Unverified Commit 42facfc6 authored by Rostyslav Geyyer's avatar Rostyslav Geyyer Committed by GitHub
Browse files

Add conv bwd weight fp16 comp bf8 fp8 op, instances and example (#945)



* Add f8 bf8 gemm example

* Add element-wise ops

* Add intrinsics

* Update reference calculation

* Add an additional type option for xdlops gemm

* Fix build process

* Add bf8 to buffer addressing

* Update blockwise op, split typeA and typeB

* Update for compatibility

* Uppdate naming to f8->fp8

* Update naming

* Format

* Update naming (#937)

* Add a client example

* Add computetypes to device and gridwise ops

* Add instances, update instance factory

* Format

* Fix a flag

* Add ckProfiler mode

* Fix typos

* Add an example

* Add bf8 generator

* add bf8 mfma; fixed type_convert for bf8

* move verfication ahead of timing

* Update reference calculation

* Fix reference

* Narrow down float init range

* Fix bf8 bf8 mfma

* Add bf8 @ fp8 mfma

* Update example

* Update instances

* Update profiler api

* Update for compatibility

* Format

* Remove extra example

* Clean up

* workaround convert

---------
Co-authored-by: default avatarJing Zhang <jizha@amd.com>
parent e921e1f0
......@@ -33,7 +33,9 @@ template <ck::index_t NDimSpatial,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
typename OutDataType,
typename ComputeTypeA = InDataType,
typename ComputeTypeB = ComputeTypeA>
bool profile_grouped_conv_bwd_weight_impl(int do_verification,
int init_method,
bool do_log,
......@@ -120,7 +122,9 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
OutElementOp,
ComputeTypeA,
ComputeTypeB>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
......
......@@ -23,6 +23,7 @@ enum struct ConvDataType
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_F32_BF16, // 2
F16_F16_F16_BF8_F8 // 3
};
#define OP_NAME "grouped_conv_bwd_weight"
......@@ -33,7 +34,8 @@ static void print_helper_msg()
std::cout << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n"
<< " 1: Input fp16, Weight fp16, Output fp16\n"
<< " 2: Input bf16, Weight fp32, Output bf16)\n"
<< " 2: Input bf16, Weight fp32, Output bf16\n"
<< " 3: Input fp16, Weight fp16, Output fp16, Gemm bf8@fp8)\n"
<< "arg3: tensor layout (0: Input[G, N, C, Hi, Wi], Weight[G, K, C, Y, X], Output[G, "
"N, K, Ho, Wo]\n"
<< " 1: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, "
......@@ -82,6 +84,12 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
using F32 = float;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
#ifdef CK_ENABLE_FP8
using F8 = ck::f8_t;
#endif
#ifdef CK_ENABLE_BF8
using BF8 = ck::bf8_t;
#endif
using namespace ck::tensor_layout::convolution;
......@@ -95,7 +103,9 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
auto out_layout,
auto in_type,
auto wei_type,
auto out_type) {
auto out_type,
auto compute_type_a,
auto compute_type_b) {
constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;
using InLayout = decltype(in_layout);
......@@ -106,13 +116,18 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
using WeiDataType = decltype(wei_type);
using OutDataType = decltype(out_type);
using ComputeTypeA = decltype(compute_type_a);
using ComputeTypeB = decltype(compute_type_b);
bool pass = ck::profiler::profile_grouped_conv_bwd_weight_impl<NDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType>(
OutDataType,
ComputeTypeA,
ComputeTypeB>(
do_verification, init_method, do_log, time_kernel, params, split_k);
return pass ? 0 : 1;
......@@ -122,80 +137,84 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F32{}, F32{}, F32{});
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F16{}, F16{}, F16{});
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_F32_BF16)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return profile(I1, GNWC{}, GKXC{}, GNWK{}, BF16{}, F32{}, BF16{});
return profile(I1, GNWC{}, GKXC{}, GNWK{}, BF16{}, F32{}, BF16{}, BF16{}, BF16{});
}
}
else if(num_dim_spatial == 2 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F32{}, F32{}, F32{});
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F16{}, F16{}, F16{});
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_F32_BF16)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, F32{}, BF16{});
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, F32{}, BF16{}, BF16{}, BF16{});
}
}
else if(num_dim_spatial == 2 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F32{}, F32{}, F32{});
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F16{}, F16{}, F16{});
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_F32_BF16)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, BF16{}, F32{}, BF16{});
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, BF16{}, F32{}, BF16{}, BF16{}, BF16{});
}
}
else if(num_dim_spatial == 3 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F32{}, F32{}, F32{});
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F16{}, F16{}, F16{});
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_F32_BF16)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, F32{}, BF16{});
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, F32{}, BF16{}, BF16{}, BF16{});
}
}
else if(num_dim_spatial == 3 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F32{}, F32{}, F32{});
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{});
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_F32_BF16)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF16{}, F32{}, BF16{});
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF16{}, F32{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::F16_F16_F16_BF8_F8)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{}, BF8{}, F8{});
}
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment