Commit 41d5fca7 authored by Chao Liu's avatar Chao Liu
Browse files

refactor

parent cae981d5
......@@ -62,11 +62,11 @@ using DeviceGemmInstance1 = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffl
< ALayout, BLayout, CLayout, ADataType, BDataType, CDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
using DeviceGemmInstance2 = ck::tensor_operation::device::DeviceGemm_Xdl_WaveletModel_CShuffle
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| ABBlockTransfer| BlockGemm| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| ThreadGroupSize| ThreadGroupSize| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| ALayout| BLayout| CLayout| AData| BData| AccData| CShuffle| CData| A| B| C| GEMM| NumGemmK| ABBlockTransfer| BlockGemm| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| DataType| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| ThreadGroupSize| ThreadGroupSize| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F16, AElementOp, BElementOp, CElementOp, GemmDefault, 1, 256, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1,8>, 8>;
< Row, Col, Row, F16, F16, F32, F16, F16, AElementOp, BElementOp, CElementOp, GemmDefault, 1, 256, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1,8>, 8>;
// clang-format on
using DeviceGemmInstance = DeviceGemmInstance2;
......
......@@ -418,9 +418,6 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
const index_t grid_size =
arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_);
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
......@@ -458,6 +455,8 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
arg.block_2_etile_map_);
};
const auto K = arg.a_grid_desc_m_k_.GetLength(I1);
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
return launch_kernel(integral_constant<bool, true>{});
......
......@@ -12,25 +12,86 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_waveletmodel_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
template <typename GridwiseGemm,
typename ABDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename EElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_WAVELET_MAX_THREAD_PER_BLOCK, CK_WAVELET_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdl_waveletmodel_cshuffle(
const ABDataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const EElementwiseOperation e_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_e_grid,
p_shared,
a_element_op,
b_element_op,
e_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_e_grid;
ignore = a_element_op;
ignore = b_element_op;
ignore = e_element_op;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = block_2_etile_map;
#endif
}
} // namespace ck
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename GemmAccDataType,
typename GemmAcEDataType,
typename CShuffleDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename CDEElementwiseOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t TileLoadThreadGroupSize,
......@@ -64,13 +125,13 @@ template <typename ALayout,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock>
struct DeviceGemm_Xdl_WaveletModel_CShuffle : public DeviceGemm<ALayout,
BLayout,
CLayout,
ELayout,
ADataType,
BDataType,
CDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
CDEElementwiseOperation>
{
using DeviceOp = DeviceGemm_Xdl_WaveletModel_CShuffle;
......@@ -78,7 +139,10 @@ struct DeviceGemm_Xdl_WaveletModel_CShuffle : public DeviceGemm<ALayout,
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, KPerBlock};
static auto MakeAGridDescriptor_M_K(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
......@@ -93,95 +157,10 @@ struct DeviceGemm_Xdl_WaveletModel_CShuffle : public DeviceGemm<ALayout,
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto MPad = M - MRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
return matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
}
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
static auto MakeBGridDescriptor_N_K(index_t KRaw, index_t NRaw, index_t StrideB)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
......@@ -196,169 +175,45 @@ struct DeviceGemm_Xdl_WaveletModel_CShuffle : public DeviceGemm<ALayout,
}
}();
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
return matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(NRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
}
static auto MakeCGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideC)
template <typename ELay>
static auto MakeEGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE)
{
const auto c_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
const auto e_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELay>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideC, I1));
make_tuple(StrideE, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELay>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideC));
make_tuple(I1, StrideE));
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto MPad = M - MRaw;
const auto NPad = N - NRaw;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_pass_through_transform(NRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_grid_desc_mraw_nraw;
}
return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1(1, 1, 1));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1(1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
using AGridDesc_M_K = decltype(MakeAGridDescriptor_M_K(1, 1, 1));
using BGridDesc_N_K = decltype(MakeBGridDescriptor_N_K(1, 1, 1));
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N<ELayout>(1, 1, 1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle<
ADataType, // TODO: distinguish A/B datatype
GemmAccDataType,
GemmAcEDataType,
CShuffleDataType,
CDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
CGridDesc_M_N,
AGridDesc_M_K,
BGridDesc_N_K,
EGridDesc_M_N,
NumGemmKPrefetchStage,
TileLoadThreadGroupSize,
TileMathThreadGroupSize,
......@@ -392,57 +247,84 @@ struct DeviceGemm_Xdl_WaveletModel_CShuffle : public DeviceGemm<ALayout,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock>;
using AGridDesc_AK0_M_AK1 = remove_cvref_t<decltype(
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(AGridDesc_M_K{}))>;
using BGridDesc_BK0_N_BK1 = remove_cvref_t<decltype(
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(BGridDesc_N_K{}))>;
using Block2ETileMap = typename GridwiseGemm::DefaultBlock2ETileMap;
// Argument
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid,
CDataType* p_c_grid,
EDataType* p_e_grid,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)},
c_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideC)},
c_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_ctile_map_{},
CDEElementwiseOperation cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a_grid)},
p_b_grid_{static_cast<const BDataType*>(p_b_grid)},
p_e_grid_{static_cast<EDataType*>(p_e_grid)},
a_grid_desc_m_k_{DeviceOp::MakeAGridDescriptor_M_K(MRaw, KRaw, StrideA)},
b_grid_desc_n_k_{DeviceOp::MakeBGridDescriptor_N_K(KRaw, NRaw, StrideB)},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N<ELayout>(MRaw, NRaw, StrideE)},
a_grid_desc_ak0_m_ak1_{
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_)},
b_grid_desc_bk0_n_bk1_{
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_)},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op}
cde_element_op_{cde_element_op}
{
if(GridwiseGemm::CheckValidity(
a_grid_desc_ak0_m_ak1_, b_grid_desc_bk0_n_bk1_, c_grid_desc_m_n_))
a_grid_desc_m_k_, b_grid_desc_n_k_, e_grid_desc_m_n_, block_2_etile_map_))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_);
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
}
}
void Print() const
{
std::cout << "A[M, K]: " << a_grid_desc_m_k_ << std::endl;
std::cout << "B[N, K]: " << b_grid_desc_n_k_ << std::endl;
std::cout << "E[M, N]: " << e_grid_desc_m_n_ << std::endl;
}
// private:
// pointers
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
EDataType* p_e_grid_;
// tensor descriptors for problem definiton
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_N_K b_grid_desc_n_k_;
EGridDesc_M_N e_grid_desc_m_n_;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
CGridDesc_M_N c_grid_desc_m_n_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_;
// block-to-e-tile map
Block2ETileMap block_2_etile_map_;
// element-wise op
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
......@@ -452,102 +334,65 @@ struct DeviceGemm_Xdl_WaveletModel_CShuffle : public DeviceGemm<ALayout,
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
#if 0
{
std::cout << "arg.a_grid_desc_ak0_m_ak1_{"
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I1) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_bk0_n_bk1_{"
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I0) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I1) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
#endif
if(!GridwiseGemm::CheckValidity(
arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.c_grid_desc_m_n_))
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_n_k_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);
#if 0
const index_t grid_size =
arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_);
#else
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.e_grid_desc_m_n_);
#endif
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
const auto K = arg.a_grid_desc_m_k_.GetLength(I1);
float ave_time = 0;
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
const auto kernel = kernel_gemm_xdl_waveletmodel_cshuffle<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
CDEElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
true>;
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2ETileMap,
has_main_loop>;
ave_time =
launch_and_time_kernel(stream_config,
return launch_and_time_kernel(
stream_config,
kernel,
dim3(grid_size),
dim3(TileLoadThreadGroupSize + TileMathThreadGroupSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_e_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.cde_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_);
arg.e_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_etile_map_);
};
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
return launch_kernel(integral_constant<bool, true>{});
}
else
{
const auto kernel = kernel_gemm_xdl_waveletmodel_cshuffle<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
false>;
ave_time =
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(TileLoadThreadGroupSize + TileMathThreadGroupSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_);
return launch_kernel(integral_constant<bool, false>{});
}
return ave_time;
}
// polymorphic
......@@ -558,16 +403,17 @@ struct DeviceGemm_Xdl_WaveletModel_CShuffle : public DeviceGemm<ALayout,
}
};
static constexpr bool IsValidCompilationParameter()
static bool IsSupportedArgument(const Argument& arg)
{
// TODO: properly implement this check
return true;
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a"))
{
return false;
}
static bool IsSupportedArgument(const Argument& arg)
{
return GridwiseGemm::CheckValidity(
arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.c_grid_desc_m_n_);
return GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_n_k_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_);
}
// polymorphic
......@@ -578,59 +424,60 @@ struct DeviceGemm_Xdl_WaveletModel_CShuffle : public DeviceGemm<ALayout,
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
EDataType* p_e,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
CDEElementwiseOperation cde_element_op)
{
return Argument{p_a,
p_b,
p_c,
p_e,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideC,
StrideE,
a_element_op,
b_element_op,
c_element_op};
cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
void* p_e,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) override
CDEElementwiseOperation cde_element_op) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
static_cast<EDataType*>(p_e),
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideC,
StrideE,
a_element_op,
b_element_op,
c_element_op);
cde_element_op);
}
// polymorphic
......
......@@ -17,74 +17,17 @@
namespace ck {
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2CTileMap,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_WAVELET_MAX_THREAD_PER_BLOCK, CK_WAVELET_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdl_waveletmodel_cshuffle(
const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_c_grid,
p_shared,
a_element_op,
b_element_op,
c_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_ctile_map);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_c_grid;
ignore = a_element_op;
ignore = b_element_op;
ignore = c_element_op;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = block_2_ctile_map;
#endif
} // kernel_gemm_xdl_waveletmodel_cshuffle
template <typename FloatAB,
template <typename ABDataType,
typename FloatGemmAcc,
typename FloatCShuffle,
typename FloatC,
typename EDataTypeShuffle,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename EElementwiseOperation,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename CGridDesc_M_N,
typename AGridDesc_M_K,
typename BGridDesc_N_K,
typename EGridDesc_M_N,
index_t NumGemmKPrefetchStage,
index_t TileLoadThreadGroupSize,
index_t TileMathThreadGroupSize,
......@@ -130,14 +73,15 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto AK0 = Number<KPerBlock / AK1Value>{};
static constexpr auto BK0 = Number<KPerBlock / BK1Value>{};
static constexpr auto AK1 = Number<AK1Value>{};
static constexpr auto BK1 = Number<BK1Value>{};
static constexpr auto AK0PerBlock = Number<KPerBlock / AK1Value>{};
static constexpr auto BK0PerBlock = Number<KPerBlock / BK1Value>{};
struct TileLoadThreadGroup
{
__device__ static constexpr index_t GetNumOfThread() { return TileLoadThreadGroupSize; }
__device__ static constexpr bool IsBelong()
{
return (get_thread_local_1d_id() >= TileLoadThreadGroupSize);
......@@ -152,6 +96,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
struct TileMathThreadGroup
{
__device__ static constexpr index_t GetNumOfThread() { return TileMathThreadGroupSize; }
__device__ static constexpr bool IsBelong()
{
return get_thread_local_1d_id() < TileMathThreadGroupSize;
......@@ -171,7 +116,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
{
// A matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(AK0, Number<MPerBlock>{}, AK1),
make_tuple(AK0PerBlock, Number<MPerBlock>{}, AK1),
make_tuple(Number<MPerBlock + ABlockLdsExtraM>{} * AK1, AK1, I1));
}
......@@ -179,7 +124,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
{
// B matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(BK0, Number<NPerBlock>{}, BK1),
make_tuple(BK0PerBlock, Number<NPerBlock>{}, BK1),
make_tuple(Number<NPerBlock + BBlockLdsExtraN>{} * BK1, BK1, I1));
}
......@@ -222,29 +167,36 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max((a_block_space_size_aligned + b_block_space_size_aligned) *
sizeof(FloatAB),
c_block_size * sizeof(FloatCShuffle));
sizeof(ABDataType),
c_block_size * sizeof(EDataTypeShuffle));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const CGridDesc_M_N& c_grid_desc_m_n)
template <typename Block2ETileMap>
__host__ __device__ static constexpr bool CheckValidity(const AGridDesc_M_K& a_grid_desc_m_k,
const BGridDesc_N_K& b_grid_desc_n_k,
const EGridDesc_M_N& e_grid_desc_m_n,
const Block2ETileMap& block_2_etile_map)
{
static_assert((MPerBlock % (MPerXdl * MXdlPerWave) == 0) &&
(NPerBlock % (NXdlPerWave * NPerXdl)) == 0,
"Invalid tuning param!");
const auto M = a_grid_desc_ak0_m_ak1.GetLength(I1);
const auto N = b_grid_desc_bk0_n_bk1.GetLength(I1);
const auto K = a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2);
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
if(!(M == c_grid_desc_m_n.GetLength(I0) && N == c_grid_desc_m_n.GetLength(I1)))
// check consistency of desc
if(!(M == e_grid_desc_m_n.GetLength(I0) && N == e_grid_desc_m_n.GetLength(I1)))
{
return false;
}
// check tile size
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K % KPerBlock == 0))
{
return false;
}
// check gridwise gemm pipeline
const auto num_k_loop = K / KPerBlock;
......@@ -254,19 +206,27 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
#if 0 // debug
// check block-to-E-tile
if(!block_2_etile_map.CheckValidity(e_grid_desc_m_n))
{
return false;
}
#endif
__host__ __device__ static constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
// check tensor size: cannot be larger than 2GB each
constexpr long_index_t TwoGB = (long_index_t{1} << 31);
return grid_size;
if(!(a_grid_desc_m_k.GetElementSpaceSize() * sizeof(ABDataType) <= TwoGB &&
b_grid_desc_n_k.GetElementSpaceSize() * sizeof(ABDataType) <= TwoGB &&
e_grid_desc_m_n.GetElementSpaceSize() * sizeof(EDataType) <= TwoGB))
{
return false;
}
return true;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
......@@ -276,31 +236,21 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
return GridwiseGemmMath::CalculateHasMainLoop(num_loop);
}
#if 0 // debug
// return block_id to E matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const CGridDesc_M_N& c_grid_desc_m_n)
MakeDefaultBlock2ETileMap(const EGridDesc_M_N& e_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
const auto c_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
return c_grid_desc_mblock_mperblock_nblock_nperblock;
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, EGridDesc_M_N>(
e_grid_desc_m_n);
}
// return block_id to C matrix tile idx (m0, n0) mapping
#else
// return block_id to E matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n)
MakeDefaultBlock2ETileMap(const EGridDesc_M_N& e_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto M = e_grid_desc_m_n.GetLength(I0);
const auto N = e_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
......@@ -334,27 +284,95 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
return cblockid_to_m0_n0_block_cluster_adaptor;
}
using CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{}))>;
using DefaultBlock2CTileMap =
remove_cvref_t<decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}))>;
__host__ __device__ static constexpr index_t
CalculateGridSize(const EGridDesc_M_N& e_grid_desc_m_n)
{
const auto M = e_grid_desc_m_n.GetLength(I0);
const auto N = e_grid_desc_m_n.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
#endif
// A desc for source in blockwise copy
__host__ __device__ static constexpr auto
MakeDefaultAGridDescriptor_AK0_M_AK1(const AGridDesc_M_K& a_grid_desc_m_k)
{
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
const auto AK0 = K / AK1;
return transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
// B desc for source in blockwise copy
__host__ __device__ static constexpr auto
MakeDefaultBGridDescriptor_BK0_N_BK1(const BGridDesc_N_K& b_grid_desc_n_k)
{
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = b_grid_desc_n_k.GetLength(I1);
const auto BK0 = K / BK1;
return transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
// E desc for destination in blockwise copy
template <typename EGridDescriptor_M_N>
__host__ __device__ static constexpr auto MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
const EGridDescriptor_M_N& e_grid_desc_m_n)
{
const auto M = e_grid_desc_m_n.GetLength(I0);
const auto N = e_grid_desc_m_n.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
const auto e_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
e_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
return e_grid_desc_mblock_mperblock_nblock_nperblock;
}
using EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(EGridDesc_M_N{}))>;
template <bool HasMainKBlockLoop, typename Block2CTileMap>
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
using DefaultBlock2ETileMap =
remove_cvref_t<decltype(MakeDefaultBlock2ETileMap(EGridDesc_M_N{}))>;
template <bool HasMainKBlockLoop,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename Block2ETileMap>
__device__ static void Run(const ABDataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid,
EDataType* __restrict__ p_e_grid,
void* __restrict__ p_shared,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CElementwiseOperation& c_element_op,
const EElementwiseOperation& e_element_op,
const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
c_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2CTileMap& block_2_ctile_map)
const EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap& block_2_etile_map)
{
// build loadWave and MathWave pipelines
// loadWave and MathWave synchronized through LDS
//
......@@ -372,10 +390,10 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatAB*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
static_cast<ABDataType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatAB*>(p_shared) + a_block_space_size_aligned,
static_cast<ABDataType*>(p_shared) + a_block_space_size_aligned,
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1, 0, 0);
......@@ -387,7 +405,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
// divide block work by [M, N]
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
block_2_etile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
......@@ -411,11 +429,11 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<AK0, MPerBlock, AK1>,
Sequence<AK0PerBlock, MPerBlock, AK1>,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
ABDataType,
ABDataType,
decltype(a_grid_desc_ak0_m_ak1),
decltype(a_block_desc_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
......@@ -442,11 +460,11 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<BK0, NPerBlock, BK1>,
Sequence<BK0PerBlock, NPerBlock, BK1>,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
ABDataType,
ABDataType,
decltype(b_grid_desc_bk0_n_bk1),
decltype(b_block_desc_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
......@@ -490,11 +508,11 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
// branch early for math wave
constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
MfmaSelector<ABDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<
TileMathThreadGroupSize,
FloatAB,
ABDataType,
FloatGemmAcc,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
......@@ -506,7 +524,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
p_e_grid, e_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
// TODO re-architect LDS+math stages
GridwiseGemmMath::template RunMathWavePipeline<HasMainKBlockLoop>(
......@@ -551,7 +569,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatCShuffle*>(p_shared),
static_cast<EDataTypeShuffle*>(p_shared),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
......@@ -606,7 +624,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds = ThreadwiseTensorSliceTransfer_v1r3<
FloatGemmAcc,
FloatCShuffle,
EDataTypeShuffle,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
......@@ -637,7 +655,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
// shuffle: blockwise copy C from LDS to global
auto c_shuffle_block_copy_lds_to_global = ThreadGroupTensorSliceTransfer_v6r1<
CShuffleBlockTransferThreadGroup, // ThreadGroup
CElementwiseOperation, // ElementwiseOperation,
EElementwiseOperation, // ElementwiseOperation,
CGlobalMemoryDataOperation, // DstInMemOp,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
......@@ -645,10 +663,10 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>, // BlockSliceLengths,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
FloatCShuffle, // typename SrcData,
FloatC, // typename DstData,
EDataTypeShuffle, // typename SrcData,
EDataType, // typename DstData,
decltype(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
decltype(c_grid_desc_mblock_mperblock_nblock_nperblock),
decltype(e_grid_desc_mblock_mperblock_nblock_nperblock),
Sequence<0, 1, 2, 3>, // typename DimAccessOrder,
3, // index_t VectorDim,
CShuffleBlockTransferScalarPerVector_NPerBlock, // index_t ScalarPerVector,
......@@ -656,9 +674,9 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
false> // bool ThreadTransferDstResetCoordinateAfterRun>
{c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(0, 0, 0, 0),
c_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0),
c_element_op};
e_element_op};
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
......@@ -718,7 +736,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
c_shuffle_block_copy_lds_to_global.Run(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
c_shuffle_block_buf,
c_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
c_grid_buf);
if constexpr(access_id < num_access - 1)
......@@ -727,11 +745,12 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
// move on C
c_shuffle_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock, c_global_step);
e_grid_desc_mblock_mperblock_nblock_nperblock, c_global_step);
}
});
}
}
}
}; // GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
};
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment