescriptor({1}, {1}, 1, 1));
using ScaleBiasGridDesc_M = decltype(MakeScaleBiasMeanVar1dDescriptor({1}, {1}));
using MeanVarGridDesc_M = ScaleBiasGridDesc_M;
struct Argument : public BaseArgument
{
Argument(const std::array<index_t, Rank> xyLengths,
const std::array<index_t, Rank> xStrides,
const std::array<index_t, Rank> dyStrides,
const std::array<index_t, Rank> dxStrides,
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<ck::index_t, NumInvariantDim> bnScaleBiasMeanVarLengths,
const std::array<ck::index_t, NumInvariantDim> bnScaleStrides,
const std::array<ck::index_t, NumInvariantDim> bnBiasStrides,
const std::array<ck::index_t, NumInvariantDim> bnMeanVarStrides,
const XDataType* p_x,
const DyDataType* p_dy,
const ScaleDataType* p_scale,
const MeanVarDataType* p_savedMean,
const MeanVarDataType* p_savedInvVar,
const DyElementwiseOp dy_elementwise_op,
double epsilon,
DxDataType* p_dx,
ScaleDataType* p_dscale,
BiasDataType* p_dbias)
: bnScaleBiasMeanVarLengths_(bnScaleBiasMeanVarLengths),
bnScaleStrides_(bnScaleStrides),
bnBiasStrides_(bnBiasStrides),
bnMeanVarStrides_(bnMeanVarStrides),
p_x_(p_x),
p_dy_(p_dy),
p_scale_(p_scale),
p_savedMean_(p_savedMean),
p_savedInvVar_(p_savedInvVar),
dy_elementwise_op_(dy_elementwise_op),
p_dx_(p_dx),
p_dscale_(p_dscale),
p_dbias_(p_dbias)
{
xyLengths_ =
shuffle_tensor_dimensions<Rank, NumBatchNormReduceDim>(xyLengths, reduceDims);
xStrides_ =
shuffle_tensor_dimensions<Rank, NumBatchNormReduceDim>(xStrides, reduceDims);
dyStrides_ =
shuffle_tensor_dimensions<Rank, NumBatchNormReduceDim>(dyStrides, reduceDims);
dxStrides_ =
shuffle_tensor_dimensions<Rank, NumBatchNormReduceDim>(dxStrides, reduceDims);
std::tie(invariant_length, reduce_length) =
get_2d_lengths<Rank, NumBatchNormReduceDim>(xyLengths_);
epsilon_ = type_convert<AccDataType>(epsilon);
haveSavedMeanInvVar_ = (p_savedMean_ != nullptr && p_savedInvVar_ != nullptr);
if(UseMultiblockInK)
{
int iterations = 1;
while(true)
{
int testBlkGroupSize = (reduce_length + (K_BlockTileSize * iterations) - 1) /
(K_BlockTileSize * iterations);
// we want the blkGroupSize be not more than 128
if(testBlkGroupSize <= 128)
break;
iterations++;
};
blkGroupSize = (reduce_length + (K_BlockTileSize * iterations) - 1) /
(K_BlockTileSize * iterations);
numBlockTileIteration = iterations;
}
else
{
blkGroupSize = 1;
numBlockTileIteration = (reduce_length + K_BlockTileSize - 1) / K_BlockTileSize;
};
gridSize = (invariant_length + M_BlockTileSize - 1) / M_BlockTileSize * blkGroupSize;
x_grid_desc_m_k =
MakeXY2dDescriptor(xyLengths_, xStrides_, blkGroupSize, numBlockTileIteration);
dy_grid_desc_m_k =
MakeXY2dDescriptor(xyLengths_, dyStrides_, blkGroupSize, numBlockTileIteration);
dx_grid_desc_m_k =
MakeXY2dDescriptor(xyLengths_, dxStrides_, blkGroupSize, numBlockTileIteration);
scale_grid_desc_m =
MakeScaleBiasMeanVar1dDescriptor(bnScaleBiasMeanVarLengths, bnScaleStrides);
bias_grid_desc_m =
MakeScaleBiasMeanVar1dDescriptor(bnScaleBiasMeanVarLengths, bnBiasStrides);
mean_var_grid_desc_m =
MakeScaleBiasMeanVar1dDescriptor(bnScaleBiasMeanVarLengths, bnMeanVarStrides);
}
AccDataType epsilon_;
bool haveSavedMeanInvVar_;
std::array<index_t, Rank> xyLengths_;
std::array<index_t, Rank> xStrides_;
std::array<index_t, Rank> dyStrides_;
std::array<index_t, Rank> dxStrides_;
std::array<index_t, Rank - NumBatchNormReduceDim> bnScaleBiasMeanVarLengths_;
std::array<index_t, Rank - NumBatchNormReduceDim> bnScaleStrides_;
std::array<index_t, Rank - NumBatchNormReduceDim> bnBiasStrides_;
std::array<index_t, Rank - NumBatchNormReduceDim> bnMeanVarStrides_;
const XDataType* p_x_;
const DyDataType* p_dy_;
const ScaleDataType* p_scale_;
const MeanVarDataType* p_savedMean_;
const MeanVarDataType* p_savedInvVar_;
const DyElementwiseOp dy_elementwise_op_;
DxDataType* p_dx_;
ScaleDataType* p_dscale_;
BiasDataType* p_dbias_;
long_index_t invariant_length;
long_index_t reduce_length;
int blkGroupSize;
int numBlockTileIteration;
size_t gridSize;
XYGridDesc_M_K x_grid_desc_m_k;
XYGridDesc_M_K dy_grid_desc_m_k;
XYGridDesc_M_K dx_grid_desc_m_k;
ScaleBiasGridDesc_M scale_grid_desc_m;
ScaleBiasGridDesc_M bias_grid_desc_m;
MeanVarGridDesc_M mean_var_grid_desc_m;
void* workspace_mean;
void* workspace_variance;
void* workspace_count;
void* workspace_savedMean;
void* workspace_savedInvVar;
void* workspace_reduce_dscale;
void* workspace_reduce_dbias;
};
size_t GetWorkSpaceSize(const BaseArgument* pArg) const override
{
const Argument* pArg_ = dynamic_cast<const Argument*>(pArg);
size_t workspace_size = 0;
if(UseMultiblockInK && pArg_->blkGroupSize > 1)
{
// workspace for the partial reduced result for dscale
workspace_size +=
pArg_->invariant_length * pArg_->blkGroupSize * sizeof(ScaleDataType) + 64;
// workspace for the partial reduced result for dbias
workspace_size +=
pArg_->invariant_length * pArg_->blkGroupSize * sizeof(BiasDataType) + 64;
if(!pArg_->haveSavedMeanInvVar_)
{
// workspace for welford intermediate mean
workspace_size +=
pArg_->invariant_length * pArg_->blkGroupSize * sizeof(MeanVarDataType) + 64;
// workspace for welford intermediate variance
workspace_size +=
pArg_->invariant_length * pArg_->blkGroupSize * sizeof(MeanVarDataType) + 64;
// workspace for welford intermediate count
workspace_size +=
pArg_->invariant_length * pArg_->blkGroupSize * sizeof(int32_t) + 64;
// workspace for welford result mean
workspace_size += pArg_->invariant_length * sizeof(MeanVarDataType) + 64;
// workspace for welford result inv_variance
workspace_size += pArg_->invariant_length * sizeof(MeanVarDataType) + 64;
};
}
return (workspace_size);
};
void SetWorkSpacePointer(BaseArgument* pArg, void* p_workspace) const override
{
Argument* pArg_ = dynamic_cast<Argument*>(pArg);
pArg_->p_workspace_ = p_workspace;
index_t space_sz;
// setup buffer for the partial reduced result for dscale
pArg_->workspace_reduce_dscale = pArg_->p_workspace_;
space_sz = pArg_->invariant_length * pArg_->blkGroupSize * sizeof(ScaleDataType);
space_sz = math::integer_least_multiple(space_sz, 64);
// setup buffer for the partial reduced result for dbias
pArg_->workspace_reduce_dbias =
reinterpret_cast<char*>(pArg_->workspace_reduce_dscale) + space_sz;
if(UseMultiblockInK && pArg_->blkGroupSize > 1)
{
space_sz = pArg_->invariant_length * pArg_->blkGroupSize * sizeof(BiasDataType);
space_sz = math::integer_least_multiple(space_sz, 64);
// setup buffer for welford intermediate mean
pArg_->workspace_mean =
reinterpret_cast<char*>(pArg_->workspace_reduce_dbias) + space_sz;
space_sz = pArg_->invariant_length * pArg_->blkGroupSize * sizeof(MeanVarDataType);
space_sz = math::integer_least_multiple(space_sz, 64);
// setup buffer for welford intermediate varirance
pArg_->workspace_variance = reinterpret_cast<char*>(pArg_->workspace_mean) + space_sz;
space_sz = pArg_->invariant_length * pArg_->blkGroupSize * sizeof(MeanVarDataType);
space_sz = math::integer_least_multiple(space_sz, 64);
// setup buffer for welford intermediate count
pArg_->workspace_count = reinterpret_cast<char*>(pArg_->workspace_variance) + space_sz;
space_sz = pArg_->invariant_length * pArg_->blkGroupSize * sizeof(int32_t);
space_sz = math::integer_least_multiple(space_sz, 64);
// setup buffer for welford result mean
pArg_->workspace_savedMean = reinterpret_cast<char*>(pArg_->workspace_count) + space_sz;
space_sz = pArg_->invariant_length * sizeof(MeanVarDataType);
space_sz = math::integer_least_multiple(space_sz, 64);
// setup buffer for welford result inv_variance
pArg_->workspace_savedInvVar =
reinterpret_cast<char*>(pArg_->workspace_savedMean) + space_sz;
};
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
float avg_time = 0;
const auto mean_var_count_grid_desc_m_g =
DeviceBatchNormBwdImpl::MakeMultiblockFirstReduceOutputMG2dDescriptor(
arg.invariant_length, arg.blkGroupSize);
const auto dscale_dbias_grid_desc_m_g =
DeviceBatchNormBwdImpl::MakeMultiblockFirstReduceOutputMG2dDescriptor(
arg.invariant_length, arg.blkGroupSize);
const auto mean_var_count_grid_desc_m_k =
DeviceBatchNormBwdImpl::MakeMultiblockFinalReduceInputMK2dDescriptor(
arg.invariant_length, arg.blkGroupSize);
const auto dscale_dbias_grid_desc_m_k =
DeviceBatchNormBwdImpl::MakeMultiblockFinalReduceInputMK2dDescriptor(
arg.invariant_length, arg.blkGroupSize);
using MeanVarCountGridDesc_M_G = decltype(mean_var_count_grid_desc_m_g);
using MeanVarCountGridDesc_M_K = decltype(mean_var_count_grid_desc_m_k);
using DscaleDbiasGridDesc_M_G = decltype(dscale_dbias_grid_desc_m_g);
using DscaleDbiasGridDesc_M_K = decltype(dscale_dbias_grid_desc_m_k);
using GridwiseWelfordSecondHalfReduceFirstHalf_ =
GridwiseWelfordSecondHalfReduceFirstHalf<XDataType,
DyDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
DyElementwiseOp,
XYGridDesc_M_K,
MeanVarGridDesc_M,
MeanVarCountGridDesc_M_K,
DscaleDbiasGridDesc_M_G,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XDyDxVectorDim,
XSrcVectorSize,
DySrcVectorSize,
MeanVarSrcVectorSize>;
using GridwiseReduceSecondHalfBatchNormBwdFinal_ =
GridwiseReduceSecondHalfBatchNormBackwardFinal<XDataType,
DyDataType,
DxDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
DyElementwiseOp,
XYGridDesc_M_K,
DscaleDbiasGridDesc_M_K,
MeanVarGridDesc_M,
ScaleBiasGridDesc_M,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XDyDxVectorDim,
XSrcVectorSize,
DySrcVectorSize,
DxDstVectorSize,
ScaleSrcDstVectorSize,
BiasDstVectorSize,
MeanVarSrcVectorSize>;
if(UseMultiblockInK && arg.blkGroupSize > 1)
{
using GetReduceCountPerThreadFunctor =
GetReduceCountPerThreadForMultiblockWelford<K_BlockTileSize, KThreadSliceSize>;
GetReduceCountPerThreadFunctor get_reduce_count_per_thread(
arg.blkGroupSize, arg.numBlockTileIteration, arg.reduce_length);
if(!arg.haveSavedMeanInvVar_)
{
using GridwiseMultiblockWelfordFirstHalf_ =
GridwiseMultiblockWelfordFirstHalf<XDataType,
AccDataType,
MeanVarDataType,
XYGridDesc_M_K,
MeanVarCountGridDesc_M_G,
GetReduceCountPerThreadFunctor,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XDyDxVectorDim,
XSrcVectorSize>;
const auto kern_multiblock_welford_first_half =
kernel_multiblock_welford_first_half<GridwiseMultiblockWelfordFirstHalf_,
XDataType,
MeanVarDataType,
XYGridDesc_M_K,
MeanVarCountGridDesc_M_G,
GetReduceCountPerThreadFunctor>;
avg_time += launch_and_time_kernel(
stream_config,
kern_multiblock_welford_first_half,
dim3(arg.gridSize),
dim3(BlockSize),
0,
arg.x_grid_desc_m_k,
mean_var_count_grid_desc_m_g,
get_reduce_count_per_thread,
arg.numBlockTileIteration,
arg.p_x_,
static_cast<MeanVarDataType*>(arg.workspace_mean),
static_cast<MeanVarDataType*>(arg.workspace_variance),
static_cast<int32_t*>(arg.workspace_count));
};
const auto kern_welford_second_half_reduce_first_half =
kernel_welford_second_half_reduce_first_half<
GridwiseWelfordSecondHalfReduceFirstHalf_,
XDataType,
DyDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
DyElementwiseOp,
XYGridDesc_M_K,
MeanVarGridDesc_M,
MeanVarCountGridDesc_M_K,
DscaleDbiasGridDesc_M_G>;
const auto kern_reduce_second_half_batchnorm_backward_final =
kernel_reduce_second_half_batchnorm_backward_final<
GridwiseReduceSecondHalfBatchNormBwdFinal_,
XDataType,
DyDataType,
DxDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
DyElementwiseOp,
XYGridDesc_M_K,
DscaleDbiasGridDesc_M_K,
MeanVarGridDesc_M,
ScaleBiasGridDesc_M>;
index_t numDscaleDbiasBlockTileIteration =
(arg.blkGroupSize + KThreadClusterSize - 1) / KThreadClusterSize;
avg_time += launch_and_time_kernel(
stream_config,
kern_welford_second_half_reduce_first_half,
dim3(arg.gridSize),
dim3(BlockSize),
0,
arg.x_grid_desc_m_k,
arg.dy_grid_desc_m_k,
arg.mean_var_grid_desc_m,
mean_var_count_grid_desc_m_k,
dscale_dbias_grid_desc_m_g,
arg.blkGroupSize,
arg.numBlockTileIteration,
numDscaleDbiasBlockTileIteration,
arg.epsilon_,
arg.haveSavedMeanInvVar_,
arg.haveSavedMeanInvVar_ ? arg.p_savedMean_ : nullptr,
arg.haveSavedMeanInvVar_ ? arg.p_savedInvVar_ : nullptr,
arg.haveSavedMeanInvVar_
? nullptr
: static_cast<const MeanVarDataType*>(arg.workspace_mean),
arg.haveSavedMeanInvVar_
? nullptr
: static_cast<const MeanVarDataType*>(arg.workspace_variance),
arg.haveSavedMeanInvVar_ ? nullptr
: static_cast<const int32_t*>(arg.workspace_count),
arg.dy_elementwise_op_,
arg.haveSavedMeanInvVar_
? nullptr
: static_cast<MeanVarDataType*>(arg.workspace_savedMean),
arg.haveSavedMeanInvVar_
? nullptr
: static_cast<MeanVarDataType*>(arg.workspace_savedInvVar),
arg.p_x_,
arg.p_dy_,
static_cast<ScaleDataType*>(arg.workspace_reduce_dscale),
static_cast<BiasDataType*>(arg.workspace_reduce_dbias));
avg_time += launch_and_time_kernel(
stream_config,
kern_reduce_second_half_batchnorm_backward_final,
dim3(arg.gridSize),
dim3(BlockSize),
0,
arg.x_grid_desc_m_k,
arg.dy_grid_desc_m_k,
arg.dx_grid_desc_m_k,
dscale_dbias_grid_desc_m_k,
arg.mean_var_grid_desc_m,
arg.scale_grid_desc_m,
arg.bias_grid_desc_m,
arg.blkGroupSize,
arg.reduce_length,
arg.numBlockTileIteration,
numDscaleDbiasBlockTileIteration,
static_cast<const ScaleDataType*>(arg.workspace_reduce_dscale),
static_cast<const BiasDataType*>(arg.workspace_reduce_dbias),
arg.haveSavedMeanInvVar_
? arg.p_savedMean_
: static_cast<const MeanVarDataType*>(arg.workspace_savedMean),
arg.haveSavedMeanInvVar_
? arg.p_savedInvVar_
: static_cast<const MeanVarDataType*>(arg.workspace_savedInvVar),
arg.p_x_,
arg.p_dy_,
arg.p_scale_,
arg.dy_elementwise_op_,
arg.p_dx_,
arg.p_dscale_,
arg.p_dbias_);
}
else
{
using GetReduceCountPerThreadFunctor =
GetReduceCountPerThreadForBlockwiseWelford<K_BlockTileSize, KThreadSliceSize>;
GetReduceCountPerThreadFunctor get_reduce_count_per_thread(
arg.numBlockTileIteration, arg.reduce_length);
using GridwiseBatchNormBackwardWithBlockwiseWelford_ =
GridwiseBatchNormBackwardWithBlockwiseWelford<XDataType,
DyDataType,
DxDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
DyElementwiseOp,
XYGridDesc_M_K,
ScaleBiasGridDesc_M,
MeanVarGridDesc_M,
GetReduceCountPerThreadFunctor,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XDyDxVectorDim,
XSrcVectorSize,
DySrcVectorSize,
DxDstVectorSize,
ScaleSrcDstVectorSize,
BiasDstVectorSize,
MeanVarSrcVectorSize>;
const auto kern_batchnorm_bwd = kernel_batchnorm_backward_with_blockwise_welford<
GridwiseBatchNormBackwardWithBlockwiseWelford_,
XDataType,
DyDataType,
DxDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
DyElementwiseOp,
XYGridDesc_M_K,
ScaleBiasGridDesc_M,
MeanVarGridDesc_M,
GetReduceCountPerThreadFunctor>;
avg_time += launch_and_time_kernel(stream_config,
kern_batchnorm_bwd,
dim3(arg.gridSize),
dim3(BlockSize),
0,
arg.x_grid_desc_m_k,
arg.dy_grid_desc_m_k,
arg.dx_grid_desc_m_k,
arg.scale_grid_desc_m,
arg.bias_grid_desc_m,
arg.mean_var_grid_desc_m,
get_reduce_count_per_thread,
arg.reduce_length,
arg.numBlockTileIteration,
arg.epsilon_,
arg.p_x_,
arg.p_dy_,
arg.p_scale_,
arg.haveSavedMeanInvVar_,
arg.p_savedMean_,
arg.p_savedInvVar_,
arg.dy_elementwise_op_,
arg.p_dx_,
arg.p_dscale_,
arg.p_dbias_);
};
return (avg_time);
};
float Run(const BaseArgument* pArg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(pArg), stream_config);
};
};
bool IsSupportedArgument(const BaseArgument* pArg) override
{
const Argument* pArg_ = dynamic_cast<const Argument*>(pArg);
if constexpr(XDyDxVectorDim == 0)
{
if(pArg_->xStrides_[NumInvariantDim - 1] != 1 ||
pArg_->dyStrides_[NumInvariantDim - 1] != 1 ||
pArg_->dxStrides_[NumInvariantDim - 1] != 1)
return false;
if(pArg_->xyLengths_[NumInvariantDim - 1] % XSrcVectorSize != 0 ||
pArg_->xyLengths_[NumInvariantDim - 1] % DySrcVectorSize != 0 ||
pArg_->xyLengths_[NumInvariantDim - 1] % DxDstVectorSize != 0)
return false;
}
else
{
if(pArg_->xStrides_[Rank - 1] != 1 || pArg_->dyStrides_[Rank - 1] != 1 ||
pArg_->dxStrides_[Rank - 1] != 1)
return false;
if(pArg_->xyLengths_[Rank - 1] % XSrcVectorSize != 0 ||
pArg_->xyLengths_[Rank - 1] % DySrcVectorSize != 0 ||
pArg_->xyLengths_[Rank - 1] % DxDstVectorSize != 0)
return false;
};
if(pArg_->bnScaleStrides_[NumInvariantDim - 1] != 1 && ScaleSrcDstVectorSize != 1)
return false;
if(pArg_->bnBiasStrides_[NumInvariantDim - 1] != 1 && BiasDstVectorSize != 1)
return false;
if(pArg_->bnScaleBiasMeanVarLengths_[NumInvariantDim - 1] % ScaleSrcDstVectorSize != 0)
return false;
if(pArg_->bnScaleBiasMeanVarLengths_[NumInvariantDim - 1] % BiasDstVectorSize != 0)
return false;
if(pArg_->haveSavedMeanInvVar_)
{
if(pArg_->bnMeanVarStrides_[NumInvariantDim - 1] != 1 && MeanVarSrcVectorSize != 1)
return false;
if(pArg_->bnScaleBiasMeanVarLengths_[NumInvariantDim - 1] % MeanVarSrcVectorSize != 0)
return false;
};
bool is_valid = true;
static_for<0, NumInvariantDim, 1>{}([&](auto I) {
if(pArg_->xyLengths_[I] != pArg_->bnScaleBiasMeanVarLengths_[I])
is_valid = false;
});
if(!is_valid)
return false;
return true;
};
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::array<index_t, Rank> xyLengths,
const std::array<index_t, Rank> xStrides,
const std::array<index_t, Rank> dyStrides,
const std::array<index_t, Rank> dxStrides,
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<ck::index_t, NumInvariantDim> bnScaleBiasMeanVarLengths,
const std::array<ck::index_t, NumInvariantDim> bnScaleStrides,
const std::array<ck::index_t, NumInvariantDim> bnBiasStrides,
const std::array<ck::index_t, NumInvariantDim> bnMeanVarStrides,
const void* p_x,
const void* p_dy,
const void* p_scale,
const void* p_savedMean,
const void* p_savedInvVar,
double epsilon,
const DyElementwiseOp dy_elementwise_op,
void* p_dx,
void* p_dscale,
void* p_dbias) override
{
return std::make_unique<Argument>(xyLengths,
xStrides,
dyStrides,
dxStrides,
reduceDims,
bnScaleBiasMeanVarLengths,
bnScaleStrides,
bnBiasStrides,
bnMeanVarStrides,
static_cast<const XDataType*>(p_x),
static_cast<const DyDataType*>(p_dy),
static_cast<const ScaleDataType*>(p_scale),
static_cast<const MeanVarDataType*>(p_savedMean),
static_cast<const MeanVarDataType*>(p_savedInvVar),
dy_elementwise_op,
epsilon,
static_cast<DxDataType*>(p_dx),
static_cast<ScaleDataType*>(p_dscale),
static_cast<BiasDataType*>(p_dbias));
};
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceBatchNormBwdImpl<" << BlockSize << ",";
str << "M_C" << MThreadClusterSize << "_S" << MThreadSliceSize << ",";
str << "K_C" << KThreadClusterSize << "_S" << KThreadSliceSize << ",";
str << "XDyDxVectorDim_" << XDyDxVectorDim << ",";
str << "VectorSize_X" << XSrcVectorSize << "_scale_" << ScaleSrcDstVectorSize << "_bias_" << BiasDstVectorSize << "_mean_var_" << MeanVarSrcVectorSize << "_Dx_" << DxDstVectorSize << ">";
// clang-format on
return str.str();
}
}; // namespace device
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
template <typename GridwiseReduceSecondHalfBatchNormBackwardFinal_,
typename XDataType,
typename DyDataType,
typename DxDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
typename XYGridDesc_M_K,
typename DscaleDbiasGridDesc_M_K,
typename MeanVarGridDesc_M,
typename ScaleBiasGridDesc_M>
__global__ void kernel_reduce_second_half_batchnorm_backward_final(
const XYGridDesc_M_K x_grid_desc_m_k,
const XYGridDesc_M_K dy_grid_desc_m_k,
const XYGridDesc_M_K dx_grid_desc_m_k,
const DscaleDbiasGridDesc_M_K dscale_dbias_grid_desc_m_k,
const MeanVarGridDesc_M mean_var_grid_desc_m,
const ScaleBiasGridDesc_M scale_grid_desc_m,
const ScaleBiasGridDesc_M bias_grid_desc_m,
index_t blkgroup_size,
long_index_t reduce_size,
index_t num_xy_k_block_tile_iteration,
index_t num_dscale_dbias_k_block_tile_iteration,
const ScaleDataType* const __restrict__ p_reduce_dscale,
const BiasDataType* const __restrict__ p_reduce_dbias,
const MeanVarDataType* const __restrict__ p_mean,
const MeanVarDataType* const __restrict__ p_inv_var,
const XDataType* const __restrict__ p_x,
const DyDataType* const __restrict__ p_dy,
const ScaleDataType* const __restrict__ p_scale,
const DyElementwiseOp dy_elementwise_op,
DxDataType* const __restrict__ p_dx,
ScaleDataType* const __restrict__ p_dscale,
BiasDataType* const __restrict__ p_dbias)
{
GridwiseReduceSecondHalfBatchNormBackwardFinal_::Run(x_grid_desc_m_k,
dy_grid_desc_m_k,
dx_grid_desc_m_k,
dscale_dbias_grid_desc_m_k,
mean_var_grid_desc_m,
scale_grid_desc_m,
bias_grid_desc_m,
blkgroup_size,
reduce_size,
num_xy_k_block_tile_iteration,
num_dscale_dbias_k_block_tile_iteration,
p_reduce_dscale,
p_reduce_dbias,
p_mean,
p_inv_var,
p_x,
p_dy,
p_scale,
dy_elementwise_op,
p_dx,
p_dscale,
p_dbias);
};
template <typename XDataType,
typename DyDataType,
typename DxDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
typename XYGridDesc_M_K,
typename DscaleDbiasGridDesc_M_K,
typename MeanVarGridDesc_M,
typename ScaleBiasGridDesc_M,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t XDyDxVectorDim,
index_t XSrcVectorSize,
index_t DySrcVectorSize,
index_t DxDstVectorSize,
index_t ScaleSrcDstVectorSize,
index_t BiasDstVectorSize,
index_t MeanVarSrcVectorSize>
struct GridwiseReduceSecondHalfBatchNormBackwardFinal
{
static_assert((XDyDxVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0 &&
MThreadSliceSize % DySrcVectorSize == 0 &&
MThreadSliceSize % DxDstVectorSize == 0) ||
(XDyDxVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0 &&
KThreadSliceSize % DySrcVectorSize == 0 &&
KThreadSliceSize % DxDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static constexpr bool reorder_thread_cluster = (XDyDxVectorDim == 0);
using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>;
using ThreadBufferDimAccessOrder =
typename conditional<reorder_thread_cluster, Sequence<1, 0>, Sequence<0, 1>>::type;
using ThreadClusterArrangeOrder =
typename conditional<reorder_thread_cluster, Sequence<1, 0>, Sequence<0, 1>>::type;
static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
using ThreadReduceSrcDesc_M_1 = decltype(
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}, Number<1>{})));
using ThreadReduceDstDesc_M =
decltype(make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{})));
using BlockwiseReduce = PartitionedBlockwiseReduction<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder,
ck::reduce::Add,
false>;
using ThreadwiseReduce = ThreadwiseReduction<AccDataType,
ThreadReduceSrcDesc_M_1,
ThreadReduceDstDesc_M,
ck::reduce::Add,
false>;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
// clang-format off
// Two of the steps of Multiblock BatchNorm Backward
// Step 1: Second half of Reduction: dbias = sum(dy), dscale = sum(dy * (x-mean) * inv-variance)
// Step 2: calculating dx = 1/reduce_size * inv-variance * scale * (reduce_size * dy - dbias - dscale * (x - mean) * inv-variance)) elementwise-ly
// clang-format on
__device__ static void Run(const XYGridDesc_M_K& x_grid_desc_m_k,
const XYGridDesc_M_K& dy_grid_desc_m_k,
const XYGridDesc_M_K& dx_grid_desc_m_k,
const DscaleDbiasGridDesc_M_K& dscale_dbias_grid_desc_m_k,
const MeanVarGridDesc_M& mean_var_grid_desc_m,
const ScaleBiasGridDesc_M& scale_grid_desc_m,
const ScaleBiasGridDesc_M& bias_grid_desc_m,
index_t blkgroup_size,
long_index_t reduce_size,
index_t num_xy_k_block_tile_iteration,
index_t num_dscale_dbias_k_block_tile_iteration,
const ScaleDataType* const __restrict__ p_reduce_dscale,
const BiasDataType* const __restrict__ p_reduce_dbias,
const MeanVarDataType* const __restrict__ p_mean,
const MeanVarDataType* const __restrict__ p_inv_var,
const XDataType* const __restrict__ p_x,
const DyDataType* const __restrict__ p_dy,
const ScaleDataType* const __restrict__ p_scale,
const DyElementwiseOp dy_elementwise_op,
DxDataType* const __restrict__ p_dx,
ScaleDataType* const __restrict__ p_dscale,
BiasDataType* const __restrict__ p_dbias)
{
__shared__ AccDataType p_reduce_work_buffer[BlockSize];
auto reduce_work_buf =
make_dynamic_buffer<AddressSpaceEnum::Lds>(p_reduce_work_buffer, BlockSize);
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * 1, true>
reduce_dscale_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * 1, true>
reduce_dbias_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> dscale_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> dbias_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
x_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
dy_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
dx_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>
inv_var_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> scale_thread_buf;
const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id();
const index_t blkgroup_id = block_global_id / blkgroup_size;
const index_t block_local_id = block_global_id % blkgroup_size;
const auto thread_cluster_idx =
thread_cluster_desc.CalculateBottomIndex(make_multi_index(thread_local_id));
const auto thread_m_cluster_id = thread_cluster_idx[I0];
const auto thread_k_cluster_id = thread_cluster_idx[I1];
using ThreadBufferLengths_M_K = Sequence<MThreadSliceSize, KThreadSliceSize>;
using ThreadBufferLengths_M = Sequence<MThreadSliceSize>;
using ThreadBufferLengths_M_1 = Sequence<MThreadSliceSize, 1>;
constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{}));
constexpr auto thread_buffer_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}));
constexpr auto thread_buffer_desc_m_1 = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<1>{}));
// clang-format off
// Step 1: do final reduction of dbias = sum(dy), dscale = sum(dy * (x-mean) * inv-variance)
// clang-format on
auto threadwise_dscale_load_m_k =
ThreadwiseTensorSliceTransfer_v2<ScaleDataType,
AccDataType,
DscaleDbiasGridDesc_M_K,
decltype(thread_buffer_desc_m_1),
ThreadBufferLengths_M_1,
Sequence<0, 1>,
1,
1,
1,
true>(
dscale_dbias_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * 1));
auto threadwise_dbias_load_m_k =
ThreadwiseTensorSliceTransfer_v2<BiasDataType,
AccDataType,
DscaleDbiasGridDesc_M_K,
decltype(thread_buffer_desc_m_1),
ThreadBufferLengths_M_1,
Sequence<0, 1>,
1,
1,
1,
true>(
dscale_dbias_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * 1));
auto threadwise_dscale_store_m =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
ScaleDataType,
decltype(thread_buffer_desc_m),
ScaleBiasGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>,
0,
ScaleSrcDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
scale_grid_desc_m,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
auto threadwise_dbias_store_m =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
BiasDataType,
decltype(thread_buffer_desc_m),
ScaleBiasGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>,
0,
BiasDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
bias_grid_desc_m,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
const auto reduce_dscale_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_reduce_dscale, dscale_dbias_grid_desc_m_k.GetElementSpaceSize());
const auto reduce_dbias_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_reduce_dbias, dscale_dbias_grid_desc_m_k.GetElementSpaceSize());
auto dscale_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dscale, scale_grid_desc_m.GetElementSpaceSize());
auto dbias_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dbias, bias_grid_desc_m.GetElementSpaceSize());
constexpr auto dscale_dbias_thread_copy_step_m_k =
make_multi_index(0, KThreadClusterSize * 1);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
dscale_thread_buf(I) = type_convert<AccDataType>(0.0f);
dbias_thread_buf(I) = type_convert<AccDataType>(0.0f);
});
for(index_t reducedTiles = 0; reducedTiles < num_dscale_dbias_k_block_tile_iteration;
++reducedTiles)
{
threadwise_dscale_load_m_k.Run(dscale_dbias_grid_desc_m_k,
reduce_dscale_global_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
reduce_dscale_thread_buf);
threadwise_dbias_load_m_k.Run(dscale_dbias_grid_desc_m_k,
reduce_dbias_global_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
reduce_dbias_thread_buf);
ThreadwiseReduce::Reduce(reduce_dscale_thread_buf, dscale_thread_buf);
ThreadwiseReduce::Reduce(reduce_dbias_thread_buf, dbias_thread_buf);
threadwise_dscale_load_m_k.MoveSrcSliceWindow(dscale_dbias_grid_desc_m_k,
dscale_dbias_thread_copy_step_m_k);
threadwise_dbias_load_m_k.MoveSrcSliceWindow(dscale_dbias_grid_desc_m_k,
dscale_dbias_thread_copy_step_m_k);
}
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
BlockwiseReduce::Reduce(reduce_work_buf, dscale_thread_buf(I));
block_sync_lds();
BlockwiseReduce::Reduce(reduce_work_buf, dbias_thread_buf(I));
});
threadwise_dscale_store_m.Run(thread_buffer_desc_m,
make_tuple(I0),
dscale_thread_buf,
scale_grid_desc_m,
dscale_global_buf);
threadwise_dbias_store_m.Run(thread_buffer_desc_m,
make_tuple(I0),
dbias_thread_buf,
bias_grid_desc_m,
dbias_global_buf);
// clang-format off
// Step 2: calculate dx = 1/N * inv-variance * scale * (N * dy - dbias - dscale * (x - mean) * inv-variance)
// clang-format on
const index_t workSizePerBlock = K_BlockTileSize * num_xy_k_block_tile_iteration;
auto threadwise_x_load = ThreadwiseTensorSliceTransfer_v2<XDataType,
AccDataType,
XYGridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
XDyDxVectorDim,
XSrcVectorSize,
1,
true>(
x_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize + thread_m_cluster_id * MThreadSliceSize,
workSizePerBlock * block_local_id +
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_dy_load = ThreadwiseTensorSliceTransfer_v2<DyDataType,
AccDataType,
XYGridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
XDyDxVectorDim,
DySrcVectorSize,
1,
true>(
dy_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize + thread_m_cluster_id * MThreadSliceSize,
workSizePerBlock * block_local_id +
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_dx_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
DxDataType,
decltype(thread_buffer_desc_m_k),
XYGridDesc_M_K,
PassThroughOp,
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
XDyDxVectorDim,
DxDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
dx_grid_desc_m_k,
make_multi_index(
blkgroup_id * M_BlockTileSize + thread_m_cluster_id * MThreadSliceSize,
workSizePerBlock * block_local_id + thread_k_cluster_id * KThreadSliceSize),
PassThroughOp{});
auto threadwise_scale_load =
ThreadwiseTensorSliceTransfer_v2<ScaleDataType,
AccDataType,
ScaleBiasGridDesc_M,
decltype(thread_buffer_desc_m),
ThreadBufferLengths_M,
Sequence<0>,
0,
ScaleSrcDstVectorSize,
1,
true>(
scale_grid_desc_m,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize));
auto threadwise_mean_var_load =
ThreadwiseTensorSliceTransfer_v2<MeanVarDataType,
AccDataType,
MeanVarGridDesc_M,
decltype(thread_buffer_desc_m),
ThreadBufferLengths_M,
Sequence<0>,
0,
MeanVarSrcVectorSize,
1,
true>(
mean_var_grid_desc_m,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize));
const auto x_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_x, x_grid_desc_m_k.GetElementSpaceSize());
const auto dy_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dy, dy_grid_desc_m_k.GetElementSpaceSize());
auto dx_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dx, dx_grid_desc_m_k.GetElementSpaceSize());
const auto scale_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_scale, scale_grid_desc_m.GetElementSpaceSize());
const auto mean_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_mean, mean_var_grid_desc_m.GetElementSpaceSize());
const auto inv_var_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_inv_var, mean_var_grid_desc_m.GetElementSpaceSize());
threadwise_scale_load.Run(scale_grid_desc_m,
scale_global_buf,
thread_buffer_desc_m,
make_tuple(I0),
scale_thread_buf);
threadwise_mean_var_load.Run(mean_var_grid_desc_m,
mean_global_buf,
thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf);
threadwise_mean_var_load.Run(mean_var_grid_desc_m,
inv_var_global_buf,
thread_buffer_desc_m,
make_tuple(I0),
inv_var_thread_buf);
constexpr auto xy_thread_copy_step_m_k = make_multi_index(0, K_BlockTileSize);
AccDataType inv_reduce_size =
type_convert<AccDataType>(1.0) / type_convert<AccDataType>(reduce_size);
for(index_t reducedTiles = 0; reducedTiles < num_xy_k_block_tile_iteration; ++reducedTiles)
{
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf);
threadwise_dy_load.Run(dy_grid_desc_m_k,
dy_global_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
dy_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
AccDataType multiplier =
inv_reduce_size * inv_var_thread_buf[iM] * scale_thread_buf[iM];
static_for<0, KThreadSliceSize, 1>{}([&](auto iK) {
constexpr auto offset =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
dy_elementwise_op(dy_thread_buf(Number<offset>{}),
dy_thread_buf[Number<offset>{}]);
AccDataType norm_x = (x_thread_buf[Number<offset>{}] - mean_thread_buf[iM]) *
inv_var_thread_buf[iM];
AccDataType tmpVal = norm_x * dscale_thread_buf[iM];
dx_thread_buf(Number<offset>{}) =
multiplier *
(type_convert<AccDataType>(reduce_size) * dy_thread_buf[Number<offset>{}] -
dbias_thread_buf[iM] - tmpVal);
});
});
threadwise_dx_store.Run(thread_buffer_desc_m_k,
make_tuple(I0, I0),
dx_thread_buf,
dx_grid_desc_m_k,
dx_global_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, xy_thread_copy_step_m_k);
threadwise_dy_load.MoveSrcSliceWindow(dy_grid_desc_m_k, xy_thread_copy_step_m_k);
threadwise_dx_store.MoveDstSliceWindow(dx_grid_desc_m_k, xy_thread_copy_step_m_k);
}
};
};
} // namespace ck
...@@ -93,6 +93,9 @@ struct GridwiseMultiblockWelfordFirstHalf ...@@ -93,6 +93,9 @@ struct GridwiseMultiblockWelfordFirstHalf
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize; static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize; static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
// clang-format off
// First half of the Multiblock Welford method to calculate mean and variance, used by both batchnorm-forward and batchnorm-backward.
// clang-format on
__device__ static void Run(const XGridDesc_M_K& x_grid_desc_m_k, __device__ static void Run(const XGridDesc_M_K& x_grid_desc_m_k,
const MeanVarCountGridDesc_M_G& mean_var_count_grid_desc_m_g, const MeanVarCountGridDesc_M_G& mean_var_count_grid_desc_m_g,
const GetReduceCountPerThreadFunctor& get_reduce_count_per_thread, const GetReduceCountPerThreadFunctor& get_reduce_count_per_thread,
......
...@@ -529,6 +529,7 @@ struct GridwiseWelfordSecondHalfBatchNormForwardFinal ...@@ -529,6 +529,7 @@ struct GridwiseWelfordSecondHalfBatchNormForwardFinal
auto result_inv_var_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>( auto result_inv_var_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
resultSaveInvVariance, mean_var_grid_desc_m.GetElementSpaceSize()); resultSaveInvVariance, mean_var_grid_desc_m.GetElementSpaceSize());
// calculate inv-variance as 1/sqrt(epsilon+variance)
static_for<0, MThreadSliceSize, 1>{}([&](auto I) { static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
welford_var_thread_buf(I) = welford_var_thread_buf(I) =
type_convert<AccDataType>(1.0f) / sqrt(epsilon + welford_var_thread_buf[I]); type_convert<AccDataType>(1.0f) / sqrt(epsilon + welford_var_thread_buf[I]);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_welford.hpp"
#include "ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
template <typename GridwiseWelfordSecondHalfReduceFirstHalf_,
typename XDataType,
typename DyDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
typename XYGridDesc_M_K,
typename MeanVarGridDesc_M,
typename MeanVarCountGridDesc_M_K,
typename DscaleDbiasGridDesc_M_G>
__global__ void kernel_welford_second_half_reduce_first_half(
const XYGridDesc_M_K x_grid_desc_m_k,
const XYGridDesc_M_K dy_grid_desc_m_k,
const MeanVarGridDesc_M mean_var_grid_desc_m,
const MeanVarCountGridDesc_M_K mean_var_count_grid_desc_m_k,
const DscaleDbiasGridDesc_M_G dscale_dbias_grid_desc_m_g,
index_t blkgroup_size,
index_t num_xy_k_block_tile_iteration,
index_t num_mean_var_count_k_block_tile_iteration,
AccDataType epsilon,
bool haveSavedMeanInvVar,
const MeanVarDataType* const __restrict__ p_savedMean,
const MeanVarDataType* const __restrict__ p_savedInvVar,
const MeanVarDataType* const __restrict__ p_in_welford_mean,
const MeanVarDataType* const __restrict__ p_in_welford_variance,
const int32_t* const __restrict__ p_in_welford_count,
const DyElementwiseOp dy_elementwise_op,
MeanVarDataType* const __restrict__ p_out_welford_mean,
MeanVarDataType* const __restrict__ p_out_welford_inv_variance,
const XDataType* const __restrict__ p_x,
const DyDataType* const __restrict__ p_dy,
ScaleDataType* const __restrict__ p_reduce_dscale,
BiasDataType* const __restrict__ p_reduce_dbias)
{
GridwiseWelfordSecondHalfReduceFirstHalf_::Run(x_grid_desc_m_k,
dy_grid_desc_m_k,
mean_var_grid_desc_m,
mean_var_count_grid_desc_m_k,
dscale_dbias_grid_desc_m_g,
blkgroup_size,
num_xy_k_block_tile_iteration,
num_mean_var_count_k_block_tile_iteration,
epsilon,
haveSavedMeanInvVar,
p_savedMean,
p_savedInvVar,
p_in_welford_mean,
p_in_welford_variance,
p_in_welford_count,
dy_elementwise_op,
p_out_welford_mean,
p_out_welford_inv_variance,
p_x,
p_dy,
p_reduce_dscale,
p_reduce_dbias);
};
template <typename XDataType,
typename DyDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
typename XYGridDesc_M_K,
typename MeanVarGridDesc_M,
typename MeanVarCountGridDesc_M_K,
typename DscaleDbiasGridDesc_M_G,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t XDyVectorDim,
index_t XSrcVectorSize,
index_t DySrcVectorSize,
index_t MeanVarSrcVectorSize>
struct GridwiseWelfordSecondHalfReduceFirstHalf
{
static_assert((XDyVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0 &&
MThreadSliceSize % DySrcVectorSize == 0) ||
(XDyVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0 &&
KThreadSliceSize % DySrcVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static constexpr bool reorder_thread_cluster = (XDyVectorDim == 0);
using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>;
using ThreadBufferDimAccessOrder =
typename conditional<reorder_thread_cluster, Sequence<1, 0>, Sequence<0, 1>>::type;
using ThreadClusterArrangeOrder =
typename conditional<reorder_thread_cluster, Sequence<1, 0>, Sequence<0, 1>>::type;
static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
using ThreadReduceSrcDesc_M_K = decltype(make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{})));
using ThreadReduceSrcDesc_M_1 = decltype(
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}, Number<1>{})));
using ThreadReduceDstDesc_M =
decltype(make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{})));
using ThreadwiseWelford =
ThreadwiseWelfordMerge<AccDataType, ThreadReduceSrcDesc_M_1, ThreadReduceDstDesc_M>;
using BlockwiseWelford = BlockwiseWelford<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder>;
using BlockwiseReduce = PartitionedBlockwiseReduction<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder,
ck::reduce::Add,
false>;
using ThreadwiseReduce = ThreadwiseReduction<AccDataType,
ThreadReduceSrcDesc_M_K,
ThreadReduceDstDesc_M,
ck::reduce::Add,
false>;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
// clang-format off
// Two of the steps of Multiblock BatchNorm Backward
// Step 1: Second half of Welford method to calculate mean and variance, as well as getting inv-variance = 1/sqrt(epsilon+variance)
// Step 2: First half of Reduction: dbias = sum(dy), dscale = sum(dy * (x-mean) * inv-variance)
// clang-format on
__device__ static void Run(const XYGridDesc_M_K& x_grid_desc_m_k,
const XYGridDesc_M_K& dy_grid_desc_m_k,
const MeanVarGridDesc_M& mean_var_grid_desc_m,
const MeanVarCountGridDesc_M_K& mean_var_count_grid_desc_m_k,
const DscaleDbiasGridDesc_M_G& dscale_dbias_grid_desc_m_g,
index_t blkgroup_size,
index_t num_xy_k_block_tile_iteration,
index_t num_mean_var_count_k_block_tile_iteration,
AccDataType epsilon,
bool haveSavedMeanInvVar,
const MeanVarDataType* const __restrict__ p_savedMean,
const MeanVarDataType* const __restrict__ p_savedInvVar,
const MeanVarDataType* const __restrict__ p_in_welford_mean,
const MeanVarDataType* const __restrict__ p_in_welford_variance,
const int32_t* const __restrict__ p_in_welford_count,
const DyElementwiseOp dy_elementwise_op,
MeanVarDataType* const __restrict__ p_out_welford_mean,
MeanVarDataType* const __restrict__ p_out_welford_inv_variance,
const XDataType* const __restrict__ p_x,
const DyDataType* const __restrict__ p_dy,
ScaleDataType* const __restrict__ p_reduce_dscale,
BiasDataType* const __restrict__ p_reduce_dbias)
{
__shared__ AccDataType p_reduce_work_buffer[BlockSize];
auto reduce_work_buf =
make_dynamic_buffer<AddressSpaceEnum::Lds>(p_reduce_work_buffer, BlockSize);
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * 1, true>
in_welford_mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * 1, true>
in_welford_var_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, int32_t, MThreadSliceSize * 1, true>
in_welford_count_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>
welford_mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>
welford_var_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, int32_t, MThreadSliceSize, true>
welford_count_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>& mean_thread_buf =
welford_mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>&
inv_var_thread_buf = welford_var_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
x_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
dy_thread_buf;
// buffer of values of dy * (x-mean) * inv-variance, used as input of Blockwise reduction
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
tmp1_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>
reduce_dscale_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>
reduce_dbias_thread_buf;
const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id();
const index_t blkgroup_id = block_global_id / blkgroup_size;
const index_t block_local_id = block_global_id % blkgroup_size;
const auto thread_cluster_idx =
thread_cluster_desc.CalculateBottomIndex(make_multi_index(thread_local_id));
const auto thread_m_cluster_id = thread_cluster_idx[I0];
const auto thread_k_cluster_id = thread_cluster_idx[I1];
using ThreadBufferLengths_M_K = Sequence<MThreadSliceSize, KThreadSliceSize>;
using ThreadBufferLengths_M = Sequence<MThreadSliceSize>;
using ThreadBufferLengths_M_1 = Sequence<MThreadSliceSize, 1>;
constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{}));
constexpr auto thread_buffer_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}));
constexpr auto thread_buffer_desc_m_1 = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<1>{}));
// clang-format off
// Step 1: load existing mean and inv-variance, or do final welford reduction on mean and variance as well as get inv-variance = 1/sqrt(epsilon+variance)
// clang-format on
if(haveSavedMeanInvVar)
{
const auto mean_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_savedMean, mean_var_grid_desc_m.GetElementSpaceSize());
const auto inv_var_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_savedInvVar, mean_var_grid_desc_m.GetElementSpaceSize());
auto threadwise_mean_inv_var_load =
ThreadwiseTensorSliceTransfer_v2<MeanVarDataType,
AccDataType,
MeanVarGridDesc_M,
decltype(thread_buffer_desc_m),
ThreadBufferLengths_M,
Sequence<0>,
0,
MeanVarSrcVectorSize,
1,
true>(
mean_var_grid_desc_m,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize));
threadwise_mean_inv_var_load.Run(mean_var_grid_desc_m,
mean_global_buf,
thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf);
threadwise_mean_inv_var_load.Run(mean_var_grid_desc_m,
inv_var_global_buf,
thread_buffer_desc_m,
make_tuple(I0),
inv_var_thread_buf);
}
else
{
const auto welford_mean_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_welford_mean, mean_var_count_grid_desc_m_k.GetElementSpaceSize());
const auto welford_var_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_welford_variance, mean_var_count_grid_desc_m_k.GetElementSpaceSize());
const auto welford_count_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_welford_count, mean_var_count_grid_desc_m_k.GetElementSpaceSize());
auto threadwise_mean_var_load_m_k =
ThreadwiseTensorSliceTransfer_v2<AccDataType,
AccDataType,
MeanVarCountGridDesc_M_K,
decltype(thread_buffer_desc_m_1),
ThreadBufferLengths_M_1,
Sequence<0, 1>,
1,
1,
1,
true>(
mean_var_count_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * 1));
auto threadwise_count_load_m_k =
ThreadwiseTensorSliceTransfer_v2<int32_t,
int32_t,
MeanVarCountGridDesc_M_K,
decltype(thread_buffer_desc_m_1),
ThreadBufferLengths_M_1,
Sequence<0, 1>,
1,
1,
1,
true>(
mean_var_count_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * 1));
constexpr auto mean_var_count_thread_copy_step_m_k =
make_multi_index(0, KThreadClusterSize * 1);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
welford_mean_thread_buf(I) = type_convert<AccDataType>(0.0f);
welford_var_thread_buf(I) = type_convert<AccDataType>(0.0f);
welford_count_thread_buf(I) = 0;
});
for(index_t reducedTiles = 0; reducedTiles < num_mean_var_count_k_block_tile_iteration;
++reducedTiles)
{
threadwise_mean_var_load_m_k.Run(mean_var_count_grid_desc_m_k,
welford_mean_global_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
in_welford_mean_thread_buf);
threadwise_mean_var_load_m_k.Run(mean_var_count_grid_desc_m_k,
welford_var_global_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
in_welford_var_thread_buf);
threadwise_count_load_m_k.Run(mean_var_count_grid_desc_m_k,
welford_count_global_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
in_welford_count_thread_buf);
ThreadwiseWelford::Run(in_welford_mean_thread_buf,
in_welford_var_thread_buf,
in_welford_count_thread_buf,
welford_mean_thread_buf,
welford_var_thread_buf,
welford_count_thread_buf);
threadwise_mean_var_load_m_k.MoveSrcSliceWindow(
mean_var_count_grid_desc_m_k, mean_var_count_thread_copy_step_m_k);
threadwise_count_load_m_k.MoveSrcSliceWindow(mean_var_count_grid_desc_m_k,
mean_var_count_thread_copy_step_m_k);
}
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
BlockwiseWelford::Run(welford_mean_thread_buf(I),
welford_var_thread_buf(I),
welford_count_thread_buf(I));
});
// calculate inv-variance as 1/sqrt(epsilon+variance), stored in place of variance
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
welford_var_thread_buf(I) =
type_convert<AccDataType>(1.0) / sqrt(welford_var_thread_buf[I] + epsilon);
});
if(block_local_id == 0 && thread_k_cluster_id == 0)
{
auto threadwise_mean_inv_var_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
MeanVarDataType,
decltype(thread_buffer_desc_m),
MeanVarGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>,
0,
1,
InMemoryDataOperationEnum::Set,
1,
true>(
mean_var_grid_desc_m,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
auto mean_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_out_welford_mean, mean_var_grid_desc_m.GetElementSpaceSize());
auto inv_var_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_out_welford_inv_variance, mean_var_grid_desc_m.GetElementSpaceSize());
threadwise_mean_inv_var_store.Run(thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf,
mean_var_grid_desc_m,
mean_global_buf);
threadwise_mean_inv_var_store.Run(thread_buffer_desc_m,
make_tuple(I0),
inv_var_thread_buf,
mean_var_grid_desc_m,
inv_var_global_buf);
};
};
const index_t workSizePerBlock = K_BlockTileSize * num_xy_k_block_tile_iteration;
auto threadwise_x_load = ThreadwiseTensorSliceTransfer_v2<XDataType,
AccDataType,
XYGridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
XDyVectorDim,
XSrcVectorSize,
1,
true>(
x_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize + thread_m_cluster_id * MThreadSliceSize,
workSizePerBlock * block_local_id +
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_dy_load = ThreadwiseTensorSliceTransfer_v2<DyDataType,
AccDataType,
XYGridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
XDyVectorDim,
DySrcVectorSize,
1,
true>(
dy_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize + thread_m_cluster_id * MThreadSliceSize,
workSizePerBlock * block_local_id +
thread_k_cluster_id * KThreadSliceSize));
const auto x_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_x, x_grid_desc_m_k.GetElementSpaceSize());
const auto dy_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dy, dy_grid_desc_m_k.GetElementSpaceSize());
constexpr auto xy_thread_copy_step_m_k = make_multi_index(0, K_BlockTileSize);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
reduce_dscale_thread_buf(I) = type_convert<AccDataType>(0);
reduce_dbias_thread_buf(I) = type_convert<AccDataType>(0);
});
// clang-format off
// Step 2: first-half of reduction: dbias = sum(dy), dscale = sum(dy * (x-mean) * inv-variance)
// clang-format on
for(index_t reducedTiles = 0; reducedTiles < num_xy_k_block_tile_iteration; ++reducedTiles)
{
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf);
threadwise_dy_load.Run(dy_grid_desc_m_k,
dy_global_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
dy_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
static_for<0, KThreadSliceSize, 1>{}([&](auto iK) {
constexpr auto offset =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
dy_elementwise_op(dy_thread_buf(Number<offset>{}),
dy_thread_buf[Number<offset>{}]);
AccDataType norm_x = (x_thread_buf[Number<offset>{}] - mean_thread_buf[iM]) *
inv_var_thread_buf[iM];
tmp1_thread_buf(Number<offset>{}) = norm_x * dy_thread_buf[Number<offset>{}];
});
});
ThreadwiseReduce::Reduce(tmp1_thread_buf, reduce_dscale_thread_buf);
ThreadwiseReduce::Reduce(dy_thread_buf, reduce_dbias_thread_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, xy_thread_copy_step_m_k);
threadwise_dy_load.MoveSrcSliceWindow(dy_grid_desc_m_k, xy_thread_copy_step_m_k);
};
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
BlockwiseReduce::Reduce(reduce_work_buf, reduce_dscale_thread_buf(I));
block_sync_lds();
BlockwiseReduce::Reduce(reduce_work_buf, reduce_dbias_thread_buf(I));
});
auto threadwise_dscale_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
ScaleDataType,
decltype(thread_buffer_desc_m_1),
DscaleDbiasGridDesc_M_G,
PassThroughOp,
ThreadBufferLengths_M_1,
Sequence<0, 1>,
1,
1,
InMemoryDataOperationEnum::Set,
1,
true>(
dscale_dbias_grid_desc_m_g,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
block_local_id),
PassThroughOp{});
auto threadwise_dbias_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
BiasDataType,
decltype(thread_buffer_desc_m_1),
DscaleDbiasGridDesc_M_G,
PassThroughOp,
ThreadBufferLengths_M_1,
Sequence<0, 1>,
1,
1,
InMemoryDataOperationEnum::Set,
1,
true>(
dscale_dbias_grid_desc_m_g,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
block_local_id),
PassThroughOp{});
auto reduce_dscale_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_reduce_dscale, dscale_dbias_grid_desc_m_g.GetElementSpaceSize());
auto reduce_dbias_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_reduce_dbias, dscale_dbias_grid_desc_m_g.GetElementSpaceSize());
if(thread_k_cluster_id == 0)
{
threadwise_dscale_store.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
reduce_dscale_thread_buf,
dscale_dbias_grid_desc_m_g,
reduce_dscale_global_buf);
threadwise_dbias_store.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
reduce_dbias_thread_buf,
dscale_dbias_grid_desc_m_g,
reduce_dbias_global_buf);
};
};
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/math_v2.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_welford.hpp"
#include "ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/reduction_functions_threadwise.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
template <typename GridwiseBatchrNormBackwardWithBlockwiseWelford_,
typename XDataType,
typename DyDataType,
typename DxDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
typename XYGridDesc_M_K,
typename ScaleBiasGridDesc_M,
typename MeanVarGridDesc_M,
typename GetReduceCountPerThreadFunctor>
__global__ void kernel_batchnorm_backward_with_blockwise_welford(
const XYGridDesc_M_K x_grid_desc_m_k,
const XYGridDesc_M_K dy_grid_desc_m_k,
const XYGridDesc_M_K dx_grid_desc_m_k,
const ScaleBiasGridDesc_M scale_grid_desc_m,
const ScaleBiasGridDesc_M bias_grid_desc_m,
const MeanVarGridDesc_M mean_var_grid_desc_m,
const GetReduceCountPerThreadFunctor get_reduce_count_per_thread,
long_index_t reduce_size,
index_t num_k_block_tile_iteration,
AccDataType epsilon,
const XDataType* const __restrict__ p_x,
const DyDataType* const __restrict__ p_dy,
const ScaleDataType* const __restrict__ p_scale,
bool haveSavedMeanInvVar,
const MeanVarDataType* const __restrict__ p_savedMean,
const MeanVarDataType* const __restrict__ p_savedInvVar,
const DyElementwiseOp dy_elementwise_op,
DxDataType* const __restrict__ p_dx,
ScaleDataType* const __restrict__ p_dscale,
BiasDataType* const __restrict__ p_dbias)
{
GridwiseBatchrNormBackwardWithBlockwiseWelford_::Run(x_grid_desc_m_k,
dy_grid_desc_m_k,
dx_grid_desc_m_k,
scale_grid_desc_m,
bias_grid_desc_m,
mean_var_grid_desc_m,
get_reduce_count_per_thread,
reduce_size,
num_k_block_tile_iteration,
epsilon,
p_x,
p_dy,
p_scale,
haveSavedMeanInvVar,
p_savedMean,
p_savedInvVar,
dy_elementwise_op,
p_dx,
p_dscale,
p_dbias);
};
template <typename XDataType,
typename DyDataType,
typename DxDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
typename XYGridDesc_M_K,
typename ScaleBiasGridDesc_M,
typename MeanVarGridDesc_M,
typename GetReduceCountPerThreadFunctor,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t XDyDxVectorDim,
index_t XSrcVectorSize,
index_t DySrcVectorSize,
index_t DxDstVectorSize,
index_t ScaleSrcDstVectorSize,
index_t BiasDstVectorSize,
index_t MeanVarSrcVectorSize>
struct GridwiseBatchNormBackwardWithBlockwiseWelford
{
static_assert((XDyDxVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0 &&
MThreadSliceSize % DySrcVectorSize == 0 &&
MThreadSliceSize % DxDstVectorSize == 0) ||
(XDyDxVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0 &&
KThreadSliceSize % DySrcVectorSize == 0 &&
KThreadSliceSize % DxDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static constexpr bool reorder_thread_cluster = (XDyDxVectorDim == 0);
using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>;
using ThreadBufferDimAccessOrder =
typename conditional<reorder_thread_cluster, Sequence<1, 0>, Sequence<0, 1>>::type;
using ThreadClusterArrangeOrder =
typename conditional<reorder_thread_cluster, Sequence<1, 0>, Sequence<0, 1>>::type;
static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
using ThreadReduceSrcDesc_M_K = decltype(make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{})));
using ThreadReduceDstDesc_M =
decltype(make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{})));
using ThreadwiseWelford =
ThreadwiseWelford<AccDataType, ThreadReduceSrcDesc_M_K, ThreadReduceDstDesc_M>;
using BlockwiseWelford = BlockwiseWelford<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder>;
using BlockwiseReduce = PartitionedBlockwiseReduction<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder,
ck::reduce::Add,
false>;
using ThreadwiseReduce = ThreadwiseReduction<AccDataType,
ThreadReduceSrcDesc_M_K,
ThreadReduceDstDesc_M,
ck::reduce::Add,
false>;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
// clang-format off
// Blockwise BatchNorm Backward
// Input: x, dy, scale, savedMean and savedInvVar (optional), reduce_size
// Output: dx, dscale, dbias
// Step 1: calculating mean and inv-variance using welford method (if savedMean/savedInvVar not available), where inv-variance = 1/sqrt(epsilon+variance)
// Step 2: reduction: dbias = sum(dy), dscale = sum(dy *(x-mean) * inv-variance)
// Step 3: calculating dx = 1/reduce_size * inv-variance * scale * (reduce_size * dy - dbias - dscale * (x - mean) * inv-variance)) elementwise-ly
// clang-format on
__device__ static void Run(const XYGridDesc_M_K x_grid_desc_m_k,
const XYGridDesc_M_K dy_grid_desc_m_k,
const XYGridDesc_M_K dx_grid_desc_m_k,
const ScaleBiasGridDesc_M scale_grid_desc_m,
const ScaleBiasGridDesc_M bias_grid_desc_m,
const MeanVarGridDesc_M mean_var_grid_desc_m,
const GetReduceCountPerThreadFunctor get_reduce_count_per_thread,
long_index_t reduce_size,
index_t num_k_block_tile_iteration,
AccDataType epsilon,
const XDataType* const __restrict__ p_x,
const DyDataType* const __restrict__ p_dy,
const ScaleDataType* const __restrict__ p_scale,
bool haveSavedMeanInvVar,
const MeanVarDataType* const __restrict__ p_savedMean,
const MeanVarDataType* const __restrict__ p_savedInvVar,
const DyElementwiseOp dy_elementwise_op,
DxDataType* const __restrict__ p_dx,
ScaleDataType* const __restrict__ p_dscale,
BiasDataType* const __restrict__ p_dbias)
{
using ck::math::sqrt;
__shared__ AccDataType p_reduce_work_buffer[BlockSize];
auto reduce_work_buf =
make_dynamic_buffer<AddressSpaceEnum::Lds>(p_reduce_work_buffer, BlockSize);
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
x_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
dy_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
dx_thread_buf;
// buffer of values of dy * (x-mean) * invVariance, used as input of Blockwise reduction
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
tmp1_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> scale_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> var_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>&
inv_var_thread_buf = var_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> dscale_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> dbias_thread_buf;
const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id();
const auto thread_cluster_idx =
thread_cluster_desc.CalculateBottomIndex(make_multi_index(thread_local_id));
const auto thread_m_cluster_id = thread_cluster_idx[I0];
const auto thread_k_cluster_id = thread_cluster_idx[I1];
using ThreadBufferLengths_M_K = Sequence<MThreadSliceSize, KThreadSliceSize>;
using ThreadBufferLengths_M = Sequence<MThreadSliceSize>;
constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{}));
constexpr auto thread_buffer_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}));
auto threadwise_x_load = ThreadwiseTensorSliceTransfer_v2<XDataType,
AccDataType,
XYGridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
XDyDxVectorDim,
XSrcVectorSize,
1,
true>(
x_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_dy_load = ThreadwiseTensorSliceTransfer_v2<DyDataType,
AccDataType,
XYGridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
XDyDxVectorDim,
XSrcVectorSize,
1,
true>(
x_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_dx_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
DxDataType,
decltype(thread_buffer_desc_m_k),
XYGridDesc_M_K,
PassThroughOp,
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
XDyDxVectorDim,
DxDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
dy_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize),
PassThroughOp{});
auto threadwise_scale_load =
ThreadwiseTensorSliceTransfer_v2<ScaleDataType,
AccDataType,
ScaleBiasGridDesc_M,
decltype(thread_buffer_desc_m),
ThreadBufferLengths_M,
Sequence<0>,
0,
ScaleSrcDstVectorSize,
1,
true>(
scale_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize));
auto threadwise_dscale_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
ScaleDataType,
decltype(thread_buffer_desc_m),
ScaleBiasGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>,
0,
ScaleSrcDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
scale_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
auto threadwise_dbias_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
BiasDataType,
decltype(thread_buffer_desc_m),
ScaleBiasGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>,
0,
BiasDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
bias_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
constexpr auto thread_copy_fwd_step_m_k = make_multi_index(0, K_BlockTileSize);
constexpr auto thread_copy_bwd_step_m_k = make_multi_index(0, -K_BlockTileSize);
const auto x_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_x, x_grid_desc_m_k.GetElementSpaceSize());
const auto dy_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dy, dy_grid_desc_m_k.GetElementSpaceSize());
auto dx_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dx, dx_grid_desc_m_k.GetElementSpaceSize());
const auto scale_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_scale, scale_grid_desc_m.GetElementSpaceSize());
auto dscale_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dscale, scale_grid_desc_m.GetElementSpaceSize());
auto dbias_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dbias, bias_grid_desc_m.GetElementSpaceSize());
// clang-format off
// Step 1: calculating mean and inv-variance using welford method (if savedMean/savedInvVar not available), where inv-variance = 1/sqrt(epsilon+variance)
// clang-format on
if(haveSavedMeanInvVar)
{
const auto mean_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_savedMean, mean_var_grid_desc_m.GetElementSpaceSize());
const auto inv_var_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_savedInvVar, mean_var_grid_desc_m.GetElementSpaceSize());
auto threadwise_mean_inv_var_load =
ThreadwiseTensorSliceTransfer_v2<MeanVarDataType,
AccDataType,
MeanVarGridDesc_M,
decltype(thread_buffer_desc_m),
ThreadBufferLengths_M,
Sequence<0>,
0,
MeanVarSrcVectorSize,
1,
true>(
mean_var_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize));
threadwise_mean_inv_var_load.Run(mean_var_grid_desc_m,
mean_global_buf,
thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf);
threadwise_mean_inv_var_load.Run(mean_var_grid_desc_m,
inv_var_global_buf,
thread_buffer_desc_m,
make_tuple(I0),
inv_var_thread_buf);
}
else
{
auto threadwise_welford = ThreadwiseWelford();
threadwise_welford.max_count_ = get_reduce_count_per_thread(thread_k_cluster_id);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
mean_thread_buf(I) = type_convert<AccDataType>(0.0f);
var_thread_buf(I) = type_convert<AccDataType>(0.0f);
});
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k);
threadwise_welford.Run(x_thread_buf, mean_thread_buf, var_thread_buf);
}
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
int count = threadwise_welford.cur_count_;
BlockwiseWelford::Run(mean_thread_buf(I), var_thread_buf(I), count);
});
// calculate inv-variance as 1/sqrt(epsilon+variance)
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
inv_var_thread_buf(I) =
type_convert<AccDataType>(1.0) / sqrt(var_thread_buf[I] + epsilon);
});
threadwise_x_load.SetSrcSliceOrigin(
x_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize));
};
// clang-format off
// Step 2: reduction: dbias = sum(dy), dscale = sum(dy *(x-mean) * inv-variance)
// clang-format on
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
dscale_thread_buf(I) = type_convert<AccDataType>(0);
dbias_thread_buf(I) = type_convert<AccDataType>(0);
});
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf);
threadwise_dy_load.Run(dx_grid_desc_m_k,
dy_global_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
dy_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
static_for<0, KThreadSliceSize, 1>{}([&](auto iK) {
constexpr auto offset =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
dy_elementwise_op(dy_thread_buf(Number<offset>{}),
dy_thread_buf[Number<offset>{}]);
AccDataType norm_x = (x_thread_buf[Number<offset>{}] - mean_thread_buf[iM]) *
inv_var_thread_buf[iM];
tmp1_thread_buf(Number<offset>{}) = norm_x * dy_thread_buf[Number<offset>{}];
});
});
ThreadwiseReduce::Reduce(tmp1_thread_buf, dscale_thread_buf);
ThreadwiseReduce::Reduce(dy_thread_buf, dbias_thread_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k);
threadwise_dy_load.MoveSrcSliceWindow(dy_grid_desc_m_k, thread_copy_fwd_step_m_k);
};
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
BlockwiseReduce::Reduce(reduce_work_buf, dscale_thread_buf(I));
block_sync_lds();
BlockwiseReduce::Reduce(reduce_work_buf, dbias_thread_buf(I));
});
if(thread_k_cluster_id == 0)
{
threadwise_dscale_store.Run(thread_buffer_desc_m,
make_tuple(I0),
dscale_thread_buf,
scale_grid_desc_m,
dscale_global_buf);
threadwise_dbias_store.Run(thread_buffer_desc_m,
make_tuple(I0),
dbias_thread_buf,
bias_grid_desc_m,
dbias_global_buf);
};
// clang-format off
// Step 3: calculating dx = 1/reduce_size * inv-variance * scale * (reduce_size * dy - dbias - dscale * (x - mean) * inv-variance)) elementwise-ly
// clang-format on
threadwise_scale_load.Run(scale_grid_desc_m,
scale_global_buf,
thread_buffer_desc_m,
make_tuple(I0),
scale_thread_buf);
auto thread_copy_tail_m_k = (num_k_block_tile_iteration - 1) * thread_copy_fwd_step_m_k;
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_dy_load.MoveSrcSliceWindow(dy_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_dx_store.MoveDstSliceWindow(dx_grid_desc_m_k, thread_copy_tail_m_k);
AccDataType inv_reduce_size =
type_convert<AccDataType>(1.0) / type_convert<AccDataType>(reduce_size);
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf);
threadwise_dy_load.Run(dy_grid_desc_m_k,
dy_global_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
dy_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
AccDataType multiplier =
inv_reduce_size * inv_var_thread_buf[iM] * scale_thread_buf[iM];
static_for<0, KThreadSliceSize, 1>{}([&](auto iK) {
constexpr auto offset =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
dy_elementwise_op(dy_thread_buf(Number<offset>{}),
dy_thread_buf[Number<offset>{}]);
AccDataType norm_x = (x_thread_buf[Number<offset>{}] - mean_thread_buf[iM]) *
inv_var_thread_buf[iM];
AccDataType tmpVal = norm_x * dscale_thread_buf[iM];
dx_thread_buf(Number<offset>{}) =
multiplier *
(type_convert<AccDataType>(reduce_size) * dy_thread_buf[Number<offset>{}] -
dbias_thread_buf[iM] - tmpVal);
});
});
threadwise_dx_store.Run(thread_buffer_desc_m_k,
make_tuple(I0, I0),
dx_thread_buf,
dx_grid_desc_m_k,
dx_global_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_dy_load.MoveSrcSliceWindow(dy_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_dx_store.MoveDstSliceWindow(dx_grid_desc_m_k, thread_copy_bwd_step_m_k);
}
}
};
} // namespace ck
...@@ -441,6 +441,7 @@ struct GridwiseBatchNormForwardWithBlockwiseWelford ...@@ -441,6 +441,7 @@ struct GridwiseBatchNormForwardWithBlockwiseWelford
auto result_inv_var_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>( auto result_inv_var_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
resultSaveInvVariance, mean_var_grid_desc_m.GetElementSpaceSize()); resultSaveInvVariance, mean_var_grid_desc_m.GetElementSpaceSize());
// calculate inv-variance as 1/sqrt(epsilon+variance), stored in place of variance
static_for<0, MThreadSliceSize, 1>{}([&](auto I) { static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
var_thread_buf(I) = var_thread_buf(I) =
type_convert<AccDataType>(1.0f) / sqrt(epsilon + var_thread_buf[I]); type_convert<AccDataType>(1.0f) / sqrt(epsilon + var_thread_buf[I]);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/math.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
template <typename GridwiseMultiblockWelfordFirstHalf_,
typename XDataType,
typename MeanVarDataType,
typename XGridDesc_M_K,
typename MeanVarCountGridDesc_M_G,
typename GetReduceCountPerThreadFunctor>
__global__ void kernel_multiblock_welford_first_half(
const XGridDesc_M_K x_grid_desc_m_k,
const MeanVarCountGridDesc_M_G mean_var_count_grid_desc_m_g,
const GetReduceCountPerThreadFunctor get_reduce_count_per_thread,
index_t num_k_block_tile_iteration,
const XDataType* const __restrict__ p_x,
MeanVarDataType* const p_welford_mean,
MeanVarDataType* const p_welford_variance,
int32_t* const p_welford_count)
{
GridwiseMultiblockWelfordFirstHalf_::Run(x_grid_desc_m_k,
mean_var_count_grid_desc_m_g,
get_reduce_count_per_thread,
num_k_block_tile_iteration,
p_x,
p_welford_mean,
p_welford_variance,
p_welford_count);
};
template <typename XDataType,
typename AccDataType,
typename MeanVarDataType,
typename XGridDesc_M_K,
typename MeanVarCountGridDesc_M_G,
typename GetReduceCountPerThreadFunctor,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t XSrcCountSrcVectorDim,
index_t XSrcCountSrcVectorSize>
struct GridwiseMultiblockWelfordFirstHalf
{
static_assert((XSrcCountSrcVectorDim == 0 && MThreadSliceSize % XSrcCountSrcVectorSize == 0) ||
(XSrcCountSrcVectorDim == 1 &&
KThreadSliceSize % XSrcCountSrcVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static constexpr bool reorder_thread_cluster = (XSrcCountSrcVectorDim == 0);
using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>;
using ThreadBufferDimAccessOrder =
typename conditional<reorder_thread_cluster, Sequence<1, 0>, Sequence<0, 1>>::type;
using ThreadClusterArrangeOrder =
typename conditional<reorder_thread_cluster, Sequence<1, 0>, Sequence<0, 1>>::type;
static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
using ThreadReduceSrcDesc_M_K = decltype(make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{})));
using ThreadReduceDstDesc_M =
decltype(make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{})));
using ThreadwiseWelford =
ThreadwiseWelford<AccDataType, ThreadReduceSrcDesc_M_K, ThreadReduceDstDesc_M>;
using BlockwiseWelford = BlockwiseWelford<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder,
false>;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
__device__ static void Run(const XGridDesc_M_K& x_grid_desc_m_k,
const MeanVarCountGridDesc_M_G& mean_var_count_grid_desc_m_g,
const GetReduceCountPerThreadFunctor& get_reduce_count_per_thread,
index_t num_k_block_tile_iteration,
const XDataType* const __restrict__ p_x,
MeanVarDataType* const p_welford_mean,
MeanVarDataType* const p_welford_variance,
int32_t* const p_welford_count)
{
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
x_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>
welford_mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>
welford_var_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, int32_t, MThreadSliceSize, true>
welford_count_thread_buf;
const index_t blkgroup_size = mean_var_count_grid_desc_m_g.GetLength(I1);
const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id();
const index_t blkgroup_id = block_global_id / blkgroup_size;
const index_t block_local_id = block_global_id % blkgroup_size;
const auto thread_cluster_idx =
thread_cluster_desc.CalculateBottomIndex(make_multi_index(thread_local_id));
const auto thread_m_cluster_id = thread_cluster_idx[I0];
const auto thread_k_cluster_id = thread_cluster_idx[I1];
using ThreadBufferLengths_M_K = Sequence<MThreadSliceSize, KThreadSliceSize>;
using ThreadBufferLengths_M_1 = Sequence<MThreadSliceSize, 1>;
constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{}));
constexpr auto thread_buffer_desc_m_1 = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<1>{}));
const index_t reduceSizePerBlock = K_BlockTileSize * num_k_block_tile_iteration;
auto threadwise_x_load = ThreadwiseTensorSliceTransfer_v2<XDataType,
AccDataType,
XGridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
XSrcCountSrcVectorDim,
XSrcCountSrcVectorSize,
1,
true>(
x_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize + thread_m_cluster_id * MThreadSliceSize,
block_local_id * reduceSizePerBlock +
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_welford_mean_var_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
MeanVarDataType,
decltype(thread_buffer_desc_m_1),
MeanVarCountGridDesc_M_G,
PassThroughOp,
ThreadBufferLengths_M_1,
Sequence<0, 1>,
1,
1,
InMemoryDataOperationEnum::Set,
1,
true>(
mean_var_count_grid_desc_m_g,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
block_local_id),
PassThroughOp{});
auto threadwise_welford_count_store =
ThreadwiseTensorSliceTransfer_v1r3<int32_t,
int32_t,
decltype(thread_buffer_desc_m_1),
MeanVarCountGridDesc_M_G,
PassThroughOp,
ThreadBufferLengths_M_1,
Sequence<0, 1>,
1,
1,
InMemoryDataOperationEnum::Set,
1,
true>(
mean_var_count_grid_desc_m_g,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
block_local_id),
PassThroughOp{});
constexpr auto thread_copy_fwd_step_m_k = make_multi_index(0, K_BlockTileSize);
const auto x_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_x, x_grid_desc_m_k.GetElementSpaceSize());
auto welford_mean_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_welford_mean, mean_var_count_grid_desc_m_g.GetElementSpaceSize());
auto welford_var_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_welford_variance, mean_var_count_grid_desc_m_g.GetElementSpaceSize());
auto welford_count_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_welford_count, mean_var_count_grid_desc_m_g.GetElementSpaceSize());
auto threadwise_welford = ThreadwiseWelford();
threadwise_welford.max_count_ =
get_reduce_count_per_thread(block_local_id, thread_k_cluster_id);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
welford_mean_thread_buf(I) = type_convert<AccDataType>(0.0f);
welford_var_thread_buf(I) = type_convert<AccDataType>(0.0f);
});
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k);
threadwise_welford.Run(x_thread_buf, welford_mean_thread_buf, welford_var_thread_buf);
}
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
welford_count_thread_buf(I) = threadwise_welford.cur_count_;
BlockwiseWelford::Run(
welford_mean_thread_buf(I), welford_var_thread_buf(I), welford_count_thread_buf(I));
});
if(thread_k_cluster_id == 0)
{
threadwise_welford_mean_var_store.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
welford_mean_thread_buf,
mean_var_count_grid_desc_m_g,
welford_mean_global_val_buf);
threadwise_welford_mean_var_store.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
welford_var_thread_buf,
mean_var_count_grid_desc_m_g,
welford_var_global_val_buf);
threadwise_welford_count_store.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
welford_count_thread_buf,
mean_var_count_grid_desc_m_g,
welford_count_global_val_buf);
};
}
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <algorithm>
#include "ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
template <typename XDataType,
typename DyDataType,
typename DxDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp>
struct ReferenceBatchNormBwd_Input_N_H_W_C_Output_C
: public device::DeviceBatchNormBwd<4, 3, DyElementwiseOp>
{
struct Argument : public device::BaseArgument
{
Argument(const std::array<index_t, 4> xyLengths,
const std::array<index_t, 4> xStrides,
const std::array<index_t, 4> dyStrides,
const std::array<index_t, 4> dxStrides,
const std::array<int, 3> reduceDims,
const std::array<ck::index_t, 1> bnScaleBiasMeanVarLengths,
const std::array<ck::index_t, 1> bnScaleStrides,
const std::array<ck::index_t, 1> bnBiasStrides,
const std::array<ck::index_t, 1> bnMeanVarStrides,
const XDataType* p_x,
const DyDataType* p_dy,
const ScaleDataType* p_scale,
const MeanVarDataType* p_savedMean,
const MeanVarDataType* p_savedInvVar,
double epsilon,
const DyElementwiseOp dy_elementwise_op,
DxDataType* p_dx,
ScaleDataType* p_dscale,
BiasDataType* p_dbias)
: p_x_(p_x),
p_dy_(p_dy),
p_scale_(p_scale),
p_savedMean_(p_savedMean),
p_savedInvVar_(p_savedInvVar),
epsilon_(epsilon),
dy_elementwise_op_(dy_elementwise_op),
p_dx_(p_dx),
p_dscale_(p_dscale),
p_dbias_(p_dbias)
{
ignore = xStrides;
ignore = dyStrides;
ignore = dxStrides;
ignore = bnScaleStrides;
ignore = bnBiasStrides;
ignore = bnMeanVarStrides;
if(xyLengths.size() != 4 || bnScaleBiasMeanVarLengths.size() != 1 ||
bnScaleBiasMeanVarLengths[0] != xyLengths[3])
throw std::runtime_error("Invalid tensor dimensions!");
if(reduceDims[0] != 0 || reduceDims[1] != 1 || reduceDims[2] != 2)
throw std::runtime_error("Invalid reduce dimensions!");
n_ = xyLengths[0];
h_ = xyLengths[1];
w_ = xyLengths[2];
c_ = xyLengths[3];
haveSavedMeanInvVar_ = (p_savedMean != nullptr && p_savedInvVar != nullptr);
}
const XDataType* p_x_;
const DyDataType* p_dy_;
const ScaleDataType* p_scale_;
const MeanVarDataType* p_savedMean_;
const MeanVarDataType* p_savedInvVar_;
double epsilon_;
const DyElementwiseOp dy_elementwise_op_;
DxDataType* p_dx_;
ScaleDataType* p_dscale_;
BiasDataType* p_dbias_;
bool haveSavedMeanInvVar_;
index_t n_, h_, w_, c_;
};
struct Invoker : public device::BaseInvoker
{
float Run(const Argument& arg)
{
auto thread_reduce_func = [&](auto iC) {
AccDataType reduceSize = type_convert<AccDataType>(arg.n_) *
type_convert<AccDataType>(arg.h_) *
type_convert<AccDataType>(arg.w_);
index_t offset_C = iC;
AccDataType mean;
AccDataType invVar;
if(arg.haveSavedMeanInvVar_)
{
mean = arg.p_savedMean_[offset_C];
invVar = arg.p_savedInvVar_[offset_C];
}
else
{
AccDataType meansquare;
meansquare = type_convert<AccDataType>(0.0f);
mean = type_convert<AccDataType>(0.0f);
// compute mean, meanquare, variance, inv-variance
for(index_t iN = 0; iN < arg.n_; iN++)
{
index_t offset_N = iN * arg.h_ * arg.w_ * arg.c_;
for(index_t iH = 0; iH < arg.h_; iH++)
{
index_t offset_H = iH * arg.w_ * arg.c_;
for(index_t iW = 0; iW < arg.w_; iW++)
{
index_t offset_W = iW * arg.c_;
auto offset = offset_N + offset_H + offset_W + offset_C;
AccDataType x = type_convert<AccDataType>(arg.p_x_[offset]);
mean += x;
meansquare += x * x;
};
}
};
mean = mean / reduceSize;
meansquare = meansquare / reduceSize;
AccDataType variance = meansquare - mean * mean;
invVar = type_convert<AccDataType>(1.0f) /
std::sqrt(type_convert<AccDataType>(arg.epsilon_) + variance);
};
AccDataType dbias = type_convert<AccDataType>(0.0f); // Sum on NHW of dy
AccDataType dscale = type_convert<AccDataType>(0.0f); // Sum on NHW of dy * norm_x
// 1) calculate dy * (x - mean) * inv-variance
// 2) calculate sum(dy) on NHW dimensions
// 3) calculate sum(dy * norm_x) on NHW dimensions
for(index_t iN = 0; iN < arg.n_; iN++)
{
index_t offset_N = iN * arg.h_ * arg.w_ * arg.c_;
for(index_t iH = 0; iH < arg.h_; iH++)
{
index_t offset_H = iH * arg.w_ * arg.c_;
for(index_t iW = 0; iW < arg.w_; iW++)
{
index_t offset_W = iW * arg.c_;
auto offset = offset_N + offset_H + offset_W + offset_C;
AccDataType x = type_convert<AccDataType>(arg.p_x_[offset]);
AccDataType norm_x = (x - mean) * invVar;
AccDataType dy = type_convert<AccDataType>(arg.p_dy_[offset]);
arg.dy_elementwise_op_(dy, dy);
dbias += dy;
dscale += norm_x * dy;
};
}
};
arg.p_dscale_[offset_C] = type_convert<ScaleDataType>(dscale);
arg.p_dbias_[offset_C] = type_convert<BiasDataType>(dbias);
AccDataType scale = type_convert<AccDataType>(arg.p_scale_[offset_C]);
AccDataType multiplier =
type_convert<AccDataType>(1.0f) / reduceSize * invVar * scale;
// 1) calculate tmp = dscale * (x - mean) * inv-variance
// 2) calculate dx = 1/nhw * inv-variance * scale * (nhw * dy - dbias - tmp)
for(index_t iN = 0; iN < arg.n_; iN++)
{
index_t offset_N = iN * arg.h_ * arg.w_ * arg.c_;
for(index_t iH = 0; iH < arg.h_; iH++)
{
index_t offset_H = iH * arg.w_ * arg.c_;
for(index_t iW = 0; iW < arg.w_; iW++)
{
index_t offset_W = iW * arg.c_;
auto offset = offset_N + offset_H + offset_W + offset_C;
AccDataType x = type_convert<AccDataType>(arg.p_x_[offset]);
AccDataType norm_x = (x - mean) * invVar;
AccDataType dy = type_convert<AccDataType>(arg.p_dy_[offset]);
arg.dy_elementwise_op_(dy, dy);
AccDataType tmpVal = norm_x * dscale;
AccDataType dx = multiplier * (reduceSize * dy - dbias - tmpVal);
arg.p_dx_[offset] = type_convert<XDataType>(dx);
};
}
};
};
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t work_per_thread = (arg.c_ + num_thread - 1) / num_thread;
std::vector<joinable_thread> threads(num_thread);
for(std::size_t it = 0; it < num_thread; ++it)
{
std::size_t ic_begin = it * work_per_thread;
std::size_t ic_end = std::min(static_cast<int>((it + 1) * work_per_thread), arg.c_);
auto f = [=] {
for(std::size_t ic = ic_begin; ic < ic_end; ++ic)
{
thread_reduce_func(ic);
}
};
threads[it] = joinable_thread(f);
}
return (0.0f);
};
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /*stream_config*/ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
};
};
bool IsSupportedArgument(const device::BaseArgument* p_arg) override
{
(void)p_arg;
return (true);
};
std::unique_ptr<device::BaseArgument>
MakeArgumentPointer(const std::array<index_t, 4> xyLengths,
const std::array<index_t, 4> xStrides,
const std::array<index_t, 4> dyStrides,
const std::array<index_t, 4> dxStrides,
const std::array<int, 3> reduceDims,
const std::array<ck::index_t, 1> bnScaleBiasMeanVarLengths,
const std::array<ck::index_t, 1> bnScaleStrides,
const std::array<ck::index_t, 1> bnBiasStrides,
const std::array<ck::index_t, 1> bnMeanVarStrides,
const void* p_x,
const void* p_dy,
const void* p_scale,
const void* p_savedMean,
const void* p_savedInvVar,
double epsilon,
const DyElementwiseOp dy_elementwise_op,
void* p_dx,
void* p_dscale,
void* p_dbias) override
{
return std::make_unique<Argument>(xyLengths,
xStrides,
dyStrides,
dxStrides,
reduceDims,
bnScaleBiasMeanVarLengths,
bnScaleStrides,
bnBiasStrides,
bnMeanVarStrides,
static_cast<const XDataType*>(p_x),
static_cast<const DyDataType*>(p_dy),
static_cast<const ScaleDataType*>(p_scale),
static_cast<const MeanVarDataType*>(p_savedMean),
static_cast<const MeanVarDataType*>(p_savedInvVar),
epsilon,
dy_elementwise_op,
static_cast<DxDataType*>(p_dx),
static_cast<ScaleDataType*>(p_dscale),
static_cast<BiasDataType*>(p_dbias));
};
std::unique_ptr<device::BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "Reference_BatchNorm_Backward_NHWC_C<" << std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment