Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
4100d1d8
Commit
4100d1d8
authored
Aug 23, 2023
by
Alan Turner
Browse files
Merge remote-tracking branch 'origin/develop' into migx-flash-attn
parents
48717006
c8a8385f
Changes
609
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1198 additions
and
584 deletions
+1198
-584
profiler/include/profiler/profile_gemm_streamk_impl.hpp
profiler/include/profiler/profile_gemm_streamk_impl.hpp
+267
-0
profiler/include/profiler/profile_grouped_conv_bwd_data_impl.hpp
...r/include/profiler/profile_grouped_conv_bwd_data_impl.hpp
+257
-0
profiler/include/profiler/profile_grouped_conv_bwd_weight_impl.hpp
...include/profiler/profile_grouped_conv_bwd_weight_impl.hpp
+18
-13
profiler/include/profiler/profile_grouped_gemm_impl.hpp
profiler/include/profiler/profile_grouped_gemm_impl.hpp
+132
-106
profiler/include/profiler/profile_groupnorm_impl.hpp
profiler/include/profiler/profile_groupnorm_impl.hpp
+4
-0
profiler/include/profiler/profile_layernorm_impl.hpp
profiler/include/profiler/profile_layernorm_impl.hpp
+4
-0
profiler/include/profiler/profile_pool2d_fwd_impl.hpp
profiler/include/profiler/profile_pool2d_fwd_impl.hpp
+0
-264
profiler/include/profiler/profile_pool3d_fwd_impl.hpp
profiler/include/profiler/profile_pool3d_fwd_impl.hpp
+16
-7
profiler/include/profiler/profile_softmax_impl.hpp
profiler/include/profiler/profile_softmax_impl.hpp
+19
-11
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+34
-22
profiler/src/profile_avg_pool2d_fwd.cpp
profiler/src/profile_avg_pool2d_fwd.cpp
+0
-141
profiler/src/profile_batched_gemm_multi_d.cpp
profiler/src/profile_batched_gemm_multi_d.cpp
+5
-1
profiler/src/profile_batchnorm_fwd.cpp
profiler/src/profile_batchnorm_fwd.cpp
+1
-1
profiler/src/profile_conv_bwd_data.cpp
profiler/src/profile_conv_bwd_data.cpp
+8
-0
profiler/src/profile_gemm.cpp
profiler/src/profile_gemm.cpp
+18
-4
profiler/src/profile_gemm_splitk.cpp
profiler/src/profile_gemm_splitk.cpp
+36
-1
profiler/src/profile_gemm_streamk.cpp
profiler/src/profile_gemm_streamk.cpp
+155
-0
profiler/src/profile_grouped_conv_bwd_data.cpp
profiler/src/profile_grouped_conv_bwd_data.cpp
+186
-0
profiler/src/profile_grouped_conv_bwd_weight.cpp
profiler/src/profile_grouped_conv_bwd_weight.cpp
+36
-11
profiler/src/profile_grouped_gemm.cpp
profiler/src/profile_grouped_gemm.cpp
+2
-2
No files found.
profiler/include/profiler/profile_gemm_streamk_impl.hpp
0 → 100644
View file @
4100d1d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_streamk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_streamk.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
bool
profile_gemm_streamk_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
uint32_t
NumSKBlocks
=
0xffffffff
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_device_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
3
,
3
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
c_device_buf
.
ToDevice
(
c_m_n_device_result
.
mData
.
data
());
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmStreamK
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances, "
<<
(
do_verification
?
"with verification"
:
"without verification"
)
<<
std
::
endl
;
// Run reference GEMM
if
(
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
,
NumSKBlocks
);
DeviceMem
workspace
;
std
::
size_t
workspace_size
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
if
(
workspace_size
!=
0
)
{
workspace
.
Realloc
(
workspace_size
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
}
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
constexpr
(
is_same
<
CDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
int8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" ALayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" BLayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideC = "
<<
StrideC
<<
" : "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_grouped_conv_bwd_data_impl.hpp
0 → 100644
View file @
4100d1d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp"
namespace
ck
{
namespace
profiler
{
template
<
ck
::
index_t
NDimSpatial
,
typename
OutLayout
,
typename
WeiLayout
,
typename
InLayout
,
typename
OutDataType
,
typename
WeiDataType
,
typename
InDataType
>
bool
profile_grouped_conv_bwd_data_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
const
auto
out_element_op
=
OutElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
in_element_op
=
InElementOp
{};
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
Tensor
<
OutDataType
>
out
(
out_g_n_k_wos_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
InDataType
>
in_host
(
in_g_n_c_wis_desc
);
Tensor
<
InDataType
>
in_device
(
in_g_n_c_wis_desc
);
std
::
cout
<<
"out: "
<<
out
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"in: "
<<
in_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
out
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
break
;
case
2
:
out
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
break
;
default:
out
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
});
wei
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
1
});
}
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_device
.
mDesc
.
GetElementSpaceSize
());
out_device_buf
.
ToDevice
(
out
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
// reset input to zero
in_device_buf
.
SetZero
();
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdData
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
in_host
.
SetZero
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_host
,
wei
,
out
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
out_element_op
,
wei_element_op
,
in_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
std
::
string
best_op_name
;
float
best_avg_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device op instances
bool
pass
=
true
;
auto
run_impl
=
[
&
](
auto
&
op_ptr
,
auto
&
argument_ptr
)
{
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init output to zero before profiling next kernel
in_device_buf
.
SetZero
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
in_device_buf
.
FromDevice
(
in_device
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
in_device
,
in_host
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"output : "
,
out
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"weight: "
,
wei
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in_host : "
,
in_host
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in_device: "
,
in_device
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
};
// do GEMM
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdDataMultipleD
<
NDimSpatial
,
OutLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
InLayout
,
OutDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
InDataType
,
OutElementOp
,
WeiElementOp
,
InElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
out_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
out_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
wei_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
wei_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
in_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
in_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
out_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
out_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
wei_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
wei_strides
);
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
in_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
in_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
{},
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{},
{},
in_lengths
,
in_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
out_element_op
,
wei_element_op
,
in_element_op
);
run_impl
(
op_ptr
,
argument_ptr
);
}
std
::
cout
<<
"Best configuration parameters:"
<<
"
\n
name: "
<<
best_op_name
<<
"
\n
avg_time: "
<<
best_avg_time
<<
"
\n
tflops: "
<<
best_tflops
<<
"
\n
GB/s: "
<<
best_gb_per_sec
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_grouped_conv_bwd_weight_impl.hpp
View file @
4100d1d8
...
@@ -136,9 +136,12 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
...
@@ -136,9 +136,12 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
// profile device Conv instances
// profile device Conv instances
bool
all_pass
=
true
;
bool
all_pass
=
true
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
input_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
filter_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
output_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
input_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
weights_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
output_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
...
@@ -146,9 +149,12 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
...
@@ -146,9 +149,12 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
auto
range_copy
=
[](
const
auto
&
from
,
auto
to
)
{
std
::
copy
(
begin
(
from
),
end
(
from
),
to
);
};
auto
range_copy
=
[](
const
auto
&
from
,
auto
to
)
{
std
::
copy
(
begin
(
from
),
end
(
from
),
to
);
};
range_copy
(
conv_param
.
input_spatial_lengths_
,
begin
(
input_spatial_lengths
));
range_copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
begin
(
input_lengths
));
range_copy
(
conv_param
.
filter_spatial_lengths_
,
begin
(
filter_spatial_lengths
));
range_copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
begin
(
input_strides
));
range_copy
(
conv_param
.
output_spatial_lengths_
,
begin
(
output_spatial_lengths
));
range_copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
begin
(
filter_lengths
));
range_copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
begin
(
weights_strides
));
range_copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
begin
(
output_lengths
));
range_copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
begin
(
output_strides
));
range_copy
(
conv_param
.
conv_filter_strides_
,
begin
(
conv_filter_strides
));
range_copy
(
conv_param
.
conv_filter_strides_
,
begin
(
conv_filter_strides
));
range_copy
(
conv_param
.
conv_filter_dilations_
,
begin
(
conv_filter_dilations
));
range_copy
(
conv_param
.
conv_filter_dilations_
,
begin
(
conv_filter_dilations
));
range_copy
(
conv_param
.
input_left_pads_
,
begin
(
input_left_pads
));
range_copy
(
conv_param
.
input_left_pads_
,
begin
(
input_left_pads
));
...
@@ -160,13 +166,12 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
...
@@ -160,13 +166,12 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
conv_param
.
G_
,
input_lengths
,
conv_param
.
N_
,
input_strides
,
conv_param
.
K_
,
filter_lengths
,
conv_param
.
C_
,
weights_strides
,
input_spatial_lengths
,
output_lengths
,
filter_spatial_lengths
,
output_strides
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_strides
,
conv_filter_dilations
,
conv_filter_dilations
,
input_left_pads
,
input_left_pads
,
...
...
profiler/include/profiler/profile_grouped_gemm_impl.hpp
View file @
4100d1d8
...
@@ -70,6 +70,7 @@ bool profile_grouped_gemm_impl(int do_verification,
...
@@ -70,6 +70,7 @@ bool profile_grouped_gemm_impl(int do_verification,
std
::
vector
<
Tensor
<
ADataType
>>
a_m_k
;
std
::
vector
<
Tensor
<
ADataType
>>
a_m_k
;
std
::
vector
<
Tensor
<
BDataType
>>
b_k_n
;
std
::
vector
<
Tensor
<
BDataType
>>
b_k_n
;
std
::
vector
<
Tensor
<
CDataType
>>
c_m_n_host_results
;
std
::
vector
<
Tensor
<
CDataType
>>
c_m_n_device_results
;
std
::
vector
<
Tensor
<
CDataType
>>
c_m_n_device_results
;
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
...
@@ -81,6 +82,9 @@ bool profile_grouped_gemm_impl(int do_verification,
...
@@ -81,6 +82,9 @@ bool profile_grouped_gemm_impl(int do_verification,
c_m_n_device_results
.
push_back
(
c_m_n_device_results
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideCs
[
i
],
CLayout
{})));
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideCs
[
i
],
CLayout
{})));
c_m_n_host_results
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideCs
[
i
],
CLayout
{})));
#if DEBUG_LOG
#if DEBUG_LOG
std
::
cout
<<
"group: "
<<
i
<<
" a_m_k["
<<
i
<<
"]:"
<<
a_m_k
[
i
].
mDesc
<<
", b_k_n["
<<
i
std
::
cout
<<
"group: "
<<
i
<<
" a_m_k["
<<
i
<<
"]:"
<<
a_m_k
[
i
].
mDesc
<<
", b_k_n["
<<
i
<<
"]:"
<<
b_k_n
[
i
].
mDesc
<<
", c_m_n_device_results["
<<
i
<<
"]:"
<<
b_k_n
[
i
].
mDesc
<<
", c_m_n_device_results["
<<
i
...
@@ -137,7 +141,6 @@ bool profile_grouped_gemm_impl(int do_verification,
...
@@ -137,7 +141,6 @@ bool profile_grouped_gemm_impl(int do_verification,
a_device_buf
[
i
]
->
ToDevice
(
a_m_k
[
i
].
mData
.
data
());
a_device_buf
[
i
]
->
ToDevice
(
a_m_k
[
i
].
mData
.
data
());
b_device_buf
[
i
]
->
ToDevice
(
b_k_n
[
i
].
mData
.
data
());
b_device_buf
[
i
]
->
ToDevice
(
b_k_n
[
i
].
mData
.
data
());
c_device_buf
[
i
]
->
SetZero
();
gemm_descs
.
push_back
({
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
StrideCs
[
i
],
{}});
gemm_descs
.
push_back
({
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
StrideCs
[
i
],
{}});
...
@@ -170,9 +173,36 @@ bool profile_grouped_gemm_impl(int do_verification,
...
@@ -170,9 +173,36 @@ bool profile_grouped_gemm_impl(int do_verification,
float
best_ave_time
=
0
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
float
best_gb_per_sec
=
0
;
float
best_kbatch
=
0
;
auto
p_ds
=
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
{};
auto
p_ds
=
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
{};
if
(
do_verification
)
{
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
[
i
],
b_k_n
[
i
],
c_m_n_host_results
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
}
// profile device GEMM instances
// profile device GEMM instances
for
(
auto
&
gemm_ptr
:
op_ptrs
)
for
(
auto
&
gemm_ptr
:
op_ptrs
)
{
{
...
@@ -193,139 +223,135 @@ bool profile_grouped_gemm_impl(int do_verification,
...
@@ -193,139 +223,135 @@ bool profile_grouped_gemm_impl(int do_verification,
gemm_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
gemm_desc_workspace
.
GetDeviceBuffer
());
gemm_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
gemm_desc_workspace
.
GetDeviceBuffer
());
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
if
(
kbatch
>
1
)
using
DeviceOpSplitK
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmSplitK
<
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
CLayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<>
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// skip non-splitk grouped_gemm
if
(
dynamic_cast
<
DeviceOpSplitK
*>
(
gemm_ptr
.
get
())
==
nullptr
)
{
{
using
DeviceOpSplitK
=
continue
;
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmSplitK
<
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
CLayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<>
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
if
(
dynamic_cast
<
DeviceOpSplitK
*>
(
gemm_ptr
.
get
())
!=
nullptr
)
{
dynamic_cast
<
DeviceOpSplitK
*>
(
gemm_ptr
.
get
())
->
SetKBatchSize
(
argument_ptr
.
get
(),
kbatch
);
}
}
}
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
12
,
16
,
20
,
24
,
32
,
48
,
64
};
if
(
kbatch
>
0
)
{
{
kbatch_list
=
{
kbatch
};
}
float
ave_time
=
for
(
std
::
size_t
j
=
0
;
j
<
kbatch_list
.
size
();
j
++
)
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
{
auto
kbatch_curr
=
kbatch_list
[
j
];
dynamic_cast
<
DeviceOpSplitK
*>
(
gemm_ptr
.
get
())
->
SetKBatchSize
(
argument_ptr
.
get
(),
kbatch_curr
);
if
(
time_kernel
)
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
())
)
{
{
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_device_buf
[
i
]
->
SetZero
();
flop
+=
std
::
size_t
(
2
)
*
Ms
[
i
]
*
Ns
[
i
]
*
Ks
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
Ms
[
i
]
*
Ks
[
i
]
+
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
sizeof
(
BDataType
)
*
Ks
[
i
]
*
Ns
[
i
]
+
sizeof
(
CDataType
)
*
Ms
[
i
]
*
Ns
[
i
];
}
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
if
(
do_verification
)
{
bool
instance_pass
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
c_device_buf
[
i
]
->
FromDevice
(
c_m_n_device_results
[
i
].
mData
.
data
());
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm_name
<<
std
::
endl
;
if
(
std
::
is_same_v
<
CDataType
,
ck
::
half_t
>
&&
kbatch_curr
>
1
)
{
instance_pass
=
instance_pass
&&
ck
::
utils
::
check_err
(
c_m_n_device_results
[
i
],
c_m_n_host_results
[
i
],
"Error: Incorrect results!"
,
0.06
);
}
else
{
instance_pass
=
instance_pass
&&
ck
::
utils
::
check_err
(
c_m_n_device_results
[
i
],
c_m_n_host_results
[
i
]);
}
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_results
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_results
[
i
].
mData
,
","
)
<<
std
::
endl
;
}
}
if
(
tflops
>
best_tflops
)
std
::
cout
<<
"Instance: "
<<
gemm_name
<<
" verification "
{
<<
(
instance_pass
?
"SUCCEED"
:
"FAILED"
)
<<
std
::
endl
;
best_gemm_name
=
gemm_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
if
(
do_verification
)
pass
=
pass
&&
instance_pass
;
{
}
bool
instance_pass
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_device_buf
[
i
]
->
FromDevice
(
c_m_n_device_results
[
i
].
mData
.
data
());
float
ave_time
=
c_device_buf
[
i
]
->
SetZero
(
);
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
}
);
Tensor
<
CDataType
>
c_m_n_host_result
(
if
(
time_kernel
)
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideCs
[
i
],
CLayout
{}));
{
std
::
size_t
flop
=
0
,
num_btype
=
0
;
using
ReferenceGemmInstance
=
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
[
i
],
b_k_n
[
i
],
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
if
(
std
::
is_same_v
<
CDataType
,
ck
::
half_t
>
&&
kbatch
>
1
)
{
instance_pass
=
instance_pass
&&
ck
::
utils
::
check_err
(
c_m_n_device_results
[
i
],
c_m_n_host_result
,
"Error: Incorrect results!"
,
0.06
);
}
else
{
{
instance_pass
=
flop
+=
std
::
size_t
(
2
)
*
Ms
[
i
]
*
Ns
[
i
]
*
Ks
[
i
];
instance_pass
&&
ck
::
utils
::
check_err
(
c_m_n_device_results
[
i
],
c_m_n_host_result
);
num_btype
+=
sizeof
(
ADataType
)
*
Ms
[
i
]
*
Ks
[
i
]
+
sizeof
(
BDataType
)
*
Ks
[
i
]
*
Ns
[
i
]
+
sizeof
(
CDataType
)
*
Ms
[
i
]
*
Ns
[
i
];
}
}
if
(
do_log
)
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm_name
<<
", KBatch "
<<
kbatch_curr
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
[
i
].
mData
,
","
)
best_gemm_name
=
gemm_name
;
<<
std
::
endl
;
best_tflops
=
tflops
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
[
i
].
mData
,
","
)
<<
std
::
endl
;
best_ave_time
=
ave_time
;
LogRangeAsType
<
float
>
(
best_gb_per_sec
=
gb_per_sec
;
std
::
cout
<<
"c_device: "
,
c_m_n_device_results
[
i
].
mData
,
","
)
best_kbatch
=
kbatch_curr
;
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
}
std
::
cout
<<
"Instance: "
<<
gemm_name
<<
" verification "
<<
(
instance_pass
?
"SUCCEED"
:
"FAILED"
)
<<
std
::
endl
;
pass
=
pass
&&
instance_pass
;
}
}
}
else
else
{
{
std
::
cout
<<
"Instance: "
<<
gemm_name
<<
", does not support this GEMM problem"
std
::
cout
<<
"Instance: "
<<
gemm_name
<<
", does not support this GEMM problem"
<<
std
::
endl
;
<<
std
::
endl
;
}
}
}
}
}
if
(
time_kernel
)
if
(
time_kernel
)
{
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
std
::
endl
;
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
", KBatch = "
<<
best_kbatch
<<
std
::
endl
;
}
}
return
pass
;
return
pass
;
...
...
profiler/include/profiler/profile_groupnorm_impl.hpp
View file @
4100d1d8
...
@@ -139,6 +139,10 @@ bool profile_groupnorm_impl(int do_verification,
...
@@ -139,6 +139,10 @@ bool profile_groupnorm_impl(int do_verification,
continue
;
continue
;
}
}
size_t
workspace_sz
=
inst_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
DeviceMem
workspace_dev
(
workspace_sz
);
inst_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
auto
invoker_ptr
=
inst_ptr
->
MakeInvokerPointer
();
auto
invoker_ptr
=
inst_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
...
...
profiler/include/profiler/profile_layernorm_impl.hpp
View file @
4100d1d8
...
@@ -155,6 +155,10 @@ bool profile_layernorm_impl(int do_verification,
...
@@ -155,6 +155,10 @@ bool profile_layernorm_impl(int do_verification,
continue
;
continue
;
}
}
size_t
workspace_sz
=
inst_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
DeviceMem
workspace_dev
(
workspace_sz
);
inst_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
auto
invoker_ptr
=
inst_ptr
->
MakeInvokerPointer
();
auto
invoker_ptr
=
inst_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
...
...
profiler/include/profiler/profile_pool2d_fwd_impl.hpp
deleted
100644 → 0
View file @
48717006
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
InDataType
,
typename
OutDataType
,
typename
ComputeDataType
,
typename
IndexDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
OutputIndex
>
bool
profile_pool2d_fwd_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
std
::
vector
<
index_t
>
in_length
,
// NCHW
std
::
vector
<
index_t
>
window_spatial_lengths
,
std
::
vector
<
index_t
>
window_strides
,
std
::
vector
<
index_t
>
input_left_pads
,
std
::
vector
<
index_t
>
input_right_pads
)
{
constexpr
index_t
InOutRank
=
4
;
constexpr
index_t
WindowRank
=
2
;
if
(
in_length
.
size
()
!=
InOutRank
||
window_spatial_lengths
.
size
()
!=
WindowRank
||
window_strides
.
size
()
!=
WindowRank
||
input_left_pads
.
size
()
!=
WindowRank
||
input_right_pads
.
size
()
!=
WindowRank
)
return
false
;
std
::
vector
<
index_t
>
out_length
(
InOutRank
);
int
N
=
in_length
[
0
];
int
C
=
in_length
[
1
];
out_length
[
0
]
=
N
;
out_length
[
1
]
=
C
;
// Calculate Ho, Wo
for
(
int
i
=
2
;
i
<
InOutRank
;
++
i
)
{
auto
pad1
=
input_left_pads
[
i
-
2
];
auto
pad2
=
input_right_pads
[
i
-
2
];
auto
windows_size
=
window_spatial_lengths
[
i
-
2
];
auto
windows_stride
=
window_strides
[
i
-
2
];
out_length
[
i
]
=
(
in_length
[
i
]
+
pad1
+
pad2
-
windows_size
)
/
windows_stride
+
1
;
}
int
Hi
=
in_length
[
2
];
int
Wi
=
in_length
[
3
];
int
Ho
=
out_length
[
2
];
int
Wo
=
out_length
[
3
];
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
)
{
using
namespace
ck
::
literals
;
return
HostTensorDescriptor
({
N_
,
C_
,
H
,
W
},
{
C_
*
H
*
W
,
1
_uz
,
W
*
C_
,
C_
});
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
));
Tensor
<
OutDataType
>
out_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
Tensor
<
IndexDataType
>
out_indices_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
Tensor
<
OutDataType
>
out_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
Tensor
<
IndexDataType
>
out_indices_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
switch
(
init_method
)
{
case
0
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{});
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_c_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_indices_device_buf
(
sizeof
(
IndexDataType
)
*
out_indices_n_c_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
// add device normalization instances
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DevicePoolFwd
<
InOutRank
,
WindowRank
,
InDataType
,
OutDataType
,
IndexDataType
,
ReduceOpId
,
OutputIndex
>
;
// get device op instances
const
auto
instance_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
instance_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_instance_name
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
if
(
do_verification
)
{
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferencePoolingFwd
<
InOutRank
,
WindowRank
,
InDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
in_n_c_hi_wi
,
out_n_c_ho_wo_host
,
out_indices_n_c_ho_wo_host
,
window_spatial_lengths
,
window_strides
,
input_left_pads
,
input_right_pads
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
}
int
num_kernel
=
0
;
for
(
auto
&
inst_ptr
:
instance_ptrs
)
{
auto
argument_ptr
=
inst_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
in_length
,
window_spatial_lengths
,
out_length
,
{
C
*
Hi
*
Wi
,
1
,
Wi
*
C
,
C
},
{
C
*
Ho
*
Wo
,
1
,
Wo
*
C
,
C
},
{
C
*
Ho
*
Wo
,
1
,
Wo
*
C
,
C
},
window_strides
,
input_left_pads
,
input_right_pads
,
{
2
,
3
});
if
(
inst_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
++
num_kernel
;
}
else
{
if
(
time_kernel
)
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" skipped due to unsupported argument: "
;
LogRange
(
std
::
cout
<<
"input lengths = "
,
in_length
,
", "
)
<<
std
::
endl
;
}
continue
;
}
auto
invoker_ptr
=
inst_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
in_n_c_hi_wi
.
mDesc
.
GetElementSize
()
*
sizeof
(
InDataType
)
+
out_n_c_ho_wo_host
.
mDesc
.
GetElementSize
()
*
sizeof
(
OutDataType
);
if
constexpr
(
OutputIndex
)
num_bytes
+=
out_indices_n_c_ho_wo_host
.
mDesc
.
GetElementSize
()
*
sizeof
(
IndexDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
if
(
time_kernel
)
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
inst_ptr
->
GetTypeString
()
<<
std
::
endl
;
if
(
avg_time
<
best_avg_time
)
{
best_instance_name
=
inst_ptr
->
GetTypeString
();
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
out_device_buf
.
FromDevice
(
out_n_c_ho_wo_device
.
mData
.
data
());
bool
pass
=
ck
::
utils
::
check_err
(
out_n_c_ho_wo_device
.
mData
,
out_n_c_ho_wo_host
.
mData
,
"Error: Incorrect results"
,
1e-3
,
1e-3
);
if
constexpr
(
OutputIndex
)
{
out_indices_device_buf
.
FromDevice
(
out_indices_n_c_ho_wo_device
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_indices_n_c_ho_wo_device
,
out_indices_n_c_ho_wo_host
);
}
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in_n_c_hi_wi : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_n_c_ho_wo_host : "
,
out_n_c_ho_wo_host
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_n_c_ho_wo_device : "
,
out_n_c_ho_wo_device
.
mData
,
","
)
<<
std
::
endl
;
if
constexpr
(
OutputIndex
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_indices_n_c_ho_wo_device : "
,
out_indices_n_c_ho_wo_device
.
mData
,
","
)
<<
std
::
endl
;
}
if
(
!
pass
)
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" failed verification: "
;
LogRange
(
std
::
cout
<<
"lengths = ["
,
in_length
,
", "
)
<<
"]."
<<
std
::
endl
;
return
false
;
}
else
{
if
(
time_kernel
)
std
::
cout
<<
"pass"
<<
std
::
endl
;
}
}
}
if
(
time_kernel
)
{
LogRange
(
std
::
cout
<<
"length = "
,
in_length
,
","
)
<<
std
::
endl
;
std
::
cout
<<
"best perf = "
<<
best_avg_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_instance_name
<<
std
::
endl
;
}
if
(
num_kernel
==
0
)
{
std
::
cout
<<
"Error: No kernel is applicable"
<<
std
::
endl
;
return
false
;
}
return
true
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_pool3d_fwd_impl.hpp
View file @
4100d1d8
...
@@ -21,6 +21,8 @@ template <typename InDataType,
...
@@ -21,6 +21,8 @@ template <typename InDataType,
typename
OutDataType
,
typename
OutDataType
,
typename
ComputeDataType
,
typename
ComputeDataType
,
typename
IndexDataType
,
typename
IndexDataType
,
typename
InLayout
,
typename
OutLayout
,
ck
::
ReduceTensorOp
ReduceOpId
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
PropagateNan
,
bool
OutputIndex
>
bool
OutputIndex
>
...
@@ -31,6 +33,7 @@ bool profile_pool3d_fwd_impl(int do_verification,
...
@@ -31,6 +33,7 @@ bool profile_pool3d_fwd_impl(int do_verification,
std
::
vector
<
index_t
>
in_length
,
// NCDHW
std
::
vector
<
index_t
>
in_length
,
// NCDHW
std
::
vector
<
index_t
>
window_spatial_lengths
,
std
::
vector
<
index_t
>
window_spatial_lengths
,
std
::
vector
<
index_t
>
window_strides
,
std
::
vector
<
index_t
>
window_strides
,
std
::
vector
<
index_t
>
window_dilations
,
std
::
vector
<
index_t
>
input_left_pads
,
std
::
vector
<
index_t
>
input_left_pads
,
std
::
vector
<
index_t
>
input_right_pads
)
std
::
vector
<
index_t
>
input_right_pads
)
{
{
...
@@ -38,8 +41,8 @@ bool profile_pool3d_fwd_impl(int do_verification,
...
@@ -38,8 +41,8 @@ bool profile_pool3d_fwd_impl(int do_verification,
constexpr
index_t
WindowRank
=
3
;
constexpr
index_t
WindowRank
=
3
;
if
(
in_length
.
size
()
!=
InOutRank
||
window_spatial_lengths
.
size
()
!=
WindowRank
||
if
(
in_length
.
size
()
!=
InOutRank
||
window_spatial_lengths
.
size
()
!=
WindowRank
||
window_strides
.
size
()
!=
WindowRank
||
in
put_left_pad
s
.
size
()
!=
WindowRank
||
window_strides
.
size
()
!=
WindowRank
||
w
in
dow_dilation
s
.
size
()
!=
WindowRank
||
input_right_pads
.
size
()
!=
WindowRank
)
input_left_pads
.
size
()
!=
WindowRank
||
input_right_pads
.
size
()
!=
WindowRank
)
return
false
;
return
false
;
std
::
vector
<
index_t
>
out_length
(
InOutRank
);
std
::
vector
<
index_t
>
out_length
(
InOutRank
);
...
@@ -53,11 +56,13 @@ bool profile_pool3d_fwd_impl(int do_verification,
...
@@ -53,11 +56,13 @@ bool profile_pool3d_fwd_impl(int do_verification,
// Calculate Do, Ho, Wo
// Calculate Do, Ho, Wo
for
(
int
i
=
2
;
i
<
InOutRank
;
++
i
)
for
(
int
i
=
2
;
i
<
InOutRank
;
++
i
)
{
{
auto
pad1
=
input_left_pads
[
i
-
2
];
auto
pad1
=
input_left_pads
[
i
-
2
];
auto
pad2
=
input_right_pads
[
i
-
2
];
auto
pad2
=
input_right_pads
[
i
-
2
];
auto
windows_size
=
window_spatial_lengths
[
i
-
2
];
auto
windows_size
=
window_spatial_lengths
[
i
-
2
];
auto
windows_stride
=
window_strides
[
i
-
2
];
auto
windows_stride
=
window_strides
[
i
-
2
];
out_length
[
i
]
=
(
in_length
[
i
]
+
pad1
+
pad2
-
windows_size
)
/
windows_stride
+
1
;
auto
windows_dilation
=
window_dilations
[
i
-
2
];
auto
eff
=
(
windows_size
-
1
)
*
windows_dilation
+
1
;
out_length
[
i
]
=
(
in_length
[
i
]
+
pad1
+
pad2
-
eff
)
/
windows_stride
+
1
;
}
}
int
Di
=
in_length
[
2
];
int
Di
=
in_length
[
2
];
...
@@ -104,6 +109,8 @@ bool profile_pool3d_fwd_impl(int do_verification,
...
@@ -104,6 +109,8 @@ bool profile_pool3d_fwd_impl(int do_verification,
InDataType
,
InDataType
,
OutDataType
,
OutDataType
,
IndexDataType
,
IndexDataType
,
InLayout
,
OutLayout
,
ReduceOpId
,
ReduceOpId
,
OutputIndex
>
;
OutputIndex
>
;
...
@@ -136,6 +143,7 @@ bool profile_pool3d_fwd_impl(int do_verification,
...
@@ -136,6 +143,7 @@ bool profile_pool3d_fwd_impl(int do_verification,
out_indices_n_c_do_ho_wo_host
,
out_indices_n_c_do_ho_wo_host
,
window_spatial_lengths
,
window_spatial_lengths
,
window_strides
,
window_strides
,
window_dilations
,
input_left_pads
,
input_left_pads
,
input_right_pads
);
input_right_pads
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
auto
ref_invoker
=
ref
.
MakeInvoker
();
...
@@ -157,6 +165,7 @@ bool profile_pool3d_fwd_impl(int do_verification,
...
@@ -157,6 +165,7 @@ bool profile_pool3d_fwd_impl(int do_verification,
{
Do
*
C
*
Ho
*
Wo
,
1
,
C
*
Ho
*
Wo
,
Wo
*
C
,
C
},
{
Do
*
C
*
Ho
*
Wo
,
1
,
C
*
Ho
*
Wo
,
Wo
*
C
,
C
},
{
Do
*
C
*
Ho
*
Wo
,
1
,
C
*
Ho
*
Wo
,
Wo
*
C
,
C
},
{
Do
*
C
*
Ho
*
Wo
,
1
,
C
*
Ho
*
Wo
,
Wo
*
C
,
C
},
window_strides
,
window_strides
,
window_dilations
,
input_left_pads
,
input_left_pads
,
input_right_pads
,
input_right_pads
,
{
2
,
3
,
4
});
{
2
,
3
,
4
});
...
...
profiler/include/profiler/profile_softmax_impl.hpp
View file @
4100d1d8
...
@@ -40,7 +40,11 @@ template <> std::string type_to_string<int8_t>() { return "int8"; }
...
@@ -40,7 +40,11 @@ template <> std::string type_to_string<int8_t>() { return "int8"; }
template
<
>
std
::
string
type_to_string
<
int32_t
>
()
{
return
"int32"
;
}
template
<
>
std
::
string
type_to_string
<
int32_t
>
()
{
return
"int32"
;
}
// clang-format on
// clang-format on
template
<
typename
InDataType
,
typename
AccDataType
,
typename
OutDataType
,
index_t
Rank
>
template
<
typename
InDataType
,
typename
AccDataType
,
typename
OutDataType
,
index_t
Rank
,
index_t
NumReduceDim
>
bool
profile_softmax_impl
(
int
do_verification
,
bool
profile_softmax_impl
(
int
do_verification
,
int
init_method
,
int
init_method
,
bool
do_log
,
bool
do_log
,
...
@@ -54,7 +58,13 @@ bool profile_softmax_impl(int do_verification,
...
@@ -54,7 +58,13 @@ bool profile_softmax_impl(int do_verification,
if
(
Rank
!=
in_length
.
size
())
if
(
Rank
!=
in_length
.
size
())
{
{
throw
std
::
runtime_error
(
"Input tensor rank is different from template argument Rank!"
);
throw
std
::
runtime_error
(
"Input tensor rank is different from template argument Rank!"
);
}
};
if
(
NumReduceDim
!=
reduce_dims
.
size
())
{
throw
std
::
runtime_error
(
"Input reduce_dims rank is different from template argument NumReduceDim!"
);
};
Tensor
<
InDataType
>
in
=
in_strides
.
empty
()
?
Tensor
<
InDataType
>
(
in_length
)
Tensor
<
InDataType
>
in
=
in_strides
.
empty
()
?
Tensor
<
InDataType
>
(
in_length
)
:
Tensor
<
InDataType
>
(
in_length
,
in_strides
);
:
Tensor
<
InDataType
>
(
in_length
,
in_strides
);
...
@@ -92,8 +102,13 @@ bool profile_softmax_impl(int do_verification,
...
@@ -92,8 +102,13 @@ bool profile_softmax_impl(int do_verification,
// add device softmax instances
// add device softmax instances
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceOp
=
tensor_operation
::
device
::
using
DeviceOp
=
tensor_operation
::
device
::
DeviceSoftmax
<
InDataType
,
DeviceSoftmax
<
InDataType
,
AccDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
Rank
>
;
AccDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
Rank
,
NumReduceDim
>
;
// get device op instances
// get device op instances
const
auto
instances
=
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
instances
=
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
@@ -112,13 +127,6 @@ bool profile_softmax_impl(int do_verification,
...
@@ -112,13 +127,6 @@ bool profile_softmax_impl(int do_verification,
for
(
auto
&
inst_ptr
:
instances
)
for
(
auto
&
inst_ptr
:
instances
)
{
{
// Is this user's responsibility to check if problem mismatches kernel instance (ie. rank 3
// problem to rank 4 kernel) other than invoking IsSupportedArgument()?
if
(
!
(
inst_ptr
->
GetNumReduceDim
()
==
static_cast
<
index_t
>
(
reduce_dims
.
size
())))
{
continue
;
}
auto
argument_ptr
=
inst_ptr
->
MakeArgumentPointer
(
in_tensor_lengths
,
auto
argument_ptr
=
inst_ptr
->
MakeArgumentPointer
(
in_tensor_lengths
,
in_tensor_strides
,
in_tensor_strides
,
reduce_dims
,
reduce_dims
,
...
...
profiler/src/CMakeLists.txt
View file @
4100d1d8
...
@@ -3,19 +3,11 @@ set(PROFILER_SOURCES
...
@@ -3,19 +3,11 @@ set(PROFILER_SOURCES
profiler.cpp
profiler.cpp
profile_gemm.cpp
profile_gemm.cpp
profile_gemm_splitk.cpp
profile_gemm_splitk.cpp
profile_gemm_bilinear.cpp
profile_gemm_bias_add_reduce.cpp
profile_gemm_bias_add_reduce.cpp
profile_gemm_add_add_fastgelu.cpp
profile_gemm_add_multiply.cpp
profile_gemm_add_multiply.cpp
profile_gemm_add_fastgelu.cpp
profile_gemm_add_relu_add_layernorm.cpp
profile_gemm_fastgelu.cpp
profile_gemm_reduce.cpp
profile_gemm_reduce.cpp
profile_batched_gemm.cpp
profile_batched_gemm.cpp
profile_batched_gemm_gemm.cpp
profile_batched_gemm_add_relu_gemm_add.cpp
profile_batched_gemm_reduce.cpp
profile_batched_gemm_reduce.cpp
profile_grouped_gemm.cpp
profile_conv_fwd.cpp
profile_conv_fwd.cpp
profile_conv_fwd_bias_relu.cpp
profile_conv_fwd_bias_relu.cpp
profile_conv_fwd_bias_relu_add.cpp
profile_conv_fwd_bias_relu_add.cpp
...
@@ -25,17 +17,30 @@ set(PROFILER_SOURCES
...
@@ -25,17 +17,30 @@ set(PROFILER_SOURCES
profile_reduce.cpp
profile_reduce.cpp
profile_groupnorm.cpp
profile_groupnorm.cpp
profile_layernorm.cpp
profile_layernorm.cpp
profile_avg_pool2d_fwd.cpp
profile_max_pool3d_fwd.cpp
profile_max_pool3d_fwd.cpp
profile_softmax.cpp
profile_softmax.cpp
profile_batchnorm_fwd.cpp
profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp
profile_batchnorm_bwd.cpp
profile_batchnorm_infer.cpp
profile_batchnorm_infer.cpp
profile_grouped_gemm_fastgelu.cpp
profile_contraction_bilinear.cpp
profile_contraction_bilinear.cpp
profile_contraction_scale.cpp
profile_contraction_scale.cpp
profile_
batched_gemm_multi_d
.cpp
profile_
grouped_conv_bwd_data
.cpp
)
)
if
(
DL_KERNELS
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp
)
endif
()
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_streamk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_add_fastgelu.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_add_add_fastgelu.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp
)
endif
()
set
(
PROFILER_EXECUTABLE ckProfiler
)
set
(
PROFILER_EXECUTABLE ckProfiler
)
...
@@ -45,19 +50,11 @@ target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors)
...
@@ -45,19 +50,11 @@ target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE utility
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE utility
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_splitk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_splitk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_bilinear_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_add_fastgelu_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_multiply_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_multiply_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_fastgelu_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_fastgelu_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_relu_add_layernorm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_bias_add_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_bias_add_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_add_relu_gemm_add_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_conv2d_fwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_conv2d_fwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv1d_fwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv1d_fwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_fwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_fwd_instance
)
...
@@ -74,9 +71,24 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instan
...
@@ -74,9 +71,24 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instan
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_softmax_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_softmax_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batchnorm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batchnorm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_gemm_fastgelu_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_bilinear_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_bilinear_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_scale_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_scale_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_pool_fwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_pool3d_fwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_multi_d_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_data_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv3d_bwd_data_instance
)
if
(
DL_KERNELS
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_multi_d_instance
)
endif
()
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_fastgelu_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_relu_add_layernorm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_bilinear_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_add_fastgelu_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_streamk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_fastgelu_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_add_relu_gemm_add_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_gemm_fastgelu_instance
)
endif
()
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
profiler/src/profile_avg_pool2d_fwd.cpp
deleted
100644 → 0
View file @
48717006
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using
ck
::
index_t
;
struct
avgPoolFwdArgParser
{
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int
>>
long_opts
=
{
{
"length"
,
{}},
{
"wsize"
,
{}},
{
"wstride"
,
{}},
{
"pad1"
,
{}},
{
"pad2"
,
{}}};
bool
parse_opt
(
int
argc
,
char
*
argv
[],
const
std
::
string
&
key
,
int
i
)
{
if
(
std
::
string
(
"--"
)
+
key
==
argv
[
i
])
{
int
pos
=
i
;
while
(
++
i
<
argc
&&
argv
[
i
][
0
]
!=
'-'
)
{}
int
end
=
i
;
for
(
int
j
=
pos
+
1
;
j
<
end
;
j
++
)
{
long_opts
[
key
].
push_back
(
std
::
stoi
(
argv
[
j
]));
}
return
true
;
}
return
false
;
}
void
operator
()(
int
argc
,
char
*
argv
[])
{
for
(
auto
&
kv
:
long_opts
)
{
for
(
int
i
=
1
;
i
<
argc
;
i
++
)
{
if
(
parse_opt
(
argc
,
argv
,
kv
.
first
,
i
))
break
;
}
}
}
};
void
print_help_avg_pool2d_fwd
()
{
std
::
cout
<<
"arg1: data type (0: fp16; 1: fp32)
\n
"
<<
"arg2: verification (0: no; 1: yes)
\n
"
<<
"arg3: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
<<
"arg4: print tensor value (0: no; 1: yes)
\n
"
<<
"arg5: time kernel (0=no, 1=yes)
\n
"
<<
"--length: input tensor length for NDHW(e.g, --length 2 32 30 30)
\n
"
<<
"--wsize: window size for YX (e.g, --wsize 2 2)
\n
"
<<
"--wstride: window stride for HW (e.g, --wstride 2 2)
\n
"
<<
"--pad1: left side of padding in HW (e.g, --pad1 1 1)
\n
"
<<
"--pad2: right side of padding in HW (e.g, --pad2 1 1)
\n
"
<<
"eg: ckProfiler avg_pool2d_fwd 0 1 2 0 1 0 --length 2 32 30 30 --wsize 2 2 "
"--wstride 2 2 --pad1 1 1 --pad2 1 1"
<<
std
::
endl
;
}
int
profile_avg_pool2d_fwd
(
int
argc
,
char
*
argv
[])
{
ck
::
DataTypeEnum
data_type
=
ck
::
DataTypeEnum
::
Half
;
bool
do_verification
=
true
;
int
init_method
=
0
;
bool
do_log
=
false
;
bool
time_kernel
=
true
;
std
::
vector
<
index_t
>
in_length
=
{
2
,
32
,
30
,
30
};
std
::
vector
<
index_t
>
wsize
=
{
2
,
2
};
std
::
vector
<
index_t
>
wstride
=
{
2
,
2
};
std
::
vector
<
index_t
>
pad1
=
{
1
,
1
};
std
::
vector
<
index_t
>
pad2
=
{
1
,
1
};
if
(
argc
!=
2
&&
argc
!=
25
)
{
print_help_avg_pool2d_fwd
();
return
0
;
}
else
if
(
argc
==
25
)
{
data_type
=
static_cast
<
ck
::
DataTypeEnum
>
(
std
::
stoi
(
argv
[
2
]));
do_verification
=
std
::
stoi
(
argv
[
3
]);
init_method
=
std
::
stoi
(
argv
[
4
]);
do_log
=
std
::
stoi
(
argv
[
5
]);
time_kernel
=
std
::
stoi
(
argv
[
6
]);
// parse the long options
avgPoolFwdArgParser
arg_parser
;
arg_parser
(
argc
,
argv
);
in_length
=
arg_parser
.
long_opts
[
"length"
];
wsize
=
arg_parser
.
long_opts
[
"wsize"
];
wstride
=
arg_parser
.
long_opts
[
"wstride"
];
pad1
=
arg_parser
.
long_opts
[
"pad1"
];
pad2
=
arg_parser
.
long_opts
[
"pad2"
];
}
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
I32
=
int32_t
;
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
if
(
data_type
==
ck
::
DataTypeEnum
::
Half
)
{
ck
::
profiler
::
profile_pool2d_fwd_impl
<
F16
,
F16
,
F32
,
I32
,
ReduceOpId
,
false
,
false
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
in_length
,
wsize
,
wstride
,
pad1
,
pad2
);
}
else
if
(
data_type
==
ck
::
DataTypeEnum
::
Float
)
{
ck
::
profiler
::
profile_pool2d_fwd_impl
<
F32
,
F32
,
F32
,
I32
,
ReduceOpId
,
false
,
false
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
in_length
,
wsize
,
wstride
,
pad1
,
pad2
);
}
else
{
throw
std
::
runtime_error
(
"not implemented yet"
);
}
return
0
;
}
REGISTER_PROFILER_OPERATION
(
"avg_pool2d_fwd"
,
"avg_pool2d fwd"
,
profile_avg_pool2d_fwd
);
profiler/src/profile_batched_gemm_multi_d.cpp
View file @
4100d1d8
...
@@ -70,8 +70,10 @@ int profile_batched_gemm_multi_d(int argc, char* argv[])
...
@@ -70,8 +70,10 @@ int profile_batched_gemm_multi_d(int argc, char* argv[])
const
int
BatchCount
=
std
::
stoi
(
argv
[
17
]);
const
int
BatchCount
=
std
::
stoi
(
argv
[
17
]);
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
#ifdef CK_ENABLE_INT8
using
INT8
=
int8_t
;
using
INT8
=
int8_t
;
#endif
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
@@ -163,6 +165,7 @@ int profile_batched_gemm_multi_d(int argc, char* argv[])
...
@@ -163,6 +165,7 @@ int profile_batched_gemm_multi_d(int argc, char* argv[])
{
{
return
profile
(
F16
{},
F16
{},
F16
{},
Col
{},
Col
{},
Row
{});
return
profile
(
F16
{},
F16
{},
F16
{},
Col
{},
Col
{},
Row
{});
}
}
#ifdef CK_ENABLE_INT8
else
if
(
data_type
==
GemmDataType
::
INT8_INT8_INT8
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
else
if
(
data_type
==
GemmDataType
::
INT8_INT8_INT8
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
{
return
profile
(
INT8
{},
INT8
{},
INT8
{},
Row
{},
Row
{},
Row
{});
return
profile
(
INT8
{},
INT8
{},
INT8
{},
Row
{},
Row
{},
Row
{});
...
@@ -179,6 +182,7 @@ int profile_batched_gemm_multi_d(int argc, char* argv[])
...
@@ -179,6 +182,7 @@ int profile_batched_gemm_multi_d(int argc, char* argv[])
{
{
return
profile
(
INT8
{},
INT8
{},
INT8
{},
Col
{},
Col
{},
Row
{});
return
profile
(
INT8
{},
INT8
{},
INT8
{},
Col
{},
Col
{},
Row
{});
}
}
#endif
else
else
{
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
...
...
profiler/src/profile_batchnorm_fwd.cpp
View file @
4100d1d8
...
@@ -148,7 +148,7 @@ int profile_batchnorm_forward(int argc, char* argv[])
...
@@ -148,7 +148,7 @@ int profile_batchnorm_forward(int argc, char* argv[])
{
{
if
(
arg_parser
.
inLengths
.
size
()
==
4
&&
arg_parser
.
reduceDims
.
size
()
==
3
)
if
(
arg_parser
.
inLengths
.
size
()
==
4
&&
arg_parser
.
reduceDims
.
size
()
==
3
)
{
{
profile_batchnorm_forward_impl
<
F16
,
F16
,
F32
,
F16
,
F16
,
F
16
,
4
,
3
>
(
profile_batchnorm_forward_impl
<
F16
,
F16
,
F32
,
F16
,
F16
,
F
32
,
4
,
3
>
(
arg_parser
.
do_verification
,
arg_parser
.
do_verification
,
arg_parser
.
init_method
,
arg_parser
.
init_method
,
arg_parser
.
do_dumpout
,
arg_parser
.
do_dumpout
,
...
...
profiler/src/profile_conv_bwd_data.cpp
View file @
4100d1d8
...
@@ -77,7 +77,9 @@ int profile_conv_bwd_data(int argc, char* argv[])
...
@@ -77,7 +77,9 @@ int profile_conv_bwd_data(int argc, char* argv[])
using
F32
=
float
;
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
BF16
=
ck
::
bhalf_t
;
#ifdef CK_ENABLE_INT8
using
INT8
=
int8_t
;
using
INT8
=
int8_t
;
#endif
using
NWC
=
ck
::
tensor_layout
::
convolution
::
NWC
;
using
NWC
=
ck
::
tensor_layout
::
convolution
::
NWC
;
using
NHWC
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
NHWC
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
...
@@ -138,10 +140,12 @@ int profile_conv_bwd_data(int argc, char* argv[])
...
@@ -138,10 +140,12 @@ int profile_conv_bwd_data(int argc, char* argv[])
{
{
return
profile
(
I1
,
NWC
{},
KXC
{},
NWK
{},
BF16
{},
BF16
{},
BF16
{});
return
profile
(
I1
,
NWC
{},
KXC
{},
NWK
{},
BF16
{},
BF16
{},
BF16
{});
}
}
#ifdef CK_ENABLE_INT8
else
if
(
data_type
==
ConvDataType
::
INT8_INT8_INT8
)
else
if
(
data_type
==
ConvDataType
::
INT8_INT8_INT8
)
{
{
return
profile
(
I1
,
NWC
{},
KXC
{},
NWK
{},
INT8
{},
INT8
{},
INT8
{});
return
profile
(
I1
,
NWC
{},
KXC
{},
NWK
{},
INT8
{},
INT8
{},
INT8
{});
}
}
#endif
}
}
else
if
(
num_dim_spatial
==
2
&&
layout
==
ConvLayout
::
NHWC_KYXC_NHWK
)
else
if
(
num_dim_spatial
==
2
&&
layout
==
ConvLayout
::
NHWC_KYXC_NHWK
)
{
{
...
@@ -157,10 +161,12 @@ int profile_conv_bwd_data(int argc, char* argv[])
...
@@ -157,10 +161,12 @@ int profile_conv_bwd_data(int argc, char* argv[])
{
{
return
profile
(
I2
,
NHWC
{},
KYXC
{},
NHWK
{},
BF16
{},
BF16
{},
BF16
{});
return
profile
(
I2
,
NHWC
{},
KYXC
{},
NHWK
{},
BF16
{},
BF16
{},
BF16
{});
}
}
#ifdef CK_ENABLE_INT8
else
if
(
data_type
==
ConvDataType
::
INT8_INT8_INT8
)
else
if
(
data_type
==
ConvDataType
::
INT8_INT8_INT8
)
{
{
return
profile
(
I2
,
NHWC
{},
KYXC
{},
NHWK
{},
INT8
{},
INT8
{},
INT8
{});
return
profile
(
I2
,
NHWC
{},
KYXC
{},
NHWK
{},
INT8
{},
INT8
{},
INT8
{});
}
}
#endif
}
}
else
if
(
num_dim_spatial
==
3
&&
layout
==
ConvLayout
::
NHWC_KYXC_NHWK
)
else
if
(
num_dim_spatial
==
3
&&
layout
==
ConvLayout
::
NHWC_KYXC_NHWK
)
{
{
...
@@ -176,10 +182,12 @@ int profile_conv_bwd_data(int argc, char* argv[])
...
@@ -176,10 +182,12 @@ int profile_conv_bwd_data(int argc, char* argv[])
{
{
return
profile
(
I3
,
NDHWC
{},
KZYXC
{},
NDHWK
{},
BF16
{},
BF16
{},
BF16
{});
return
profile
(
I3
,
NDHWC
{},
KZYXC
{},
NDHWK
{},
BF16
{},
BF16
{},
BF16
{});
}
}
#ifdef CK_ENABLE_INT8
else
if
(
data_type
==
ConvDataType
::
INT8_INT8_INT8
)
else
if
(
data_type
==
ConvDataType
::
INT8_INT8_INT8
)
{
{
return
profile
(
I3
,
NDHWC
{},
KZYXC
{},
NDHWK
{},
INT8
{},
INT8
{},
INT8
{});
return
profile
(
I3
,
NDHWC
{},
KZYXC
{},
NDHWK
{},
INT8
{},
INT8
{},
INT8
{});
}
}
#endif
}
}
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
...
...
profiler/src/profile_gemm.cpp
View file @
4100d1d8
...
@@ -67,11 +67,15 @@ int profile_gemm(int argc, char* argv[])
...
@@ -67,11 +67,15 @@ int profile_gemm(int argc, char* argv[])
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideC
=
std
::
stoi
(
argv
[
13
]);
const
int
StrideC
=
std
::
stoi
(
argv
[
13
]);
using
F32
=
float
;
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
#ifdef CK_ENABLE_BF16
using
BF16
=
ck
::
bhalf_t
;
#endif
#ifdef CK_ENABLE_INT8
using
INT8
=
int8_t
;
using
INT8
=
int8_t
;
using
INT32
=
int32_t
;
using
INT32
=
int32_t
;
#endif
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
@@ -117,7 +121,10 @@ int profile_gemm(int argc, char* argv[])
...
@@ -117,7 +121,10 @@ int profile_gemm(int argc, char* argv[])
return
pass
?
0
:
1
;
return
pass
?
0
:
1
;
};
};
if
(
data_type
==
GemmDataType
::
F32_F32_F32
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
if
(
false
)
;
#ifdef CK_ENABLE_FP32
else
if
(
data_type
==
GemmDataType
::
F32_F32_F32
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
{
return
profile
(
Row
{},
Row
{},
Row
{},
F32
{},
F32
{},
F32
{},
F32
{});
return
profile
(
Row
{},
Row
{},
Row
{},
F32
{},
F32
{},
F32
{},
F32
{});
}
}
...
@@ -133,6 +140,8 @@ int profile_gemm(int argc, char* argv[])
...
@@ -133,6 +140,8 @@ int profile_gemm(int argc, char* argv[])
{
{
return
profile
(
Col
{},
Col
{},
Row
{},
F32
{},
F32
{},
F32
{},
F32
{});
return
profile
(
Col
{},
Col
{},
Row
{},
F32
{},
F32
{},
F32
{},
F32
{});
}
}
#endif
#ifdef CK_ENABLE_FP16
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
{
return
profile
(
Row
{},
Row
{},
Row
{},
F16
{},
F16
{},
F32
{},
F16
{});
return
profile
(
Row
{},
Row
{},
Row
{},
F16
{},
F16
{},
F32
{},
F16
{});
...
@@ -149,6 +158,8 @@ int profile_gemm(int argc, char* argv[])
...
@@ -149,6 +158,8 @@ int profile_gemm(int argc, char* argv[])
{
{
return
profile
(
Col
{},
Col
{},
Row
{},
F16
{},
F16
{},
F32
{},
F16
{});
return
profile
(
Col
{},
Col
{},
Row
{},
F16
{},
F16
{},
F32
{},
F16
{});
}
}
#endif
#ifdef CK_ENABLE_BF16
else
if
(
data_type
==
GemmDataType
::
BF16_BF16_BF16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
else
if
(
data_type
==
GemmDataType
::
BF16_BF16_BF16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
{
return
profile
(
Row
{},
Row
{},
Row
{},
BF16
{},
BF16
{},
F32
{},
BF16
{});
return
profile
(
Row
{},
Row
{},
Row
{},
BF16
{},
BF16
{},
F32
{},
BF16
{});
...
@@ -165,6 +176,8 @@ int profile_gemm(int argc, char* argv[])
...
@@ -165,6 +176,8 @@ int profile_gemm(int argc, char* argv[])
{
{
return
profile
(
Col
{},
Col
{},
Row
{},
BF16
{},
BF16
{},
F32
{},
BF16
{});
return
profile
(
Col
{},
Col
{},
Row
{},
BF16
{},
BF16
{},
F32
{},
BF16
{});
}
}
#endif
#ifdef CK_ENABLE_INT8
else
if
(
data_type
==
GemmDataType
::
INT8_INT8_INT8
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
else
if
(
data_type
==
GemmDataType
::
INT8_INT8_INT8
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
{
return
profile
(
Row
{},
Row
{},
Row
{},
INT8
{},
INT8
{},
INT32
{},
INT8
{});
return
profile
(
Row
{},
Row
{},
Row
{},
INT8
{},
INT8
{},
INT32
{},
INT8
{});
...
@@ -181,6 +194,7 @@ int profile_gemm(int argc, char* argv[])
...
@@ -181,6 +194,7 @@ int profile_gemm(int argc, char* argv[])
{
{
return
profile
(
Col
{},
Col
{},
Row
{},
INT8
{},
INT8
{},
INT32
{},
INT8
{});
return
profile
(
Col
{},
Col
{},
Row
{},
INT8
{},
INT8
{},
INT32
{},
INT8
{});
}
}
#endif
else
else
{
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
...
...
profiler/src/profile_gemm_splitk.cpp
View file @
4100d1d8
...
@@ -23,6 +23,8 @@ enum struct GemmDataType
...
@@ -23,6 +23,8 @@ enum struct GemmDataType
F16_F16_F16
,
// 1
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
BF16_BF16_BF16
,
// 2
INT8_INT8_INT8
,
// 3
INT8_INT8_INT8
,
// 3
F8_F16_F16
,
// 4
F16_F8_F16
,
// 5
};
};
#define OP_NAME "gemm_splitk"
#define OP_NAME "gemm_splitk"
...
@@ -33,7 +35,7 @@ int profile_gemm_splitk(int argc, char* argv[])
...
@@ -33,7 +35,7 @@ int profile_gemm_splitk(int argc, char* argv[])
if
(
argc
!=
15
)
if
(
argc
!=
15
)
{
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8
; 4: f8@f16; 5: f16@f8
)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
...
@@ -65,6 +67,7 @@ int profile_gemm_splitk(int argc, char* argv[])
...
@@ -65,6 +67,7 @@ int profile_gemm_splitk(int argc, char* argv[])
using
F32
=
float
;
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
F8
=
ck
::
f8_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
@@ -143,6 +146,38 @@ int profile_gemm_splitk(int argc, char* argv[])
...
@@ -143,6 +146,38 @@ int profile_gemm_splitk(int argc, char* argv[])
{
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Col
{},
Col
{},
Row
{});
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Col
{},
Col
{},
Row
{});
}
}
else
if
(
data_type
==
GemmDataType
::
F8_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F8
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F8_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F8
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F8_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
return
profile
(
F8
{},
F16
{},
F32
{},
F16
{},
Col
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F8_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
return
profile
(
F8
{},
F16
{},
F32
{},
F16
{},
Col
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F16
{},
F8
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F16
{},
F8
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
return
profile
(
F16
{},
F8
{},
F32
{},
F16
{},
Col
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
return
profile
(
F16
{},
F8
{},
F32
{},
F16
{},
Col
{},
Col
{},
Row
{});
}
else
else
{
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
...
...
profiler/src/profile_gemm_streamk.cpp
0 → 100644
View file @
4100d1d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_streamk_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
INT8_INT8_INT8
,
// 3
};
#define OP_NAME "gemm_streamk"
#define OP_DESC "StreamK GEMM"
int
profile_gemm_streamk
(
int
argc
,
char
*
argv
[])
{
if
(
argc
<
14
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 13: M, N, K, StrideA, StrideB, StrideC
\n
"
);
printf
(
"arg14: num_sk_blocks (optional)
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideC
=
std
::
stoi
(
argv
[
13
]);
const
uint32_t
NumSKBlocks
=
argc
>=
15
?
static_cast
<
uint32_t
>
(
std
::
stoul
(
std
::
string
(
argv
[
14
])))
:
0xffffffff
;
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
acc_type
,
auto
c_type
,
auto
a_layout
,
auto
b_layout
,
auto
c_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
CDataType
=
decltype
(
c_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
CLayout
=
decltype
(
c_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
N
:
M
;
bool
pass
=
ck
::
profiler
::
profile_gemm_streamk_impl
<
ADataType
,
BDataType
,
AccDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<=
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<=
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideC
<=
0
)
?
DefaultStrideC
:
StrideC
,
NumSKBlocks
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
GemmDataType
::
F32_F32_F32
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F32
{},
F32
{},
F32
{},
F32
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F32_F32_F32
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F32
{},
F32
{},
F32
{},
F32
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F32_F32_F32
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
return
profile
(
F32
{},
F32
{},
F32
{},
F32
{},
Col
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F32_F32_F32
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
return
profile
(
F32
{},
F32
{},
F32
{},
F32
{},
Col
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Col
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Col
{},
Col
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_gemm_streamk
);
profiler/src/profile_grouped_conv_bwd_data.cpp
0 → 100644
View file @
4100d1d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_grouped_conv_bwd_data_impl.hpp"
#include "profiler_operation_registry.hpp"
namespace
{
enum
struct
ConvLayout
{
GNHWC_GKYXC_GNHWK
,
// 0
NHWGC_GKYXC_NHWGK
,
// 1
};
enum
struct
ConvDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
};
#define OP_NAME "grouped_conv_bwd_data"
#define OP_DESC "Grouped Convolution Backward Data"
static
void
print_helper_msg
()
{
std
::
cout
// clang-format off
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: Output fp32, Weight fp32, Input fp32
\n
"
<<
" 1: Output fp16, Weight fp16, Input fp16
\n
"
<<
" 2: Output bf16, Weight bf16, Input bf16
\n
"
<<
"arg3: tensor layout (0: Output[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Input[G, N, Ho, Wo, K]
\n
"
<<
" 1: Output[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Input[N, Ho, Wo, G, K])
\n
"
<<
"arg4: verification (0: no, 1: yes)
\n
"
<<
"arg5: initialization (0: no init, 1: integer value, 2: decimal value)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
<<
"arg7: time kernel (0: no, 1: yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
// clang-format on
}
}
// namespace
int
profile_grouped_conv_bwd_data
(
int
argc
,
char
*
argv
[])
{
// 8 for control, 1 for num_dim_spatial
if
(
argc
<
9
)
{
print_helper_msg
();
return
1
;
}
const
auto
data_type
=
static_cast
<
ConvDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
ConvLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
num_dim_spatial
=
std
::
stoi
(
argv
[
8
]);
// 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
if
(
argc
!=
8
+
1
+
4
+
6
*
num_dim_spatial
)
{
print_helper_msg
();
return
1
;
}
const
auto
params
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
9
,
argv
);
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
namespace
ck
::
tensor_layout
::
convolution
;
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
constexpr
auto
I3
=
ck
::
Number
<
3
>
{};
auto
profile
=
[
&
](
auto
num_dim_spatial_tmp
,
auto
out_layout
,
auto
wei_layout
,
auto
in_layout
,
auto
wei_type
,
auto
out_type
,
auto
in_type
)
{
constexpr
ck
::
index_t
NDimSpatial
=
num_dim_spatial_tmp
.
value
;
using
OutLayout
=
decltype
(
out_layout
);
using
WeiLayout
=
decltype
(
wei_layout
);
using
InLayout
=
decltype
(
in_layout
);
using
OutDataType
=
decltype
(
out_type
);
using
WeiDataType
=
decltype
(
wei_type
);
using
InDataType
=
decltype
(
in_type
);
bool
pass
=
ck
::
profiler
::
profile_grouped_conv_bwd_data_impl
<
NDimSpatial
,
OutLayout
,
WeiLayout
,
InLayout
,
OutDataType
,
WeiDataType
,
InDataType
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
params
);
return
pass
?
0
:
1
;
};
if
(
num_dim_spatial
==
2
)
{
if
(
layout
==
ConvLayout
::
GNHWC_GKYXC_GNHWK
)
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
{
return
profile
(
I2
,
GNHWK
{},
GKYXC
{},
GNHWC
{},
F32
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
{
return
profile
(
I2
,
GNHWK
{},
GKYXC
{},
GNHWC
{},
F16
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
ConvDataType
::
BF16_BF16_BF16
)
{
return
profile
(
I2
,
GNHWK
{},
GKYXC
{},
GNHWC
{},
BF16
{},
BF16
{},
BF16
{});
}
}
else
if
(
layout
==
ConvLayout
::
NHWGC_GKYXC_NHWGK
)
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
{
return
profile
(
I2
,
NHWGK
{},
GKYXC
{},
NHWGC
{},
F32
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
{
return
profile
(
I2
,
NHWGK
{},
GKYXC
{},
NHWGC
{},
F16
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
ConvDataType
::
BF16_BF16_BF16
)
{
return
profile
(
I2
,
NHWGK
{},
GKYXC
{},
NHWGC
{},
BF16
{},
BF16
{},
BF16
{});
}
}
}
else
if
(
num_dim_spatial
==
3
)
{
if
(
layout
==
ConvLayout
::
GNHWC_GKYXC_GNHWK
)
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
{
return
profile
(
I3
,
GNDHWK
{},
GKZYXC
{},
GNDHWC
{},
F32
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
{
return
profile
(
I3
,
GNDHWK
{},
GKZYXC
{},
GNDHWC
{},
F16
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
ConvDataType
::
BF16_BF16_BF16
)
{
return
profile
(
I3
,
GNDHWK
{},
GKZYXC
{},
GNDHWC
{},
BF16
{},
BF16
{},
BF16
{});
}
}
else
if
(
layout
==
ConvLayout
::
NHWGC_GKYXC_NHWGK
)
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
{
return
profile
(
I3
,
NDHWGK
{},
GKZYXC
{},
NDHWGC
{},
F32
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
{
return
profile
(
I3
,
NDHWGK
{},
GKZYXC
{},
NDHWGC
{},
F16
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
ConvDataType
::
BF16_BF16_BF16
)
{
return
profile
(
I3
,
NDHWGK
{},
GKZYXC
{},
NDHWGC
{},
BF16
{},
BF16
{},
BF16
{});
}
}
}
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_grouped_conv_bwd_data
);
profiler/src/profile_grouped_conv_bwd_weight.cpp
View file @
4100d1d8
...
@@ -15,6 +15,7 @@ enum struct ConvLayout
...
@@ -15,6 +15,7 @@ enum struct ConvLayout
{
{
GNCHW_GKCYX_GNKHW
,
// 0
GNCHW_GKCYX_GNKHW
,
// 0
GNHWC_GKYXC_GNHWK
,
// 1
GNHWC_GKYXC_GNHWK
,
// 1
NHWGC_GKYXC_NHWGK
,
// 2
};
};
enum
struct
ConvDataType
enum
struct
ConvDataType
...
@@ -37,6 +38,8 @@ static void print_helper_msg()
...
@@ -37,6 +38,8 @@ static void print_helper_msg()
"N, K, Ho, Wo]
\n
"
"N, K, Ho, Wo]
\n
"
<<
" 1: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, "
<<
" 1: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, "
"N, Ho, Wo, K]
\n
"
"N, Ho, Wo, K]
\n
"
<<
" 2: Input[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Output[N, "
"Ho, Wo, G, K]
\n
"
<<
"arg4: verification (0: no, 1: yes)
\n
"
<<
"arg4: verification (0: no, 1: yes)
\n
"
<<
"arg5: initialization (0: no init, 1: integer value, 2: decimal value)
\n
"
<<
"arg5: initialization (0: no init, 1: integer value, 2: decimal value)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
...
@@ -80,17 +83,7 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
...
@@ -80,17 +83,7 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
BF16
=
ck
::
bhalf_t
;
using
GNWC
=
ck
::
tensor_layout
::
convolution
::
GNWC
;
using
namespace
ck
::
tensor_layout
::
convolution
;
using
GNHWC
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
GNDHWC
=
ck
::
tensor_layout
::
convolution
::
GNDHWC
;
using
GKXC
=
ck
::
tensor_layout
::
convolution
::
GKXC
;
using
GKYXC
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
GKZYXC
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
GNWK
=
ck
::
tensor_layout
::
convolution
::
GNWK
;
using
GNHWK
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
GNDHWK
=
ck
::
tensor_layout
::
convolution
::
GNDHWK
;
constexpr
auto
I1
=
ck
::
Number
<
1
>
{};
constexpr
auto
I1
=
ck
::
Number
<
1
>
{};
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
...
@@ -157,6 +150,22 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
...
@@ -157,6 +150,22 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
return
profile
(
I2
,
GNHWC
{},
GKYXC
{},
GNHWK
{},
BF16
{},
F32
{},
BF16
{});
return
profile
(
I2
,
GNHWC
{},
GKYXC
{},
GNHWK
{},
BF16
{},
F32
{},
BF16
{});
}
}
}
}
else
if
(
num_dim_spatial
==
2
&&
layout
==
ConvLayout
::
NHWGC_GKYXC_NHWGK
)
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
{
return
profile
(
I2
,
NHWGC
{},
GKYXC
{},
NHWGK
{},
F32
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
{
return
profile
(
I2
,
NHWGC
{},
GKYXC
{},
NHWGK
{},
F16
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
ConvDataType
::
BF16_F32_BF16
)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return
profile
(
I2
,
NHWGC
{},
GKYXC
{},
NHWGK
{},
BF16
{},
F32
{},
BF16
{});
}
}
else
if
(
num_dim_spatial
==
3
&&
layout
==
ConvLayout
::
GNHWC_GKYXC_GNHWK
)
else
if
(
num_dim_spatial
==
3
&&
layout
==
ConvLayout
::
GNHWC_GKYXC_GNHWK
)
{
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
...
@@ -173,6 +182,22 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
...
@@ -173,6 +182,22 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
return
profile
(
I3
,
GNDHWC
{},
GKZYXC
{},
GNDHWK
{},
BF16
{},
F32
{},
BF16
{});
return
profile
(
I3
,
GNDHWC
{},
GKZYXC
{},
GNDHWK
{},
BF16
{},
F32
{},
BF16
{});
}
}
}
}
else
if
(
num_dim_spatial
==
3
&&
layout
==
ConvLayout
::
NHWGC_GKYXC_NHWGK
)
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
{
return
profile
(
I3
,
NDHWGC
{},
GKZYXC
{},
NDHWGK
{},
F32
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
{
return
profile
(
I3
,
NDHWGC
{},
GKZYXC
{},
NDHWGK
{},
F16
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
ConvDataType
::
BF16_F32_BF16
)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return
profile
(
I3
,
NDHWGC
{},
GKZYXC
{},
NDHWGK
{},
BF16
{},
F32
{},
BF16
{});
}
}
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
...
...
profiler/src/profile_grouped_gemm.cpp
View file @
4100d1d8
...
@@ -88,7 +88,7 @@ int profile_grouped_gemm(int argc, char* argv[])
...
@@ -88,7 +88,7 @@ int profile_grouped_gemm(int argc, char* argv[])
const
auto
StrideBs
=
argToIntArray
(
argv
[
12
]);
const
auto
StrideBs
=
argToIntArray
(
argv
[
12
]);
const
auto
StrideCs
=
argToIntArray
(
argv
[
13
]);
const
auto
StrideCs
=
argToIntArray
(
argv
[
13
]);
const
int
kbatch
=
argc
==
15
?
std
::
stoi
(
argv
[
14
])
:
1
;
const
int
kbatch
=
argc
==
15
?
std
::
stoi
(
argv
[
14
])
:
1
;
#ifdef CK_ENABLE_FP16
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
{
ck
::
profiler
::
profile_grouped_gemm_impl
<
ck
::
half_t
,
ck
::
profiler
::
profile_grouped_gemm_impl
<
ck
::
half_t
,
...
@@ -173,7 +173,7 @@ int profile_grouped_gemm(int argc, char* argv[])
...
@@ -173,7 +173,7 @@ int profile_grouped_gemm(int argc, char* argv[])
{
{
throw
std
::
runtime_error
(
"wrong! this GEMM data_type & layout is not implemented"
);
throw
std
::
runtime_error
(
"wrong! this GEMM data_type & layout is not implemented"
);
}
}
#endif
return
0
;
return
0
;
}
}
...
...
Prev
1
…
24
25
26
27
28
29
30
31
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment