Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
4173b984
Unverified
Commit
4173b984
authored
Sep 11, 2023
by
Rostyslav Geyyer
Committed by
GitHub
Sep 11, 2023
Browse files
Merge branch 'develop' into lwpck-756
parents
6de7d10d
85e2e1e2
Changes
88
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
712 additions
and
0 deletions
+712
-0
profiler/include/profiler/profile_image_to_column_impl.hpp
profiler/include/profiler/profile_image_to_column_impl.hpp
+200
-0
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+2
-0
profiler/src/profile_gemm_bilinear.cpp
profiler/src/profile_gemm_bilinear.cpp
+19
-0
profiler/src/profile_image_to_column.cpp
profiler/src/profile_image_to_column.cpp
+169
-0
test/CMakeLists.txt
test/CMakeLists.txt
+1
-0
test/image_to_column/CMakeLists.txt
test/image_to_column/CMakeLists.txt
+4
-0
test/image_to_column/test_image_to_column.cpp
test/image_to_column/test_image_to_column.cpp
+121
-0
test/image_to_column/test_image_to_column_interface.cpp
test/image_to_column/test_image_to_column_interface.cpp
+196
-0
No files found.
profiler/include/profiler/profile_image_to_column_impl.hpp
0 → 100644
View file @
4173b984
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include <limits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_image_to_column.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_image_to_column_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/image_to_column.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp"
namespace
ck
{
namespace
profiler
{
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
template
<
index_t
NDimSpatial
,
typename
InputLayout
,
typename
InputDataType
,
typename
OutputDataType
>
bool
profile_image_to_column_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
const
ck
::
index_t
NDoHoWo
=
conv_param
.
N_
*
ck
::
accumulate_n
<
ck
::
index_t
>
(
conv_param
.
output_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
ck
::
index_t
CZYX
=
conv_param
.
C_
*
ck
::
accumulate_n
<
ck
::
index_t
>
(
conv_param
.
filter_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
auto
in_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InputLayout
>
(
conv_param
);
const
auto
out_desc
=
HostTensorDescriptor
({
NDoHoWo
,
CZYX
});
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
input_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
2
>
output_m_k_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
(),
y
.
begin
());
};
copy
(
conv_param
.
input_spatial_lengths_
,
input_spatial_lengths
);
copy
(
conv_param
.
filter_spatial_lengths_
,
filter_spatial_lengths
);
copy
(
conv_param
.
output_spatial_lengths_
,
output_spatial_lengths
);
copy
(
in_desc
.
GetStrides
(),
input_g_n_c_wis_strides
);
copy
(
out_desc
.
GetStrides
(),
output_m_k_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
Tensor
<
InputDataType
>
input
(
in_desc
);
Tensor
<
OutputDataType
>
host_output
(
out_desc
);
Tensor
<
OutputDataType
>
device_output
(
out_desc
);
std
::
cout
<<
"input: "
<<
input
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
host_output
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
input
.
GenerateTensorValue
(
GeneratorTensor_2
<
InputDataType
>
{
-
5
,
5
});
break
;
default:
input
.
GenerateTensorValue
(
GeneratorTensor_3
<
InputDataType
>
{
0.0
,
1.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InputDataType
)
*
input
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutputDataType
)
*
device_output
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
input
.
mData
.
data
());
// run reference op
if
(
do_verification
)
{
auto
ref_image_to_column
=
ck
::
tensor_operation
::
host
::
ReferenceImageToColumn
<
NDimSpatial
,
InputLayout
,
InputDataType
,
OutputDataType
>
{};
auto
ref_invoker
=
ref_image_to_column
.
MakeInvoker
();
auto
ref_argument
=
ref_image_to_column
.
MakeArgument
(
input
,
host_output
,
conv_param
.
filter_spatial_lengths_
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
);
// init host output to zero
host_output
.
SetZero
();
ref_invoker
.
Run
(
ref_argument
);
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceImageToColumn
<
NDimSpatial
,
InputLayout
,
InputDataType
,
OutputDataType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device op instances
bool
pass
=
true
;
bool
is_supporting_instance
=
false
;
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InputDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutputDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
conv_param
.
N_
,
conv_param
.
C_
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
input_g_n_c_wis_strides
,
output_m_k_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
is_supporting_instance
=
true
;
// re-init output to zero before profiling next kernel
out_device_buf
.
SetZero
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_btype
=
NDoHoWo
*
CZYX
*
(
sizeof
(
OutputDataType
)
+
sizeof
(
InputDataType
));
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
avg_time
<
best_avg_time
)
{
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
out_device_buf
.
FromDevice
(
device_output
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
device_output
,
host_output
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"input : "
,
input
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_output : "
,
host_output
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"device_output: "
,
device_output
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best configuration parameters:"
<<
"
\n
name: "
<<
best_op_name
<<
"
\n
avg_time: "
<<
best_avg_time
<<
"
\n
GB/s: "
<<
best_gb_per_sec
<<
std
::
endl
;
return
is_supporting_instance
&&
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/src/CMakeLists.txt
View file @
4173b984
...
...
@@ -28,6 +28,7 @@ set(PROFILER_SOURCES
profile_contraction_bilinear.cpp
profile_contraction_scale.cpp
profile_grouped_conv_bwd_data.cpp
profile_image_to_column.cpp
)
if
(
DL_KERNELS
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp
)
...
...
@@ -82,6 +83,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_insta
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_max_pool_bwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_data_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv3d_bwd_data_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_image_to_column_instance
)
if
(
DL_KERNELS
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_multi_d_instance
)
endif
()
...
...
profiler/src/profile_gemm_bilinear.cpp
View file @
4173b984
...
...
@@ -71,6 +71,9 @@ int profile_gemm_bilinear(int argc, char* argv[])
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
I8
=
std
::
int8_t
;
using
I32
=
std
::
int32_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
...
@@ -141,6 +144,22 @@ int profile_gemm_bilinear(int argc, char* argv[])
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
Col
{},
Col
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
INT8_INT8_INT8_INT8
&&
layout
==
MatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
I8
{},
I8
{},
I32
{},
I8
{},
I8
{},
Row
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
INT8_INT8_INT8_INT8
&&
layout
==
MatrixLayout
::
MK_NK_MN_MN
)
{
return
profile
(
I8
{},
I8
{},
I32
{},
I8
{},
I8
{},
Row
{},
Col
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
INT8_INT8_INT8_INT8
&&
layout
==
MatrixLayout
::
KM_KN_MN_MN
)
{
return
profile
(
I8
{},
I8
{},
I32
{},
I8
{},
I8
{},
Col
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
INT8_INT8_INT8_INT8
&&
layout
==
MatrixLayout
::
KM_NK_MN_MN
)
{
return
profile
(
I8
{},
I8
{},
I32
{},
I8
{},
I8
{},
Col
{},
Col
{},
Row
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
...
...
profiler/src/profile_image_to_column.cpp
0 → 100644
View file @
4173b984
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_image_to_column_impl.hpp"
#include "profiler_operation_registry.hpp"
namespace
{
enum
struct
ConvLayout
{
NHWC
,
// 0
};
enum
struct
DataType
{
F32_F32
,
// 0
F16_F16
,
// 1
BF16_BF16
,
// 2
INT8_INT8
,
// 3
};
#define OP_NAME "image_to_column"
#define OP_DESC "Image To Column"
static
void
print_helper_msg
()
{
std
::
cout
// clang-format off
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: Input fp32, Weight fp32, Output fp32
\n
"
<<
" 1: Input fp16, Weight fp16, Output fp16
\n
"
<<
" 2: Input bf16, Weight bf16, Output bf16
\n
"
<<
" 3: Input int8, Weight int8, Output int8)
\n
"
<<
"arg3: tensor layout (0: Input[N, Hi, Wi, C], Output[N * Ho * Wo, Y * X * C])
\n
"
<<
"arg4: verification (0: no, 1: yes)
\n
"
<<
"arg5: initialization (0: no init, 1: integer value, 2: decimal value)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
<<
"arg7: time kernel (0: no, 1: yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
// clang-format on
}
}
// namespace
int
profile_image_to_column
(
int
argc
,
char
*
argv
[])
{
// 8 for control, 1 for num_dim_spatial
if
(
argc
<
9
)
{
print_helper_msg
();
return
1
;
}
const
auto
data_type
=
static_cast
<
DataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
ConvLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
num_dim_spatial
=
std
::
stoi
(
argv
[
8
]);
// 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
if
(
argc
!=
8
+
1
+
4
+
6
*
num_dim_spatial
)
{
print_helper_msg
();
return
1
;
}
const
auto
params
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
9
,
argv
);
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
INT8
=
int8_t
;
using
namespace
ck
::
tensor_layout
::
convolution
;
constexpr
auto
I1
=
ck
::
Number
<
1
>
{};
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
constexpr
auto
I3
=
ck
::
Number
<
3
>
{};
auto
profile
=
[
&
](
auto
num_dim_spatial_tmp
,
auto
in_layout
,
auto
in_type
,
auto
out_type
)
{
constexpr
ck
::
index_t
NDimSpatial
=
num_dim_spatial_tmp
.
value
;
using
InLayout
=
decltype
(
in_layout
);
using
InDataType
=
decltype
(
in_type
);
using
OutDataType
=
decltype
(
out_type
);
bool
pass
=
ck
::
profiler
::
profile_image_to_column_impl
<
NDimSpatial
,
InLayout
,
InDataType
,
OutDataType
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
params
);
return
pass
?
0
:
1
;
};
// NHWC
if
(
layout
==
ConvLayout
::
NHWC
)
{
if
(
num_dim_spatial
==
1
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I1
,
GNWC
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I1
,
GNWC
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
DataType
::
BF16_BF16
)
{
return
profile
(
I1
,
GNWC
{},
BF16
{},
BF16
{});
}
else
if
(
data_type
==
DataType
::
INT8_INT8
)
{
return
profile
(
I1
,
GNWC
{},
INT8
{},
INT8
{});
}
}
else
if
(
num_dim_spatial
==
2
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I2
,
GNHWC
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I2
,
GNHWC
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
DataType
::
BF16_BF16
)
{
return
profile
(
I2
,
GNHWC
{},
BF16
{},
BF16
{});
}
else
if
(
data_type
==
DataType
::
INT8_INT8
)
{
return
profile
(
I2
,
GNHWC
{},
INT8
{},
INT8
{});
}
}
else
if
(
num_dim_spatial
==
3
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I3
,
GNDHWC
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I3
,
GNDHWC
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
DataType
::
BF16_BF16
)
{
return
profile
(
I3
,
GNDHWC
{},
BF16
{},
BF16
{});
}
else
if
(
data_type
==
DataType
::
INT8_INT8
)
{
return
profile
(
I3
,
GNDHWC
{},
INT8
{},
INT8
{});
}
}
}
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_image_to_column
);
test/CMakeLists.txt
View file @
4173b984
...
...
@@ -60,6 +60,7 @@ add_subdirectory(contraction)
add_subdirectory
(
pool
)
add_subdirectory
(
batched_gemm_multi_d
)
add_subdirectory
(
grouped_convnd_bwd_data
)
add_subdirectory
(
image_to_column
)
if
(
GPU_TARGETS MATCHES
"gfx11"
)
add_subdirectory
(
wmma_op
)
endif
()
test/image_to_column/CMakeLists.txt
0 → 100644
View file @
4173b984
add_gtest_executable
(
test_image_to_column test_image_to_column.cpp
)
target_link_libraries
(
test_image_to_column PRIVATE utility device_image_to_column_instance
)
add_gtest_executable
(
test_image_to_column_interface test_image_to_column_interface.cpp
)
target_link_libraries
(
test_image_to_column_interface PRIVATE utility
)
test/image_to_column/test_image_to_column.cpp
0 → 100644
View file @
4173b984
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "profiler/profile_image_to_column_impl.hpp"
template
<
typename
Tuple
>
class
TestImageToColumn
:
public
::
testing
::
Test
{
protected:
using
InDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
OutDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
InLayout
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
std
::
vector
<
ck
::
utils
::
conv
::
ConvParam
>
conv_params
;
template
<
ck
::
index_t
NDimSpatial
>
void
Run
()
{
EXPECT_FALSE
(
conv_params
.
empty
());
bool
pass
=
true
;
for
(
auto
&
param
:
conv_params
)
{
pass
=
pass
&&
ck
::
profiler
::
profile_image_to_column_impl
<
NDimSpatial
,
InLayout
,
InDataType
,
OutDataType
>
(
true
,
// do_verification
1
,
// init_method: integer value
false
,
// do_log
false
,
// time_kernel
param
);
}
EXPECT_TRUE
(
pass
);
}
};
using
namespace
ck
::
tensor_layout
::
convolution
;
using
KernelTypes1d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
float
,
GNWC
>
,
std
::
tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
,
GNWC
>
,
std
::
tuple
<
ck
::
half_t
,
ck
::
half_t
,
GNWC
>
,
std
::
tuple
<
int8_t
,
int8_t
,
GNWC
>>
;
using
KernelTypes2d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
float
,
GNHWC
>
,
std
::
tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
,
GNHWC
>
,
std
::
tuple
<
ck
::
half_t
,
ck
::
half_t
,
GNHWC
>
,
std
::
tuple
<
int8_t
,
int8_t
,
GNHWC
>>
;
using
KernelTypes3d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
float
,
GNDHWC
>
,
std
::
tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
,
GNDHWC
>
,
std
::
tuple
<
ck
::
half_t
,
ck
::
half_t
,
GNDHWC
>
,
std
::
tuple
<
int8_t
,
int8_t
,
GNDHWC
>>
;
template
<
typename
Tuple
>
class
TestImageToColumn1d
:
public
TestImageToColumn
<
Tuple
>
{
};
template
<
typename
Tuple
>
class
TestImageToColumn2d
:
public
TestImageToColumn
<
Tuple
>
{
};
template
<
typename
Tuple
>
class
TestImageToColumn3d
:
public
TestImageToColumn
<
Tuple
>
{
};
TYPED_TEST_SUITE
(
TestImageToColumn1d
,
KernelTypes1d
);
TYPED_TEST_SUITE
(
TestImageToColumn2d
,
KernelTypes2d
);
TYPED_TEST_SUITE
(
TestImageToColumn3d
,
KernelTypes3d
);
TYPED_TEST
(
TestImageToColumn1d
,
Test1D
)
{
this
->
conv_params
.
clear
();
this
->
conv_params
.
push_back
({
1
,
1
,
4
,
1
,
192
,
{
3
},
{
28
},
{
1
},
{
1
},
{
1
},
{
1
}});
this
->
conv_params
.
push_back
({
1
,
1
,
64
,
1
,
64
,
{
3
},
{
14
},
{
1
},
{
1
},
{
1
},
{
1
}});
this
->
conv_params
.
push_back
({
1
,
1
,
64
,
1
,
64
,
{
1
},
{
7
},
{
2
},
{
1
},
{
0
},
{
0
}});
this
->
conv_params
.
push_back
({
1
,
1
,
64
,
1
,
64
,
{
1
},
{
3
},
{
1
},
{
1
},
{
0
},
{
0
}});
// ScalarPerVector should be 1
this
->
conv_params
.
push_back
({
1
,
1
,
4
,
1
,
1
,
{
3
},
{
28
},
{
1
},
{
1
},
{
1
},
{
1
}});
// stride != 1
this
->
conv_params
.
push_back
({
1
,
1
,
1
,
1
,
4
,
{
3
},
{
28
},
{
2
},
{
1
},
{
1
},
{
1
}});
// dilation != 1
this
->
conv_params
.
push_back
({
1
,
1
,
1
,
1
,
4
,
{
3
},
{
28
},
{
1
},
{
2
},
{
1
},
{
1
}});
this
->
template
Run
<
1
>();
}
TYPED_TEST
(
TestImageToColumn2d
,
Test2D
)
{
this
->
conv_params
.
clear
();
this
->
conv_params
.
push_back
(
{
2
,
1
,
4
,
1
,
192
,
{
3
,
3
},
{
28
,
28
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
this
->
conv_params
.
push_back
(
{
2
,
1
,
64
,
1
,
64
,
{
3
,
3
},
{
14
,
14
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
this
->
conv_params
.
push_back
({
2
,
1
,
64
,
1
,
64
,
{
1
,
1
},
{
7
,
7
},
{
2
,
2
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
this
->
conv_params
.
push_back
({
2
,
1
,
64
,
1
,
64
,
{
1
,
1
},
{
3
,
3
},
{
1
,
1
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
this
->
template
Run
<
2
>();
}
TYPED_TEST
(
TestImageToColumn3d
,
Test3D
)
{
this
->
conv_params
.
clear
();
this
->
conv_params
.
push_back
(
{
3
,
1
,
16
,
1
,
64
,
{
1
,
1
,
1
},
{
7
,
7
,
7
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}});
this
->
conv_params
.
push_back
(
{
3
,
1
,
2
,
1
,
64
,
{
3
,
3
,
3
},
{
14
,
14
,
3
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}});
this
->
conv_params
.
push_back
(
{
3
,
1
,
32
,
1
,
64
,
{
1
,
1
,
1
},
{
3
,
3
,
3
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}});
this
->
template
Run
<
3
>();
}
test/image_to_column/test_image_to_column_interface.cpp
0 → 100644
View file @
4173b984
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_image_to_column_impl.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include <gtest/gtest.h>
using
DataType
=
float
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNWC
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
template
<
ck
::
index_t
ScalarPerVector
,
bool
IsCPacked
>
class
TestImageToColumnInterface
:
public
::
testing
::
Test
{
protected:
static
constexpr
ck
::
index_t
NDimSpatial
=
1
;
// clang-format off
using
DeviceImgToColInstance
=
ck
::
tensor_operation
::
device
::
DeviceImageToColumnImpl
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
<
NDimSpatial
,
InLayout
,
DataType
,
DataType
,
256
,
128
,
128
,
S
<
16
,
16
>
,
ScalarPerVector
>
;
// clang-format on
ck
::
utils
::
conv
::
ConvParam
conv_param
;
bool
Run
()
{
const
auto
N
=
conv_param
.
N_
;
const
auto
C
=
conv_param
.
C_
;
const
auto
FakeC
=
conv_param
.
C_
/
2
;
// Fake C to simulate the behavior that C is not packed
const
ck
::
index_t
NDoHoWo
=
N
*
ck
::
accumulate_n
<
ck
::
index_t
>
(
conv_param
.
output_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
ck
::
index_t
CZYX
=
C
*
ck
::
accumulate_n
<
ck
::
index_t
>
(
conv_param
.
filter_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
auto
in_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
out_desc
=
HostTensorDescriptor
({
NDoHoWo
,
CZYX
});
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
input_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
2
>
output_m_k_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
(),
y
.
begin
());
};
copy
(
conv_param
.
input_spatial_lengths_
,
input_spatial_lengths
);
copy
(
conv_param
.
filter_spatial_lengths_
,
filter_spatial_lengths
);
copy
(
conv_param
.
output_spatial_lengths_
,
output_spatial_lengths
);
copy
(
in_desc
.
GetStrides
(),
input_g_n_c_wis_strides
);
copy
(
out_desc
.
GetStrides
(),
output_m_k_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
auto
img2col
=
DeviceImgToColInstance
{};
auto
argument
=
img2col
.
MakeArgument
(
nullptr
,
nullptr
,
N
,
IsCPacked
?
C
:
FakeC
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
input_g_n_c_wis_strides
,
output_m_k_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
return
img2col
.
IsSupportedArgument
(
argument
);
}
};
class
TestImageToColumnInterface1ScalarPerVector
:
public
TestImageToColumnInterface
<
1
,
true
>
{
};
class
TestImageToColumnInterface4ScalarPerVector
:
public
TestImageToColumnInterface
<
4
,
true
>
{
};
class
TestImageToColumnInterface4ScalarPerVectorFakeC
:
public
TestImageToColumnInterface
<
4
,
false
>
{
};
TEST_F
(
TestImageToColumnInterface1ScalarPerVector
,
X1ScalarPerVector
)
{
// vector load C * X % ScalarPerVector
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
3
},
{
3
},
{
1
},
{
1
},
{
0
},
{
0
}};
bool
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
// vector load C * left_pad_x % ScalarPerVector
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
1
},
{
1
},
{
3
},
{
0
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
// vector load C * right_pad_x % ScalarPerVector
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
1
},
{
1
},
{
0
},
{
3
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
// vector load C % ScalarPerVector, right_pad and stride
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
2
},
{
1
},
{
0
},
{
3
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
// vector load C % ScalarPerVector, left_pad and stride
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
2
},
{
1
},
{
3
},
{
0
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
// vector load C % ScalarPerVector, dilation
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
1
},
{
2
},
{
0
},
{
0
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
// C = 4
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
4
,
{
3
},
{
3
},
{
1
},
{
1
},
{
3
},
{
3
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
}
TEST_F
(
TestImageToColumnInterface4ScalarPerVector
,
X4ScalarPerVector
)
{
// vector load C * X % ScalarPerVector
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
3
},
{
3
},
{
1
},
{
1
},
{
0
},
{
0
}};
bool
is_supported
=
this
->
Run
();
EXPECT_FALSE
(
is_supported
);
// vector load C * left_pad_x % ScalarPerVector
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
1
},
{
1
},
{
3
},
{
0
}};
is_supported
=
this
->
Run
();
EXPECT_FALSE
(
is_supported
);
// vector load C * right_pad_x % ScalarPerVector
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
1
},
{
1
},
{
0
},
{
3
}};
is_supported
=
this
->
Run
();
EXPECT_FALSE
(
is_supported
);
// vector load C % ScalarPerVector, right_pad and stride
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
2
},
{
1
},
{
0
},
{
3
}};
is_supported
=
this
->
Run
();
EXPECT_FALSE
(
is_supported
);
// vector load C % ScalarPerVector, left_pad and stride
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
2
},
{
1
},
{
3
},
{
0
}};
is_supported
=
this
->
Run
();
EXPECT_FALSE
(
is_supported
);
// vector load C % ScalarPerVector, dilation
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
1
},
{
2
},
{
0
},
{
0
}};
is_supported
=
this
->
Run
();
EXPECT_FALSE
(
is_supported
);
// C = 4
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
4
,
{
3
},
{
3
},
{
1
},
{
1
},
{
3
},
{
3
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
}
TEST_F
(
TestImageToColumnInterface4ScalarPerVectorFakeC
,
X4ScalarPerVectorFakeC
)
{
// C = 3
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
3
,
{
4
},
{
3
},
{
1
},
{
1
},
{
0
},
{
0
}};
bool
is_supported
=
this
->
Run
();
EXPECT_FALSE
(
is_supported
);
// C = 4
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
8
,
{
4
},
{
3
},
{
1
},
{
1
},
{
0
},
{
0
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
}
Prev
1
2
3
4
5
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment