Commit 4100d1d8 authored by Alan Turner's avatar Alan Turner
Browse files

Merge remote-tracking branch 'origin/develop' into migx-flash-attn

parents 48717006 c8a8385f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_streamk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_streamk.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
bool profile_gemm_streamk_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideC,
uint32_t NumSKBlocks = 0xffffffff)
{
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_device_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-3, 3});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
c_device_buf.ToDevice(c_m_n_device_result.mData.data());
using DeviceOp = ck::tensor_operation::device::DeviceGemmStreamK<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances, "
<< (do_verification ? "with verification" : "without verification") << std::endl;
// Run reference GEMM
if(do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
}
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device GEMM instances
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op,
NumSKBlocks);
DeviceMem workspace;
std::size_t workspace_size = op_ptr->GetWorkSpaceSize(argument_ptr.get());
if(workspace_size != 0)
{
workspace.Realloc(workspace_size);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace.GetDeviceBuffer());
}
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init C to zero before profiling next kernel
c_device_buf.SetZero();
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass = pass & ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host : ", c_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
<< std::endl;
}
}
std::string op_name = op_ptr->GetTypeString();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
}
}
if constexpr(is_same<CDataType, float>::value)
{
std::cout << "Best Perf for datatype = f32";
}
else if constexpr(is_same<CDataType, half_t>::value)
{
std::cout << "Best Perf for datatype = f16";
}
else if constexpr(is_same<CDataType, bhalf_t>::value)
{
std::cout << "Best Perf for datatype = bf16";
}
else if constexpr(is_same<CDataType, int8_t>::value)
{
std::cout << "Best Perf for datatype = int8";
}
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " ALayout = RowMajor";
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " ALayout = ColumnMajor";
}
if constexpr(is_same<BLayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " BLayout = RowMajor";
}
else if constexpr(is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " BLayout = ColumnMajor";
}
std::cout << " M = " << M << " N = " << N << " K = " << K << " StrideA = " << StrideA
<< " StrideB = " << StrideB << " StrideC = " << StrideC << " : " << best_ave_time
<< " ms, " << best_tflops << " TFlops, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp"
namespace ck {
namespace profiler {
template <ck::index_t NDimSpatial,
typename OutLayout,
typename WeiLayout,
typename InLayout,
typename OutDataType,
typename WeiDataType,
typename InDataType>
bool profile_grouped_conv_bwd_data_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param)
{
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto out_element_op = OutElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto in_element_op = InElementOp{};
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(conv_param);
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(conv_param);
Tensor<OutDataType> out(out_g_n_k_wos_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<InDataType> in_host(in_g_n_c_wis_desc);
Tensor<InDataType> in_device(in_g_n_c_wis_desc);
std::cout << "out: " << out.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "in: " << in_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
out.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
case 2:
out.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
break;
default:
out.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
wei.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
}
DeviceMem out_device_buf(sizeof(OutDataType) * out.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem in_device_buf(sizeof(InDataType) * in_device.mDesc.GetElementSpaceSize());
out_device_buf.ToDevice(out.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
// reset input to zero
in_device_buf.SetZero();
if(do_verification)
{
auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdData<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>();
auto ref_invoker = ref_conv.MakeInvoker();
in_host.SetZero();
auto ref_argument = ref_conv.MakeArgument(in_host,
wei,
out,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
out_element_op,
wei_element_op,
in_element_op);
ref_invoker.Run(ref_argument);
}
std::string best_op_name;
float best_avg_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device op instances
bool pass = true;
auto run_impl = [&](auto& op_ptr, auto& argument_ptr) {
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init output to zero before profiling next kernel
in_device_buf.SetZero();
std::string op_name = op_ptr->GetTypeString();
auto invoker_ptr = op_ptr->MakeInvokerPointer();
float avg_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = conv_param.GetFlops();
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
in_device_buf.FromDevice(in_device.mData.data());
pass = pass & ck::utils::check_err(in_device, in_host);
if(do_log)
{
LogRangeAsType<float>(std::cout << "output : ", out.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "weight: ", wei.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "in_host : ", in_host.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "in_device: ", in_device.mData, ",")
<< std::endl;
}
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
}
};
// do GEMM
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvBwdDataMultipleD<NDimSpatial,
OutLayout,
WeiLayout,
ck::Tuple<>,
InLayout,
OutDataType,
WeiDataType,
ck::Tuple<>,
InDataType,
OutElementOp,
WeiElementOp,
InElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::array<ck::index_t, NDimSpatial + 3> out_lengths{};
std::array<ck::index_t, NDimSpatial + 3> out_strides{};
std::array<ck::index_t, NDimSpatial + 3> wei_lengths{};
std::array<ck::index_t, NDimSpatial + 3> wei_strides{};
std::array<ck::index_t, NDimSpatial + 3> in_lengths{};
std::array<ck::index_t, NDimSpatial + 3> in_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(out_g_n_k_wos_desc.GetLengths(), out_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), out_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), wei_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), wei_strides);
copy(in_g_n_c_wis_desc.GetLengths(), in_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), in_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
{},
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
out_lengths,
out_strides,
wei_lengths,
wei_strides,
{},
{},
in_lengths,
in_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
out_element_op,
wei_element_op,
in_element_op);
run_impl(op_ptr, argument_ptr);
}
std::cout << "Best configuration parameters:"
<< "\nname: " << best_op_name << "\navg_time: " << best_avg_time
<< "\ntflops: " << best_tflops << "\nGB/s: " << best_gb_per_sec << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
...@@ -136,9 +136,12 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification, ...@@ -136,9 +136,12 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
// profile device Conv instances // profile device Conv instances
bool all_pass = true; bool all_pass = true;
std::array<ck::index_t, NDimSpatial> input_spatial_lengths{}; std::array<ck::index_t, NDimSpatial + 3> input_lengths{};
std::array<ck::index_t, NDimSpatial> filter_spatial_lengths{}; std::array<ck::index_t, NDimSpatial + 3> filter_lengths{};
std::array<ck::index_t, NDimSpatial> output_spatial_lengths{}; std::array<ck::index_t, NDimSpatial + 3> output_lengths{};
std::array<ck::index_t, NDimSpatial + 3> input_strides{};
std::array<ck::index_t, NDimSpatial + 3> weights_strides{};
std::array<ck::index_t, NDimSpatial + 3> output_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{}; std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{}; std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{}; std::array<ck::index_t, NDimSpatial> input_left_pads{};
...@@ -146,9 +149,12 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification, ...@@ -146,9 +149,12 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
auto range_copy = [](const auto& from, auto to) { std::copy(begin(from), end(from), to); }; auto range_copy = [](const auto& from, auto to) { std::copy(begin(from), end(from), to); };
range_copy(conv_param.input_spatial_lengths_, begin(input_spatial_lengths)); range_copy(in_g_n_c_wis_desc.GetLengths(), begin(input_lengths));
range_copy(conv_param.filter_spatial_lengths_, begin(filter_spatial_lengths)); range_copy(in_g_n_c_wis_desc.GetStrides(), begin(input_strides));
range_copy(conv_param.output_spatial_lengths_, begin(output_spatial_lengths)); range_copy(wei_g_k_c_xs_desc.GetLengths(), begin(filter_lengths));
range_copy(wei_g_k_c_xs_desc.GetStrides(), begin(weights_strides));
range_copy(out_g_n_k_wos_desc.GetLengths(), begin(output_lengths));
range_copy(out_g_n_k_wos_desc.GetStrides(), begin(output_strides));
range_copy(conv_param.conv_filter_strides_, begin(conv_filter_strides)); range_copy(conv_param.conv_filter_strides_, begin(conv_filter_strides));
range_copy(conv_param.conv_filter_dilations_, begin(conv_filter_dilations)); range_copy(conv_param.conv_filter_dilations_, begin(conv_filter_dilations));
range_copy(conv_param.input_left_pads_, begin(input_left_pads)); range_copy(conv_param.input_left_pads_, begin(input_left_pads));
...@@ -160,13 +166,12 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification, ...@@ -160,13 +166,12 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
op_ptr->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()), op_ptr->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()), static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()), static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
conv_param.G_, input_lengths,
conv_param.N_, input_strides,
conv_param.K_, filter_lengths,
conv_param.C_, weights_strides,
input_spatial_lengths, output_lengths,
filter_spatial_lengths, output_strides,
output_spatial_lengths,
conv_filter_strides, conv_filter_strides,
conv_filter_dilations, conv_filter_dilations,
input_left_pads, input_left_pads,
......
...@@ -70,6 +70,7 @@ bool profile_grouped_gemm_impl(int do_verification, ...@@ -70,6 +70,7 @@ bool profile_grouped_gemm_impl(int do_verification,
std::vector<Tensor<ADataType>> a_m_k; std::vector<Tensor<ADataType>> a_m_k;
std::vector<Tensor<BDataType>> b_k_n; std::vector<Tensor<BDataType>> b_k_n;
std::vector<Tensor<CDataType>> c_m_n_host_results;
std::vector<Tensor<CDataType>> c_m_n_device_results; std::vector<Tensor<CDataType>> c_m_n_device_results;
for(std::size_t i = 0; i < group_count; i++) for(std::size_t i = 0; i < group_count; i++)
...@@ -81,6 +82,9 @@ bool profile_grouped_gemm_impl(int do_verification, ...@@ -81,6 +82,9 @@ bool profile_grouped_gemm_impl(int do_verification,
c_m_n_device_results.push_back( c_m_n_device_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{}))); Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
c_m_n_host_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
#if DEBUG_LOG #if DEBUG_LOG
std::cout << "group: " << i << " a_m_k[" << i << "]:" << a_m_k[i].mDesc << ", b_k_n[" << i std::cout << "group: " << i << " a_m_k[" << i << "]:" << a_m_k[i].mDesc << ", b_k_n[" << i
<< "]:" << b_k_n[i].mDesc << ", c_m_n_device_results[" << i << "]:" << b_k_n[i].mDesc << ", c_m_n_device_results[" << i
...@@ -137,7 +141,6 @@ bool profile_grouped_gemm_impl(int do_verification, ...@@ -137,7 +141,6 @@ bool profile_grouped_gemm_impl(int do_verification,
a_device_buf[i]->ToDevice(a_m_k[i].mData.data()); a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
b_device_buf[i]->ToDevice(b_k_n[i].mData.data()); b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
c_device_buf[i]->SetZero();
gemm_descs.push_back({Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i], {}}); gemm_descs.push_back({Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i], {}});
...@@ -170,9 +173,36 @@ bool profile_grouped_gemm_impl(int do_verification, ...@@ -170,9 +173,36 @@ bool profile_grouped_gemm_impl(int do_verification,
float best_ave_time = 0; float best_ave_time = 0;
float best_tflops = 0; float best_tflops = 0;
float best_gb_per_sec = 0; float best_gb_per_sec = 0;
float best_kbatch = 0;
auto p_ds = std::vector<std::array<const void*, 0>>{}; auto p_ds = std::vector<std::array<const void*, 0>>{};
if(do_verification)
{
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k[i],
b_k_n[i],
c_m_n_host_results[i],
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
}
}
// profile device GEMM instances // profile device GEMM instances
for(auto& gemm_ptr : op_ptrs) for(auto& gemm_ptr : op_ptrs)
{ {
...@@ -193,139 +223,135 @@ bool profile_grouped_gemm_impl(int do_verification, ...@@ -193,139 +223,135 @@ bool profile_grouped_gemm_impl(int do_verification,
gemm_ptr->SetWorkSpacePointer(argument_ptr.get(), gemm_desc_workspace.GetDeviceBuffer()); gemm_ptr->SetWorkSpacePointer(argument_ptr.get(), gemm_desc_workspace.GetDeviceBuffer());
std::string gemm_name = gemm_ptr->GetTypeString(); std::string gemm_name = gemm_ptr->GetTypeString();
if(kbatch > 1) using DeviceOpSplitK = ck::tensor_operation::device::DeviceGroupedGemmSplitK<ALayout,
BLayout,
ck::Tuple<>,
CLayout,
ADataType,
BDataType,
ck::Tuple<>,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
// skip non-splitk grouped_gemm
if(dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get()) == nullptr)
{ {
using DeviceOpSplitK = continue;
ck::tensor_operation::device::DeviceGroupedGemmSplitK<ALayout,
BLayout,
ck::Tuple<>,
CLayout,
ADataType,
BDataType,
ck::Tuple<>,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
if(dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get()) != nullptr)
{
dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get())
->SetKBatchSize(argument_ptr.get(), kbatch);
}
} }
if(gemm_ptr->IsSupportedArgument(argument_ptr.get())) std::vector<int> kbatch_list = {1, 2, 4, 8, 12, 16, 20, 24, 32, 48, 64};
if(kbatch > 0)
{ {
kbatch_list = {kbatch};
}
float ave_time = for(std::size_t j = 0; j < kbatch_list.size(); j++)
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel}); {
auto kbatch_curr = kbatch_list[j];
dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get())
->SetKBatchSize(argument_ptr.get(), kbatch_curr);
if(time_kernel) if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{ {
std::size_t flop = 0, num_btype = 0;
for(std::size_t i = 0; i < gemm_descs.size(); i++) for(std::size_t i = 0; i < gemm_descs.size(); i++)
{ c_device_buf[i]->SetZero();
flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];
num_btype += sizeof(ADataType) * Ms[i] * Ks[i] + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
sizeof(BDataType) * Ks[i] * Ns[i] +
sizeof(CDataType) * Ms[i] * Ns[i];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time; if(do_verification)
{
bool instance_pass = true;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
float gb_per_sec = num_btype / 1.E6 / ave_time; c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data());
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << gemm_name << std::endl; if(std::is_same_v<CDataType, ck::half_t> && kbatch_curr > 1)
{
instance_pass =
instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_results[i],
"Error: Incorrect results!",
0.06);
}
else
{
instance_pass =
instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_results[i]);
}
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_device: ", c_m_n_device_results[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_host : ", c_m_n_host_results[i].mData, ",")
<< std::endl;
}
}
if(tflops > best_tflops) std::cout << "Instance: " << gemm_name << " verification "
{ << (instance_pass ? "SUCCEED" : "FAILED") << std::endl;
best_gemm_name = gemm_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
if(do_verification) pass = pass && instance_pass;
{ }
bool instance_pass = true;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data()); float ave_time =
c_device_buf[i]->SetZero(); invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
Tensor<CDataType> c_m_n_host_result( if(time_kernel)
f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})); {
std::size_t flop = 0, num_btype = 0;
using ReferenceGemmInstance = for(std::size_t i = 0; i < gemm_descs.size(); i++)
ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k[i],
b_k_n[i],
c_m_n_host_result,
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
if(std::is_same_v<CDataType, ck::half_t> && kbatch > 1)
{
instance_pass =
instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_result,
"Error: Incorrect results!",
0.06);
}
else
{ {
instance_pass = flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];
instance_pass &&
ck::utils::check_err(c_m_n_device_results[i], c_m_n_host_result); num_btype += sizeof(ADataType) * Ms[i] * Ks[i] +
sizeof(BDataType) * Ks[i] * Ns[i] +
sizeof(CDataType) * Ms[i] * Ns[i];
} }
if(do_log) float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << gemm_name << ", KBatch "
<< kbatch_curr << std::endl;
if(tflops > best_tflops)
{ {
LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",") best_gemm_name = gemm_name;
<< std::endl; best_tflops = tflops;
LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",") << std::endl; best_ave_time = ave_time;
LogRangeAsType<float>( best_gb_per_sec = gb_per_sec;
std::cout << "c_device: ", c_m_n_device_results[i].mData, ",") best_kbatch = kbatch_curr;
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_host : ", c_m_n_host_result.mData, ",")
<< std::endl;
} }
} }
std::cout << "Instance: " << gemm_name << " verification "
<< (instance_pass ? "SUCCEED" : "FAILED") << std::endl;
pass = pass && instance_pass;
} }
} else
else {
{ std::cout << "Instance: " << gemm_name << ", does not support this GEMM problem"
std::cout << "Instance: " << gemm_name << ", does not support this GEMM problem" << std::endl;
<< std::endl; }
} }
} }
if(time_kernel) if(time_kernel)
{ {
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, " std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl; << best_gb_per_sec << " GB/s, " << best_gemm_name << ", KBatch = " << best_kbatch
<< std::endl;
} }
return pass; return pass;
......
...@@ -139,6 +139,10 @@ bool profile_groupnorm_impl(int do_verification, ...@@ -139,6 +139,10 @@ bool profile_groupnorm_impl(int do_verification,
continue; continue;
} }
size_t workspace_sz = inst_ptr->GetWorkSpaceSize(argument_ptr.get());
DeviceMem workspace_dev(workspace_sz);
inst_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_dev.GetDeviceBuffer());
auto invoker_ptr = inst_ptr->MakeInvokerPointer(); auto invoker_ptr = inst_ptr->MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel}); float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
......
...@@ -155,6 +155,10 @@ bool profile_layernorm_impl(int do_verification, ...@@ -155,6 +155,10 @@ bool profile_layernorm_impl(int do_verification,
continue; continue;
} }
size_t workspace_sz = inst_ptr->GetWorkSpaceSize(argument_ptr.get());
DeviceMem workspace_dev(workspace_sz);
inst_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_dev.GetDeviceBuffer());
auto invoker_ptr = inst_ptr->MakeInvokerPointer(); auto invoker_ptr = inst_ptr->MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel}); float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
namespace ck {
namespace profiler {
template <typename InDataType,
typename OutDataType,
typename ComputeDataType,
typename IndexDataType,
ck::ReduceTensorOp ReduceOpId,
bool PropagateNan,
bool OutputIndex>
bool profile_pool2d_fwd_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
std::vector<index_t> in_length, // NCHW
std::vector<index_t> window_spatial_lengths,
std::vector<index_t> window_strides,
std::vector<index_t> input_left_pads,
std::vector<index_t> input_right_pads)
{
constexpr index_t InOutRank = 4;
constexpr index_t WindowRank = 2;
if(in_length.size() != InOutRank || window_spatial_lengths.size() != WindowRank ||
window_strides.size() != WindowRank || input_left_pads.size() != WindowRank ||
input_right_pads.size() != WindowRank)
return false;
std::vector<index_t> out_length(InOutRank);
int N = in_length[0];
int C = in_length[1];
out_length[0] = N;
out_length[1] = C;
// Calculate Ho, Wo
for(int i = 2; i < InOutRank; ++i)
{
auto pad1 = input_left_pads[i - 2];
auto pad2 = input_right_pads[i - 2];
auto windows_size = window_spatial_lengths[i - 2];
auto windows_stride = window_strides[i - 2];
out_length[i] = (in_length[i] + pad1 + pad2 - windows_size) / windows_stride + 1;
}
int Hi = in_length[2];
int Wi = in_length[3];
int Ho = out_length[2];
int Wo = out_length[3];
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W) {
using namespace ck::literals;
return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, 1_uz, W * C_, C_});
};
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi));
Tensor<OutDataType> out_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo));
Tensor<IndexDataType> out_indices_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo));
Tensor<OutDataType> out_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo));
Tensor<IndexDataType> out_indices_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo));
switch(init_method)
{
case 0: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{}); break;
case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break;
default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
DeviceMem out_indices_device_buf(sizeof(IndexDataType) *
out_indices_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
// add device normalization instances
using DeviceOp = ck::tensor_operation::device::DevicePoolFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
IndexDataType,
ReduceOpId,
OutputIndex>;
// get device op instances
const auto instance_ptrs =
ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
std::string best_instance_name;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
if(do_verification)
{
using ReferenceInstance = ck::tensor_operation::host::ReferencePoolingFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ReduceOpId,
PropagateNan,
OutputIndex>;
ReferenceInstance ref;
auto ref_argument = ref.MakeArgument(in_n_c_hi_wi,
out_n_c_ho_wo_host,
out_indices_n_c_ho_wo_host,
window_spatial_lengths,
window_strides,
input_left_pads,
input_right_pads);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
}
int num_kernel = 0;
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<IndexDataType*>(out_indices_device_buf.GetDeviceBuffer()),
in_length,
window_spatial_lengths,
out_length,
{C * Hi * Wi, 1, Wi * C, C},
{C * Ho * Wo, 1, Wo * C, C},
{C * Ho * Wo, 1, Wo * C, C},
window_strides,
input_left_pads,
input_right_pads,
{2, 3});
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
++num_kernel;
}
else
{
if(time_kernel)
{
std::cout << inst_ptr->GetTypeString() << " skipped due to unsupported argument: ";
LogRange(std::cout << "input lengths = ", in_length, ", ") << std::endl;
}
continue;
}
auto invoker_ptr = inst_ptr->MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes = in_n_c_hi_wi.mDesc.GetElementSize() * sizeof(InDataType) +
out_n_c_ho_wo_host.mDesc.GetElementSize() * sizeof(OutDataType);
if constexpr(OutputIndex)
num_bytes += out_indices_n_c_ho_wo_host.mDesc.GetElementSize() * sizeof(IndexDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< inst_ptr->GetTypeString() << std::endl;
if(avg_time < best_avg_time)
{
best_instance_name = inst_ptr->GetTypeString();
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
out_device_buf.FromDevice(out_n_c_ho_wo_device.mData.data());
bool pass = ck::utils::check_err(out_n_c_ho_wo_device.mData,
out_n_c_ho_wo_host.mData,
"Error: Incorrect results",
1e-3,
1e-3);
if constexpr(OutputIndex)
{
out_indices_device_buf.FromDevice(out_indices_n_c_ho_wo_device.mData.data());
pass = pass && ck::utils::check_err(out_indices_n_c_ho_wo_device,
out_indices_n_c_ho_wo_host);
}
if(do_log)
{
LogRangeAsType<float>(std::cout << "in_n_c_hi_wi : ", in_n_c_hi_wi.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "out_n_c_ho_wo_host : ", out_n_c_ho_wo_host.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "out_n_c_ho_wo_device : ", out_n_c_ho_wo_device.mData, ",")
<< std::endl;
if constexpr(OutputIndex)
LogRangeAsType<float>(std::cout << "out_indices_n_c_ho_wo_device : ",
out_indices_n_c_ho_wo_device.mData,
",")
<< std::endl;
}
if(!pass)
{
std::cout << inst_ptr->GetTypeString() << " failed verification: ";
LogRange(std::cout << "lengths = [", in_length, ", ") << "]." << std::endl;
return false;
}
else
{
if(time_kernel)
std::cout << "pass" << std::endl;
}
}
}
if(time_kernel)
{
LogRange(std::cout << "length = ", in_length, ",") << std::endl;
std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_instance_name << std::endl;
}
if(num_kernel == 0)
{
std::cout << "Error: No kernel is applicable" << std::endl;
return false;
}
return true;
}
} // namespace profiler
} // namespace ck
...@@ -21,6 +21,8 @@ template <typename InDataType, ...@@ -21,6 +21,8 @@ template <typename InDataType,
typename OutDataType, typename OutDataType,
typename ComputeDataType, typename ComputeDataType,
typename IndexDataType, typename IndexDataType,
typename InLayout,
typename OutLayout,
ck::ReduceTensorOp ReduceOpId, ck::ReduceTensorOp ReduceOpId,
bool PropagateNan, bool PropagateNan,
bool OutputIndex> bool OutputIndex>
...@@ -31,6 +33,7 @@ bool profile_pool3d_fwd_impl(int do_verification, ...@@ -31,6 +33,7 @@ bool profile_pool3d_fwd_impl(int do_verification,
std::vector<index_t> in_length, // NCDHW std::vector<index_t> in_length, // NCDHW
std::vector<index_t> window_spatial_lengths, std::vector<index_t> window_spatial_lengths,
std::vector<index_t> window_strides, std::vector<index_t> window_strides,
std::vector<index_t> window_dilations,
std::vector<index_t> input_left_pads, std::vector<index_t> input_left_pads,
std::vector<index_t> input_right_pads) std::vector<index_t> input_right_pads)
{ {
...@@ -38,8 +41,8 @@ bool profile_pool3d_fwd_impl(int do_verification, ...@@ -38,8 +41,8 @@ bool profile_pool3d_fwd_impl(int do_verification,
constexpr index_t WindowRank = 3; constexpr index_t WindowRank = 3;
if(in_length.size() != InOutRank || window_spatial_lengths.size() != WindowRank || if(in_length.size() != InOutRank || window_spatial_lengths.size() != WindowRank ||
window_strides.size() != WindowRank || input_left_pads.size() != WindowRank || window_strides.size() != WindowRank || window_dilations.size() != WindowRank ||
input_right_pads.size() != WindowRank) input_left_pads.size() != WindowRank || input_right_pads.size() != WindowRank)
return false; return false;
std::vector<index_t> out_length(InOutRank); std::vector<index_t> out_length(InOutRank);
...@@ -53,11 +56,13 @@ bool profile_pool3d_fwd_impl(int do_verification, ...@@ -53,11 +56,13 @@ bool profile_pool3d_fwd_impl(int do_verification,
// Calculate Do, Ho, Wo // Calculate Do, Ho, Wo
for(int i = 2; i < InOutRank; ++i) for(int i = 2; i < InOutRank; ++i)
{ {
auto pad1 = input_left_pads[i - 2]; auto pad1 = input_left_pads[i - 2];
auto pad2 = input_right_pads[i - 2]; auto pad2 = input_right_pads[i - 2];
auto windows_size = window_spatial_lengths[i - 2]; auto windows_size = window_spatial_lengths[i - 2];
auto windows_stride = window_strides[i - 2]; auto windows_stride = window_strides[i - 2];
out_length[i] = (in_length[i] + pad1 + pad2 - windows_size) / windows_stride + 1; auto windows_dilation = window_dilations[i - 2];
auto eff = (windows_size - 1) * windows_dilation + 1;
out_length[i] = (in_length[i] + pad1 + pad2 - eff) / windows_stride + 1;
} }
int Di = in_length[2]; int Di = in_length[2];
...@@ -104,6 +109,8 @@ bool profile_pool3d_fwd_impl(int do_verification, ...@@ -104,6 +109,8 @@ bool profile_pool3d_fwd_impl(int do_verification,
InDataType, InDataType,
OutDataType, OutDataType,
IndexDataType, IndexDataType,
InLayout,
OutLayout,
ReduceOpId, ReduceOpId,
OutputIndex>; OutputIndex>;
...@@ -136,6 +143,7 @@ bool profile_pool3d_fwd_impl(int do_verification, ...@@ -136,6 +143,7 @@ bool profile_pool3d_fwd_impl(int do_verification,
out_indices_n_c_do_ho_wo_host, out_indices_n_c_do_ho_wo_host,
window_spatial_lengths, window_spatial_lengths,
window_strides, window_strides,
window_dilations,
input_left_pads, input_left_pads,
input_right_pads); input_right_pads);
auto ref_invoker = ref.MakeInvoker(); auto ref_invoker = ref.MakeInvoker();
...@@ -157,6 +165,7 @@ bool profile_pool3d_fwd_impl(int do_verification, ...@@ -157,6 +165,7 @@ bool profile_pool3d_fwd_impl(int do_verification,
{Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C}, {Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C},
{Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C}, {Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C},
window_strides, window_strides,
window_dilations,
input_left_pads, input_left_pads,
input_right_pads, input_right_pads,
{2, 3, 4}); {2, 3, 4});
......
...@@ -40,7 +40,11 @@ template <> std::string type_to_string<int8_t>() { return "int8"; } ...@@ -40,7 +40,11 @@ template <> std::string type_to_string<int8_t>() { return "int8"; }
template <> std::string type_to_string<int32_t>() { return "int32"; } template <> std::string type_to_string<int32_t>() { return "int32"; }
// clang-format on // clang-format on
template <typename InDataType, typename AccDataType, typename OutDataType, index_t Rank> template <typename InDataType,
typename AccDataType,
typename OutDataType,
index_t Rank,
index_t NumReduceDim>
bool profile_softmax_impl(int do_verification, bool profile_softmax_impl(int do_verification,
int init_method, int init_method,
bool do_log, bool do_log,
...@@ -54,7 +58,13 @@ bool profile_softmax_impl(int do_verification, ...@@ -54,7 +58,13 @@ bool profile_softmax_impl(int do_verification,
if(Rank != in_length.size()) if(Rank != in_length.size())
{ {
throw std::runtime_error("Input tensor rank is different from template argument Rank!"); throw std::runtime_error("Input tensor rank is different from template argument Rank!");
} };
if(NumReduceDim != reduce_dims.size())
{
throw std::runtime_error(
"Input reduce_dims rank is different from template argument NumReduceDim!");
};
Tensor<InDataType> in = in_strides.empty() ? Tensor<InDataType>(in_length) Tensor<InDataType> in = in_strides.empty() ? Tensor<InDataType>(in_length)
: Tensor<InDataType>(in_length, in_strides); : Tensor<InDataType>(in_length, in_strides);
...@@ -92,8 +102,13 @@ bool profile_softmax_impl(int do_verification, ...@@ -92,8 +102,13 @@ bool profile_softmax_impl(int do_verification,
// add device softmax instances // add device softmax instances
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceOp = tensor_operation::device:: using DeviceOp = tensor_operation::device::DeviceSoftmax<InDataType,
DeviceSoftmax<InDataType, AccDataType, OutDataType, PassThrough, PassThrough, Rank>; AccDataType,
OutDataType,
PassThrough,
PassThrough,
Rank,
NumReduceDim>;
// get device op instances // get device op instances
const auto instances = tensor_operation::device::instance::DeviceOperationInstanceFactory< const auto instances = tensor_operation::device::instance::DeviceOperationInstanceFactory<
...@@ -112,13 +127,6 @@ bool profile_softmax_impl(int do_verification, ...@@ -112,13 +127,6 @@ bool profile_softmax_impl(int do_verification,
for(auto& inst_ptr : instances) for(auto& inst_ptr : instances)
{ {
// Is this user's responsibility to check if problem mismatches kernel instance (ie. rank 3
// problem to rank 4 kernel) other than invoking IsSupportedArgument()?
if(!(inst_ptr->GetNumReduceDim() == static_cast<index_t>(reduce_dims.size())))
{
continue;
}
auto argument_ptr = inst_ptr->MakeArgumentPointer(in_tensor_lengths, auto argument_ptr = inst_ptr->MakeArgumentPointer(in_tensor_lengths,
in_tensor_strides, in_tensor_strides,
reduce_dims, reduce_dims,
......
...@@ -3,19 +3,11 @@ set(PROFILER_SOURCES ...@@ -3,19 +3,11 @@ set(PROFILER_SOURCES
profiler.cpp profiler.cpp
profile_gemm.cpp profile_gemm.cpp
profile_gemm_splitk.cpp profile_gemm_splitk.cpp
profile_gemm_bilinear.cpp
profile_gemm_bias_add_reduce.cpp profile_gemm_bias_add_reduce.cpp
profile_gemm_add_add_fastgelu.cpp
profile_gemm_add_multiply.cpp profile_gemm_add_multiply.cpp
profile_gemm_add_fastgelu.cpp
profile_gemm_add_relu_add_layernorm.cpp
profile_gemm_fastgelu.cpp
profile_gemm_reduce.cpp profile_gemm_reduce.cpp
profile_batched_gemm.cpp profile_batched_gemm.cpp
profile_batched_gemm_gemm.cpp
profile_batched_gemm_add_relu_gemm_add.cpp
profile_batched_gemm_reduce.cpp profile_batched_gemm_reduce.cpp
profile_grouped_gemm.cpp
profile_conv_fwd.cpp profile_conv_fwd.cpp
profile_conv_fwd_bias_relu.cpp profile_conv_fwd_bias_relu.cpp
profile_conv_fwd_bias_relu_add.cpp profile_conv_fwd_bias_relu_add.cpp
...@@ -25,17 +17,30 @@ set(PROFILER_SOURCES ...@@ -25,17 +17,30 @@ set(PROFILER_SOURCES
profile_reduce.cpp profile_reduce.cpp
profile_groupnorm.cpp profile_groupnorm.cpp
profile_layernorm.cpp profile_layernorm.cpp
profile_avg_pool2d_fwd.cpp
profile_max_pool3d_fwd.cpp profile_max_pool3d_fwd.cpp
profile_softmax.cpp profile_softmax.cpp
profile_batchnorm_fwd.cpp profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp profile_batchnorm_bwd.cpp
profile_batchnorm_infer.cpp profile_batchnorm_infer.cpp
profile_grouped_gemm_fastgelu.cpp
profile_contraction_bilinear.cpp profile_contraction_bilinear.cpp
profile_contraction_scale.cpp profile_contraction_scale.cpp
profile_batched_gemm_multi_d.cpp profile_grouped_conv_bwd_data.cpp
) )
if(DL_KERNELS)
list(APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_streamk.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp)
endif()
set(PROFILER_EXECUTABLE ckProfiler) set(PROFILER_EXECUTABLE ckProfiler)
...@@ -45,19 +50,11 @@ target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors) ...@@ -45,19 +50,11 @@ target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE utility) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE utility)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_fwd_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_fwd_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_fwd_instance)
...@@ -74,9 +71,24 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instan ...@@ -74,9 +71,24 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instan
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool_fwd_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_multi_d_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_data_instance)
if(DL_KERNELS)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_multi_d_instance)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_streamk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
endif()
rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler) rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
struct avgPoolFwdArgParser
{
std::unordered_map<std::string, std::vector<int>> long_opts = {
{"length", {}}, {"wsize", {}}, {"wstride", {}}, {"pad1", {}}, {"pad2", {}}};
bool parse_opt(int argc, char* argv[], const std::string& key, int i)
{
if(std::string("--") + key == argv[i])
{
int pos = i;
while(++i < argc && argv[i][0] != '-') {}
int end = i;
for(int j = pos + 1; j < end; j++)
{
long_opts[key].push_back(std::stoi(argv[j]));
}
return true;
}
return false;
}
void operator()(int argc, char* argv[])
{
for(auto& kv : long_opts)
{
for(int i = 1; i < argc; i++)
{
if(parse_opt(argc, argv, kv.first, i))
break;
}
}
}
};
void print_help_avg_pool2d_fwd()
{
std::cout << "arg1: data type (0: fp16; 1: fp32)\n"
<< "arg2: verification (0: no; 1: yes)\n"
<< "arg3: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg4: print tensor value (0: no; 1: yes)\n"
<< "arg5: time kernel (0=no, 1=yes)\n"
<< "--length: input tensor length for NDHW(e.g, --length 2 32 30 30) \n"
<< "--wsize: window size for YX (e.g, --wsize 2 2) \n"
<< "--wstride: window stride for HW (e.g, --wstride 2 2) \n"
<< "--pad1: left side of padding in HW (e.g, --pad1 1 1) \n"
<< "--pad2: right side of padding in HW (e.g, --pad2 1 1) \n"
<< "eg: ckProfiler avg_pool2d_fwd 0 1 2 0 1 0 --length 2 32 30 30 --wsize 2 2 "
"--wstride 2 2 --pad1 1 1 --pad2 1 1"
<< std::endl;
}
int profile_avg_pool2d_fwd(int argc, char* argv[])
{
ck::DataTypeEnum data_type = ck::DataTypeEnum::Half;
bool do_verification = true;
int init_method = 0;
bool do_log = false;
bool time_kernel = true;
std::vector<index_t> in_length = {2, 32, 30, 30};
std::vector<index_t> wsize = {2, 2};
std::vector<index_t> wstride = {2, 2};
std::vector<index_t> pad1 = {1, 1};
std::vector<index_t> pad2 = {1, 1};
if(argc != 2 && argc != 25)
{
print_help_avg_pool2d_fwd();
return 0;
}
else if(argc == 25)
{
data_type = static_cast<ck::DataTypeEnum>(std::stoi(argv[2]));
do_verification = std::stoi(argv[3]);
init_method = std::stoi(argv[4]);
do_log = std::stoi(argv[5]);
time_kernel = std::stoi(argv[6]);
// parse the long options
avgPoolFwdArgParser arg_parser;
arg_parser(argc, argv);
in_length = arg_parser.long_opts["length"];
wsize = arg_parser.long_opts["wsize"];
wstride = arg_parser.long_opts["wstride"];
pad1 = arg_parser.long_opts["pad1"];
pad2 = arg_parser.long_opts["pad2"];
}
using F16 = ck::half_t;
using F32 = float;
using I32 = int32_t;
constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_pool2d_fwd_impl<F16, F16, F32, I32, ReduceOpId, false, false>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
pad1,
pad2);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_pool2d_fwd_impl<F32, F32, F32, I32, ReduceOpId, false, false>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
pad1,
pad2);
}
else
{
throw std::runtime_error("not implemented yet");
}
return 0;
}
REGISTER_PROFILER_OPERATION("avg_pool2d_fwd", "avg_pool2d fwd", profile_avg_pool2d_fwd);
...@@ -70,8 +70,10 @@ int profile_batched_gemm_multi_d(int argc, char* argv[]) ...@@ -70,8 +70,10 @@ int profile_batched_gemm_multi_d(int argc, char* argv[])
const int BatchCount = std::stoi(argv[17]); const int BatchCount = std::stoi(argv[17]);
using F16 = ck::half_t; using F16 = ck::half_t;
#ifdef CK_ENABLE_INT8
using INT8 = int8_t; using INT8 = int8_t;
#endif
using Row = ck::tensor_layout::gemm::RowMajor; using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor; using Col = ck::tensor_layout::gemm::ColumnMajor;
...@@ -163,6 +165,7 @@ int profile_batched_gemm_multi_d(int argc, char* argv[]) ...@@ -163,6 +165,7 @@ int profile_batched_gemm_multi_d(int argc, char* argv[])
{ {
return profile(F16{}, F16{}, F16{}, Col{}, Col{}, Row{}); return profile(F16{}, F16{}, F16{}, Col{}, Col{}, Row{});
} }
#ifdef CK_ENABLE_INT8
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::MK_KN_MN) else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::MK_KN_MN)
{ {
return profile(INT8{}, INT8{}, INT8{}, Row{}, Row{}, Row{}); return profile(INT8{}, INT8{}, INT8{}, Row{}, Row{}, Row{});
...@@ -179,6 +182,7 @@ int profile_batched_gemm_multi_d(int argc, char* argv[]) ...@@ -179,6 +182,7 @@ int profile_batched_gemm_multi_d(int argc, char* argv[])
{ {
return profile(INT8{}, INT8{}, INT8{}, Col{}, Col{}, Row{}); return profile(INT8{}, INT8{}, INT8{}, Col{}, Col{}, Row{});
} }
#endif
else else
{ {
std::cout << "this data_type & layout is not implemented" << std::endl; std::cout << "this data_type & layout is not implemented" << std::endl;
......
...@@ -148,7 +148,7 @@ int profile_batchnorm_forward(int argc, char* argv[]) ...@@ -148,7 +148,7 @@ int profile_batchnorm_forward(int argc, char* argv[])
{ {
if(arg_parser.inLengths.size() == 4 && arg_parser.reduceDims.size() == 3) if(arg_parser.inLengths.size() == 4 && arg_parser.reduceDims.size() == 3)
{ {
profile_batchnorm_forward_impl<F16, F16, F32, F16, F16, F16, 4, 3>( profile_batchnorm_forward_impl<F16, F16, F32, F16, F16, F32, 4, 3>(
arg_parser.do_verification, arg_parser.do_verification,
arg_parser.init_method, arg_parser.init_method,
arg_parser.do_dumpout, arg_parser.do_dumpout,
......
...@@ -77,7 +77,9 @@ int profile_conv_bwd_data(int argc, char* argv[]) ...@@ -77,7 +77,9 @@ int profile_conv_bwd_data(int argc, char* argv[])
using F32 = float; using F32 = float;
using F16 = ck::half_t; using F16 = ck::half_t;
using BF16 = ck::bhalf_t; using BF16 = ck::bhalf_t;
#ifdef CK_ENABLE_INT8
using INT8 = int8_t; using INT8 = int8_t;
#endif
using NWC = ck::tensor_layout::convolution::NWC; using NWC = ck::tensor_layout::convolution::NWC;
using NHWC = ck::tensor_layout::convolution::NHWC; using NHWC = ck::tensor_layout::convolution::NHWC;
...@@ -138,10 +140,12 @@ int profile_conv_bwd_data(int argc, char* argv[]) ...@@ -138,10 +140,12 @@ int profile_conv_bwd_data(int argc, char* argv[])
{ {
return profile(I1, NWC{}, KXC{}, NWK{}, BF16{}, BF16{}, BF16{}); return profile(I1, NWC{}, KXC{}, NWK{}, BF16{}, BF16{}, BF16{});
} }
#ifdef CK_ENABLE_INT8
else if(data_type == ConvDataType::INT8_INT8_INT8) else if(data_type == ConvDataType::INT8_INT8_INT8)
{ {
return profile(I1, NWC{}, KXC{}, NWK{}, INT8{}, INT8{}, INT8{}); return profile(I1, NWC{}, KXC{}, NWK{}, INT8{}, INT8{}, INT8{});
} }
#endif
} }
else if(num_dim_spatial == 2 && layout == ConvLayout::NHWC_KYXC_NHWK) else if(num_dim_spatial == 2 && layout == ConvLayout::NHWC_KYXC_NHWK)
{ {
...@@ -157,10 +161,12 @@ int profile_conv_bwd_data(int argc, char* argv[]) ...@@ -157,10 +161,12 @@ int profile_conv_bwd_data(int argc, char* argv[])
{ {
return profile(I2, NHWC{}, KYXC{}, NHWK{}, BF16{}, BF16{}, BF16{}); return profile(I2, NHWC{}, KYXC{}, NHWK{}, BF16{}, BF16{}, BF16{});
} }
#ifdef CK_ENABLE_INT8
else if(data_type == ConvDataType::INT8_INT8_INT8) else if(data_type == ConvDataType::INT8_INT8_INT8)
{ {
return profile(I2, NHWC{}, KYXC{}, NHWK{}, INT8{}, INT8{}, INT8{}); return profile(I2, NHWC{}, KYXC{}, NHWK{}, INT8{}, INT8{}, INT8{});
} }
#endif
} }
else if(num_dim_spatial == 3 && layout == ConvLayout::NHWC_KYXC_NHWK) else if(num_dim_spatial == 3 && layout == ConvLayout::NHWC_KYXC_NHWK)
{ {
...@@ -176,10 +182,12 @@ int profile_conv_bwd_data(int argc, char* argv[]) ...@@ -176,10 +182,12 @@ int profile_conv_bwd_data(int argc, char* argv[])
{ {
return profile(I3, NDHWC{}, KZYXC{}, NDHWK{}, BF16{}, BF16{}, BF16{}); return profile(I3, NDHWC{}, KZYXC{}, NDHWK{}, BF16{}, BF16{}, BF16{});
} }
#ifdef CK_ENABLE_INT8
else if(data_type == ConvDataType::INT8_INT8_INT8) else if(data_type == ConvDataType::INT8_INT8_INT8)
{ {
return profile(I3, NDHWC{}, KZYXC{}, NDHWK{}, INT8{}, INT8{}, INT8{}); return profile(I3, NDHWC{}, KZYXC{}, NDHWK{}, INT8{}, INT8{}, INT8{});
} }
#endif
} }
std::cout << "this data_type & layout is not implemented" << std::endl; std::cout << "this data_type & layout is not implemented" << std::endl;
......
...@@ -67,11 +67,15 @@ int profile_gemm(int argc, char* argv[]) ...@@ -67,11 +67,15 @@ int profile_gemm(int argc, char* argv[])
const int StrideB = std::stoi(argv[12]); const int StrideB = std::stoi(argv[12]);
const int StrideC = std::stoi(argv[13]); const int StrideC = std::stoi(argv[13]);
using F32 = float; using F32 = float;
using F16 = ck::half_t; using F16 = ck::half_t;
using BF16 = ck::bhalf_t; #ifdef CK_ENABLE_BF16
using BF16 = ck::bhalf_t;
#endif
#ifdef CK_ENABLE_INT8
using INT8 = int8_t; using INT8 = int8_t;
using INT32 = int32_t; using INT32 = int32_t;
#endif
using Row = ck::tensor_layout::gemm::RowMajor; using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor; using Col = ck::tensor_layout::gemm::ColumnMajor;
...@@ -117,7 +121,10 @@ int profile_gemm(int argc, char* argv[]) ...@@ -117,7 +121,10 @@ int profile_gemm(int argc, char* argv[])
return pass ? 0 : 1; return pass ? 0 : 1;
}; };
if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_KN_MN) if(false)
;
#ifdef CK_ENABLE_FP32
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_KN_MN)
{ {
return profile(Row{}, Row{}, Row{}, F32{}, F32{}, F32{}, F32{}); return profile(Row{}, Row{}, Row{}, F32{}, F32{}, F32{}, F32{});
} }
...@@ -133,6 +140,8 @@ int profile_gemm(int argc, char* argv[]) ...@@ -133,6 +140,8 @@ int profile_gemm(int argc, char* argv[])
{ {
return profile(Col{}, Col{}, Row{}, F32{}, F32{}, F32{}, F32{}); return profile(Col{}, Col{}, Row{}, F32{}, F32{}, F32{}, F32{});
} }
#endif
#ifdef CK_ENABLE_FP16
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN) else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{ {
return profile(Row{}, Row{}, Row{}, F16{}, F16{}, F32{}, F16{}); return profile(Row{}, Row{}, Row{}, F16{}, F16{}, F32{}, F16{});
...@@ -149,6 +158,8 @@ int profile_gemm(int argc, char* argv[]) ...@@ -149,6 +158,8 @@ int profile_gemm(int argc, char* argv[])
{ {
return profile(Col{}, Col{}, Row{}, F16{}, F16{}, F32{}, F16{}); return profile(Col{}, Col{}, Row{}, F16{}, F16{}, F32{}, F16{});
} }
#endif
#ifdef CK_ENABLE_BF16
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::MK_KN_MN) else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::MK_KN_MN)
{ {
return profile(Row{}, Row{}, Row{}, BF16{}, BF16{}, F32{}, BF16{}); return profile(Row{}, Row{}, Row{}, BF16{}, BF16{}, F32{}, BF16{});
...@@ -165,6 +176,8 @@ int profile_gemm(int argc, char* argv[]) ...@@ -165,6 +176,8 @@ int profile_gemm(int argc, char* argv[])
{ {
return profile(Col{}, Col{}, Row{}, BF16{}, BF16{}, F32{}, BF16{}); return profile(Col{}, Col{}, Row{}, BF16{}, BF16{}, F32{}, BF16{});
} }
#endif
#ifdef CK_ENABLE_INT8
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::MK_KN_MN) else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::MK_KN_MN)
{ {
return profile(Row{}, Row{}, Row{}, INT8{}, INT8{}, INT32{}, INT8{}); return profile(Row{}, Row{}, Row{}, INT8{}, INT8{}, INT32{}, INT8{});
...@@ -181,6 +194,7 @@ int profile_gemm(int argc, char* argv[]) ...@@ -181,6 +194,7 @@ int profile_gemm(int argc, char* argv[])
{ {
return profile(Col{}, Col{}, Row{}, INT8{}, INT8{}, INT32{}, INT8{}); return profile(Col{}, Col{}, Row{}, INT8{}, INT8{}, INT32{}, INT8{});
} }
#endif
else else
{ {
std::cout << "this data_type & layout is not implemented" << std::endl; std::cout << "this data_type & layout is not implemented" << std::endl;
......
...@@ -23,6 +23,8 @@ enum struct GemmDataType ...@@ -23,6 +23,8 @@ enum struct GemmDataType
F16_F16_F16, // 1 F16_F16_F16, // 1
BF16_BF16_BF16, // 2 BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3 INT8_INT8_INT8, // 3
F8_F16_F16, // 4
F16_F8_F16, // 5
}; };
#define OP_NAME "gemm_splitk" #define OP_NAME "gemm_splitk"
...@@ -33,7 +35,7 @@ int profile_gemm_splitk(int argc, char* argv[]) ...@@ -33,7 +35,7 @@ int profile_gemm_splitk(int argc, char* argv[])
if(argc != 15) if(argc != 15)
{ {
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"); printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n"); printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n"); printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n"); printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, m] * B[k, n] = C[m, n];\n"); printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
...@@ -65,6 +67,7 @@ int profile_gemm_splitk(int argc, char* argv[]) ...@@ -65,6 +67,7 @@ int profile_gemm_splitk(int argc, char* argv[])
using F32 = float; using F32 = float;
using F16 = ck::half_t; using F16 = ck::half_t;
using F8 = ck::f8_t;
using Row = ck::tensor_layout::gemm::RowMajor; using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor; using Col = ck::tensor_layout::gemm::ColumnMajor;
...@@ -143,6 +146,38 @@ int profile_gemm_splitk(int argc, char* argv[]) ...@@ -143,6 +146,38 @@ int profile_gemm_splitk(int argc, char* argv[])
{ {
return profile(F16{}, F16{}, F32{}, F16{}, Col{}, Col{}, Row{}); return profile(F16{}, F16{}, F32{}, F16{}, Col{}, Col{}, Row{});
} }
else if(data_type == GemmDataType::F8_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(F8{}, F16{}, F32{}, F16{}, Row{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F8_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(F8{}, F16{}, F32{}, F16{}, Row{}, Col{}, Row{});
}
else if(data_type == GemmDataType::F8_F16_F16 && layout == GemmMatrixLayout::KM_KN_MN)
{
return profile(F8{}, F16{}, F32{}, F16{}, Col{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F8_F16_F16 && layout == GemmMatrixLayout::KM_NK_MN)
{
return profile(F8{}, F16{}, F32{}, F16{}, Col{}, Col{}, Row{});
}
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(F16{}, F8{}, F32{}, F16{}, Row{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(F16{}, F8{}, F32{}, F16{}, Row{}, Col{}, Row{});
}
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::KM_KN_MN)
{
return profile(F16{}, F8{}, F32{}, F16{}, Col{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::KM_NK_MN)
{
return profile(F16{}, F8{}, F32{}, F16{}, Col{}, Col{}, Row{});
}
else else
{ {
std::cout << "this data_type & layout is not implemented" << std::endl; std::cout << "this data_type & layout is not implemented" << std::endl;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_streamk_impl.hpp"
#include "profiler_operation_registry.hpp"
enum struct GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 1
KM_KN_MN, // 2
KM_NK_MN, // 3
};
enum struct GemmDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
};
#define OP_NAME "gemm_streamk"
#define OP_DESC "StreamK GEMM"
int profile_gemm_streamk(int argc, char* argv[])
{
if(argc < 14)
{
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
printf(" 3: A[k, m] * B[n, k] = C[m, n])\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg6: print tensor value (0: no; 1: yes)\n");
printf("arg7: time kernel (0=no, 1=yes)\n");
printf("arg8 to 13: M, N, K, StrideA, StrideB, StrideC\n");
printf("arg14: num_sk_blocks (optional)\n");
exit(1);
}
const auto data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const int M = std::stoi(argv[8]);
const int N = std::stoi(argv[9]);
const int K = std::stoi(argv[10]);
const int StrideA = std::stoi(argv[11]);
const int StrideB = std::stoi(argv[12]);
const int StrideC = std::stoi(argv[13]);
const uint32_t NumSKBlocks =
argc >= 15 ? static_cast<uint32_t>(std::stoul(std::string(argv[14]))) : 0xffffffff;
using F32 = float;
using F16 = ck::half_t;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
auto profile = [&](auto a_type,
auto b_type,
auto acc_type,
auto c_type,
auto a_layout,
auto b_layout,
auto c_layout) {
using ADataType = decltype(a_type);
using BDataType = decltype(b_type);
using AccDataType = decltype(acc_type);
using CDataType = decltype(c_type);
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using CLayout = decltype(c_layout);
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB = ck::is_same_v<BLayout, Row> ? N : K;
const int DefaultStrideC = ck::is_same_v<CLayout, Row> ? N : M;
bool pass = ck::profiler::profile_gemm_streamk_impl<ADataType,
BDataType,
AccDataType,
CDataType,
ALayout,
BLayout,
CLayout>(
do_verification,
init_method,
do_log,
time_kernel,
M,
N,
K,
(StrideA <= 0) ? DefaultStrideA : StrideA,
(StrideB <= 0) ? DefaultStrideB : StrideB,
(StrideC <= 0) ? DefaultStrideC : StrideC,
NumSKBlocks);
return pass ? 0 : 1;
};
if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(F32{}, F32{}, F32{}, F32{}, Row{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(F32{}, F32{}, F32{}, F32{}, Row{}, Col{}, Row{});
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_KN_MN)
{
return profile(F32{}, F32{}, F32{}, F32{}, Col{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_NK_MN)
{
return profile(F32{}, F32{}, F32{}, F32{}, Col{}, Col{}, Row{});
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, Row{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, Row{}, Col{}, Row{});
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_KN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, Col{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_NK_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, Col{}, Col{}, Row{});
}
else
{
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
}
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_gemm_streamk);
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_grouped_conv_bwd_data_impl.hpp"
#include "profiler_operation_registry.hpp"
namespace {
enum struct ConvLayout
{
GNHWC_GKYXC_GNHWK, // 0
NHWGC_GKYXC_NHWGK, // 1
};
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
};
#define OP_NAME "grouped_conv_bwd_data"
#define OP_DESC "Grouped Convolution Backward Data"
static void print_helper_msg()
{
std::cout
// clang-format off
<< "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: Output fp32, Weight fp32, Input fp32\n"
<< " 1: Output fp16, Weight fp16, Input fp16\n"
<< " 2: Output bf16, Weight bf16, Input bf16\n"
<< "arg3: tensor layout (0: Output[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Input[G, N, Ho, Wo, K]\n"
<< " 1: Output[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Input[N, Ho, Wo, G, K])\n"
<< "arg4: verification (0: no, 1: yes)\n"
<< "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: time kernel (0: no, 1: yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
// clang-format on
}
} // namespace
int profile_grouped_conv_bwd_data(int argc, char* argv[])
{
// 8 for control, 1 for num_dim_spatial
if(argc < 9)
{
print_helper_msg();
return 1;
}
const auto data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const auto layout = static_cast<ConvLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const int num_dim_spatial = std::stoi(argv[8]);
// 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
if(argc != 8 + 1 + 4 + 6 * num_dim_spatial)
{
print_helper_msg();
return 1;
}
const auto params = ck::utils::conv::parse_conv_param(num_dim_spatial, 9, argv);
using F32 = float;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using namespace ck::tensor_layout::convolution;
constexpr auto I2 = ck::Number<2>{};
constexpr auto I3 = ck::Number<3>{};
auto profile = [&](auto num_dim_spatial_tmp,
auto out_layout,
auto wei_layout,
auto in_layout,
auto wei_type,
auto out_type,
auto in_type) {
constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;
using OutLayout = decltype(out_layout);
using WeiLayout = decltype(wei_layout);
using InLayout = decltype(in_layout);
using OutDataType = decltype(out_type);
using WeiDataType = decltype(wei_type);
using InDataType = decltype(in_type);
bool pass = ck::profiler::profile_grouped_conv_bwd_data_impl<NDimSpatial,
OutLayout,
WeiLayout,
InLayout,
OutDataType,
WeiDataType,
InDataType>(
do_verification, init_method, do_log, time_kernel, params);
return pass ? 0 : 1;
};
if(num_dim_spatial == 2)
{
if(layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, GNHWK{}, GKYXC{}, GNHWC{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, GNHWK{}, GKYXC{}, GNHWC{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I2, GNHWK{}, GKYXC{}, GNHWC{}, BF16{}, BF16{}, BF16{});
}
}
else if(layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, NHWGK{}, GKYXC{}, NHWGC{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, NHWGK{}, GKYXC{}, NHWGC{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I2, NHWGK{}, GKYXC{}, NHWGC{}, BF16{}, BF16{}, BF16{});
}
}
}
else if(num_dim_spatial == 3)
{
if(layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I3, GNDHWK{}, GKZYXC{}, GNDHWC{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I3, GNDHWK{}, GKZYXC{}, GNDHWC{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I3, GNDHWK{}, GKZYXC{}, GNDHWC{}, BF16{}, BF16{}, BF16{});
}
}
else if(layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I3, NDHWGK{}, GKZYXC{}, NDHWGC{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I3, NDHWGK{}, GKZYXC{}, NDHWGC{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I3, NDHWGK{}, GKZYXC{}, NDHWGC{}, BF16{}, BF16{}, BF16{});
}
}
}
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_grouped_conv_bwd_data);
...@@ -15,6 +15,7 @@ enum struct ConvLayout ...@@ -15,6 +15,7 @@ enum struct ConvLayout
{ {
GNCHW_GKCYX_GNKHW, // 0 GNCHW_GKCYX_GNKHW, // 0
GNHWC_GKYXC_GNHWK, // 1 GNHWC_GKYXC_GNHWK, // 1
NHWGC_GKYXC_NHWGK, // 2
}; };
enum struct ConvDataType enum struct ConvDataType
...@@ -37,6 +38,8 @@ static void print_helper_msg() ...@@ -37,6 +38,8 @@ static void print_helper_msg()
"N, K, Ho, Wo]\n" "N, K, Ho, Wo]\n"
<< " 1: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, " << " 1: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, "
"N, Ho, Wo, K]\n" "N, Ho, Wo, K]\n"
<< " 2: Input[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Output[N, "
"Ho, Wo, G, K]\n"
<< "arg4: verification (0: no, 1: yes)\n" << "arg4: verification (0: no, 1: yes)\n"
<< "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n" << "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n" << "arg6: print tensor value (0: no; 1: yes)\n"
...@@ -80,17 +83,7 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[]) ...@@ -80,17 +83,7 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
using F16 = ck::half_t; using F16 = ck::half_t;
using BF16 = ck::bhalf_t; using BF16 = ck::bhalf_t;
using GNWC = ck::tensor_layout::convolution::GNWC; using namespace ck::tensor_layout::convolution;
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using GNDHWC = ck::tensor_layout::convolution::GNDHWC;
using GKXC = ck::tensor_layout::convolution::GKXC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GKZYXC = ck::tensor_layout::convolution::GKZYXC;
using GNWK = ck::tensor_layout::convolution::GNWK;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using GNDHWK = ck::tensor_layout::convolution::GNDHWK;
constexpr auto I1 = ck::Number<1>{}; constexpr auto I1 = ck::Number<1>{};
constexpr auto I2 = ck::Number<2>{}; constexpr auto I2 = ck::Number<2>{};
...@@ -157,6 +150,22 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[]) ...@@ -157,6 +150,22 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, F32{}, BF16{}); return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, F32{}, BF16{});
} }
} }
else if(num_dim_spatial == 2 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_F32_BF16)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, BF16{}, F32{}, BF16{});
}
}
else if(num_dim_spatial == 3 && layout == ConvLayout::GNHWC_GKYXC_GNHWK) else if(num_dim_spatial == 3 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{ {
if(data_type == ConvDataType::F32_F32_F32) if(data_type == ConvDataType::F32_F32_F32)
...@@ -173,6 +182,22 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[]) ...@@ -173,6 +182,22 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, F32{}, BF16{}); return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, F32{}, BF16{});
} }
} }
else if(num_dim_spatial == 3 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_F32_BF16)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF16{}, F32{}, BF16{});
}
}
std::cout << "this data_type & layout is not implemented" << std::endl; std::cout << "this data_type & layout is not implemented" << std::endl;
......
...@@ -88,7 +88,7 @@ int profile_grouped_gemm(int argc, char* argv[]) ...@@ -88,7 +88,7 @@ int profile_grouped_gemm(int argc, char* argv[])
const auto StrideBs = argToIntArray(argv[12]); const auto StrideBs = argToIntArray(argv[12]);
const auto StrideCs = argToIntArray(argv[13]); const auto StrideCs = argToIntArray(argv[13]);
const int kbatch = argc == 15 ? std::stoi(argv[14]) : 1; const int kbatch = argc == 15 ? std::stoi(argv[14]) : 1;
#ifdef CK_ENABLE_FP16
if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN) if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{ {
ck::profiler::profile_grouped_gemm_impl<ck::half_t, ck::profiler::profile_grouped_gemm_impl<ck::half_t,
...@@ -173,7 +173,7 @@ int profile_grouped_gemm(int argc, char* argv[]) ...@@ -173,7 +173,7 @@ int profile_grouped_gemm(int argc, char* argv[])
{ {
throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented"); throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented");
} }
#endif
return 0; return 0;
} }
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment