Unverified Commit 3f299c33 authored by Adam Osewski's avatar Adam Osewski Committed by GitHub
Browse files

Merge branch 'develop' into aosewski/ggemm_dl_instances

parents 507d793a 091570f5
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -131,6 +131,16 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 ...@@ -131,6 +131,16 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
using GridwiseGemmPipe = remove_cvref_t<decltype( using GridwiseGemmPipe = remove_cvref_t<decltype(
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>; GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>;
// denorm test fix, required to work around fp16 mfma issue
// we convert fp16->fp32->bf16 and execute bf16 mfma instruction
// when mfma if fixed, remove this section and update
// FloatABAdjusted -> FloatAB throughout this file
#if defined(__gfx90a__)
using FloatABAdjusted = conditional_t<is_same_v<FloatAB, ck::half_t>, ck::bhalf_t, FloatAB>;
#else
using FloatABAdjusted = FloatAB;
#endif
__host__ __device__ static constexpr auto GetABlockDescriptor_K0PerBlock_MPerBlock_K1() __host__ __device__ static constexpr auto GetABlockDescriptor_K0PerBlock_MPerBlock_K1()
{ {
constexpr auto max_lds_align = K1; constexpr auto max_lds_align = K1;
...@@ -281,7 +291,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 ...@@ -281,7 +291,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
using BlockwiseGemm = using BlockwiseGemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize, BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB, FloatABAdjusted,
FloatAcc, FloatAcc,
decltype(a_block_desc_k0_m_k1), decltype(a_block_desc_k0_m_k1),
decltype(b_block_desc_k0_n_k1), decltype(b_block_desc_k0_n_k1),
...@@ -367,7 +377,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 ...@@ -367,7 +377,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
ABlockTransferThreadClusterLengths_K0_M_K1, ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder, ABlockTransferThreadClusterArrangeOrder,
FloatAB, FloatAB,
FloatAB, FloatABAdjusted,
decltype(a_grid_desc_k0_m_k1), decltype(a_grid_desc_k0_m_k1),
decltype(a_block_desc_k0_m_k1), decltype(a_block_desc_k0_m_k1),
ABlockTransferSrcAccessOrder, ABlockTransferSrcAccessOrder,
...@@ -398,7 +408,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 ...@@ -398,7 +408,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
BBlockTransferThreadClusterLengths_K0_N_K1, BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder, BBlockTransferThreadClusterArrangeOrder,
FloatAB, FloatAB,
FloatAB, FloatABAdjusted,
decltype(b_grid_desc_k0_n_k1), decltype(b_grid_desc_k0_n_k1),
decltype(b_block_desc_k0_n_k1), decltype(b_block_desc_k0_n_k1),
BBlockTransferSrcAccessOrder, BBlockTransferSrcAccessOrder,
...@@ -428,7 +438,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 ...@@ -428,7 +438,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
// sanity check // sanity check
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector< auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize, BlockSize,
FloatAB, FloatABAdjusted,
FloatAcc, FloatAcc,
decltype(a_block_desc_k0_m_k1), decltype(a_block_desc_k0_m_k1),
decltype(b_block_desc_k0_n_k1), decltype(b_block_desc_k0_n_k1),
...@@ -446,10 +456,10 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 ...@@ -446,10 +456,10 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
math::integer_least_multiple(a_block_desc_k0_m_k1.GetElementSpaceSize(), max_lds_align); math::integer_least_multiple(a_block_desc_k0_m_k1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>( auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatAB*>(p_shared), a_block_desc_k0_m_k1.GetElementSpaceSize()); static_cast<FloatABAdjusted*>(p_shared), a_block_desc_k0_m_k1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>( auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatAB*>(p_shared) + a_block_space_size_aligned, static_cast<FloatABAdjusted*>(p_shared) + a_block_space_size_aligned,
b_block_desc_k0_n_k1.GetElementSpaceSize()); b_block_desc_k0_n_k1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(K0PerBlock, 0, 0); constexpr auto a_block_slice_copy_step = make_multi_index(K0PerBlock, 0, 0);
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -1008,6 +1008,60 @@ inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, float>(float ...@@ -1008,6 +1008,60 @@ inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, float>(float
return uint16_t(u.int32 >> 16); return uint16_t(u.int32 >> 16);
} }
// convert bfp16 to fp16 via fp32
template <>
inline __host__ __device__ constexpr half_t type_convert<half_t, bhalf_t>(bhalf_t x)
{
float x_fp32 = type_convert<float>(x);
return static_cast<half_t>(x_fp32);
}
// convert fp16 to bfp16 via fp32
template <>
inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, half_t>(half_t x)
{
float x_fp32 = static_cast<float>(x);
return type_convert<bhalf_t>(x_fp32);
}
// convert bfp16 to int32 via fp32
template <>
inline __host__ __device__ constexpr int32_t type_convert<int32_t, bhalf_t>(bhalf_t x)
{
float x_fp32 = type_convert<float>(x);
return static_cast<int32_t>(x_fp32);
}
// convert int32 to bfp16 via fp32
template <>
inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, int32_t>(int32_t x)
{
float x_fp32 = static_cast<float>(x);
return type_convert<bhalf_t>(x_fp32);
}
// convert bfp16 to int8 via fp32
template <>
inline __host__ __device__ constexpr int8_t type_convert<int8_t, bhalf_t>(bhalf_t x)
{
float x_fp32 = type_convert<float>(x);
return static_cast<int8_t>(x_fp32);
}
// convert int8 to bfp16 via fp32
template <>
inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, int8_t>(int8_t x)
{
float x_fp32 = static_cast<float>(x);
return type_convert<bhalf_t>(x_fp32);
}
template <typename T> template <typename T>
struct NumericLimits struct NumericLimits
{ {
......
...@@ -92,6 +92,15 @@ static inline __host__ float sqrt(float x) { return std::sqrt(x); }; ...@@ -92,6 +92,15 @@ static inline __host__ float sqrt(float x) { return std::sqrt(x); };
static inline __host__ double sqrt(double x) { return std::sqrt(x); }; static inline __host__ double sqrt(double x) { return std::sqrt(x); };
static inline __host__ half_t tanh(half_t x)
{
return static_cast<half_t>(std::tanh(static_cast<float>(x)));
};
static inline __host__ float tanh(float x) { return std::tanh(x); };
static inline __host__ double tanh(double x) { return std::tanh(x); };
// math functions for the HIP kernel, some are implemented by calling hip builtin functions // math functions for the HIP kernel, some are implemented by calling hip builtin functions
static inline __device__ float abs(float x) { return ::abs(x); }; static inline __device__ float abs(float x) { return ::abs(x); };
...@@ -172,5 +181,14 @@ static inline __device__ float sqrt(float x) { return __builtin_amdgcn_sqrtf(x); ...@@ -172,5 +181,14 @@ static inline __device__ float sqrt(float x) { return __builtin_amdgcn_sqrtf(x);
static inline __device__ double sqrt(double x) { return __builtin_amdgcn_sqrt(x); }; static inline __device__ double sqrt(double x) { return __builtin_amdgcn_sqrt(x); };
static inline __device__ half_t tanh(half_t x)
{
return static_cast<half_t>(::tanhf(static_cast<float>(x)));
};
static inline __device__ float tanh(float x) { return ::tanhf(x); };
static inline __device__ double tanh(double x) { return ::tanh(x); };
} // namespace math } // namespace math
} // namespace ck } // namespace ck
...@@ -85,6 +85,7 @@ using GK_GK_Tuple = ck::Tuple<GK, GK>; ...@@ -85,6 +85,7 @@ using GK_GK_Tuple = ck::Tuple<GK, GK>;
// pointwise functor // pointwise functor
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Relu = ck::tensor_operation::element_wise::Relu; using Relu = ck::tensor_operation::element_wise::Relu;
using TanH = ck::tensor_operation::element_wise::TanH;
using Scale = ck::tensor_operation::element_wise::Scale; using Scale = ck::tensor_operation::element_wise::Scale;
using Bilinear = ck::tensor_operation::element_wise::Bilinear; using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu; using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
...@@ -102,6 +103,10 @@ template <typename Activation> ...@@ -102,6 +103,10 @@ template <typename Activation>
using Add_Activation_Mul_Clamp = using Add_Activation_Mul_Clamp =
ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Activation>; ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Activation>;
template <typename Activation>
using Add_Mul_Activation_Mul_Clamp =
ck::tensor_operation::element_wise::Add_Mul_Activation_Mul_Clamp<Activation>;
template <typename Activation> template <typename Activation>
using Activation_Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<Activation>; using Activation_Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<Activation>;
...@@ -109,6 +114,10 @@ template <typename Activation> ...@@ -109,6 +114,10 @@ template <typename Activation>
using Add_Activation_Mul2_Clamp = using Add_Activation_Mul2_Clamp =
ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<Activation>; ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<Activation>;
template <typename Activation>
using Add_Mul2_Activation_Mul_Clamp =
ck::tensor_operation::element_wise::Add_Mul2_Activation_Mul_Clamp<Activation>;
template <typename DeviceOp, typename Tag = void> template <typename DeviceOp, typename Tag = void>
struct DeviceOperationInstanceFactory; struct DeviceOperationInstanceFactory;
......
...@@ -49,6 +49,22 @@ void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances( ...@@ -49,6 +49,22 @@ void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
Add_Activation_Mul2_Clamp<Relu>>>>& Add_Activation_Mul2_Clamp<Relu>>>>&
instances); instances);
void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_Activation_Mul_Clamp<TanH>>>>&
instances);
void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances( void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
std::vector< std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
...@@ -80,6 +96,23 @@ void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances( ...@@ -80,6 +96,23 @@ void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
Add_Activation_Mul2_Clamp<Relu>>>>& Add_Activation_Mul2_Clamp<Relu>>>>&
instances); instances);
void add_device_conv2d_xdl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_Activation_Mul_Clamp<TanH>>>>&
instances);
// piecewise activation function
template <ck::index_t NumDimSpatial, template <ck::index_t NumDimSpatial,
typename InLayout, typename InLayout,
typename WeiLayout, typename WeiLayout,
...@@ -145,6 +178,67 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -145,6 +178,67 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
}; };
// non-piecewise activation function
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename DsLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename DsDataType,
typename OutDataType,
typename Activation>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
NumDimSpatial,
InLayout,
WeiLayout,
DsLayout,
OutLayout,
InDataType,
WeiDataType,
DsDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
Add_Mul2_Activation_Mul_Clamp<Activation>>>
{
using DeviceOp = DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
DsLayout,
OutLayout,
InDataType,
WeiDataType,
DsDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
Add_Mul2_Activation_Mul_Clamp<Activation>>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_F32_Tuple> && is_same_v<OutDataType, int8_t>)
{
if constexpr(is_same_v<Activation, TanH>)
{
add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_bias_tanh_perchannel_quantization_int8_instances(op_ptrs);
}
}
}
return op_ptrs;
}
};
} // namespace instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -49,6 +49,21 @@ void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances( ...@@ -49,6 +49,21 @@ void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
Add_Activation_Mul_Clamp<Relu>>>>& Add_Activation_Mul_Clamp<Relu>>>>&
instances); instances);
void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_Activation_Mul_Clamp<TanH>>>>&
instances);
void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances( void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
std::vector< std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
...@@ -80,6 +95,22 @@ void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances( ...@@ -80,6 +95,22 @@ void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
Add_Activation_Mul_Clamp<Relu>>>>& Add_Activation_Mul_Clamp<Relu>>>>&
instances); instances);
void add_device_conv2d_xdl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_Activation_Mul_Clamp<TanH>>>>&
instances);
// piecewise activation function
template <ck::index_t NumDimSpatial, template <ck::index_t NumDimSpatial,
typename InLayout, typename InLayout,
typename WeiLayout, typename WeiLayout,
...@@ -145,6 +176,67 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -145,6 +176,67 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
}; };
// non-piecewise activation function
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename DsLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename DsDataType,
typename OutDataType,
typename Activation>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
NumDimSpatial,
InLayout,
WeiLayout,
DsLayout,
OutLayout,
InDataType,
WeiDataType,
DsDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
Add_Mul_Activation_Mul_Clamp<Activation>>>
{
using DeviceOp = DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
DsLayout,
OutLayout,
InDataType,
WeiDataType,
DsDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
Add_Mul_Activation_Mul_Clamp<Activation>>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_Tuple> && is_same_v<OutDataType, int8_t>)
{
if constexpr(is_same_v<Activation, TanH>)
{
add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_bias_tanh_perlayer_quantization_int8_instances(op_ptrs);
}
}
}
return op_ptrs;
}
};
} // namespace instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -26,7 +26,8 @@ using S = ck::Sequence<Is...>; ...@@ -26,7 +26,8 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; // static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNPadding = ck::tensor_operation::device::GemmSpecialization::MNPadding;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n] // Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances = std::tuple< using device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances = std::tuple<
...@@ -35,14 +36,22 @@ using device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances = std::tuple< ...@@ -35,14 +36,22 @@ using device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances = std::tuple<
//#########################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| //#########################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#########################| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| //#########################| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8>, DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, true, 1, 1, S<1, 32, 1, 8>, 8>, DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, true, 1, 1, S<1, 16, 1, 8>, 8>, DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, true, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8>, DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 256, 64, 192, 4, 8, 32, 32, 1, 3, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 48, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, true, 1, 1, S<1, 32, 1, 4>, 8>, DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 256, 192, 64, 4, 8, 32, 32, 3, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, true, 1, 1, S<1, 16, 1, 8>, 8>, DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8>, DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8> DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, true, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 128, 32, 192, 4, 8, 32, 32, 1, 3, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 24, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 128, 192, 32, 4, 8, 32, 32, 3, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 128, 32, 64, 4, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, true, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 128, 64, 32, 4, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, true, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmXdlSplitKCShuffle< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>
// clang-format on // clang-format on
>; >;
......
...@@ -25,6 +25,7 @@ using GNHWK = ck::tensor_layout::convolution::GNHWK; ...@@ -25,6 +25,7 @@ using GNHWK = ck::tensor_layout::convolution::GNHWK;
using GK = ck::tensor_layout::convolution::G_K; using GK = ck::tensor_layout::convolution::G_K;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Relu = ck::tensor_operation::element_wise::Relu; using Relu = ck::tensor_operation::element_wise::Relu;
using TanH = ck::tensor_operation::element_wise::TanH;
using GK_Tuple = ck::Tuple<GK>; using GK_Tuple = ck::Tuple<GK>;
using GK_GK_Tuple = ck::Tuple<GK, GK>; using GK_GK_Tuple = ck::Tuple<GK, GK>;
...@@ -32,17 +33,25 @@ using I32_Tuple = ck::Tuple<int32_t>; ...@@ -32,17 +33,25 @@ using I32_Tuple = ck::Tuple<int32_t>;
using F32_Tuple = ck::Tuple<float>; using F32_Tuple = ck::Tuple<float>;
using I32_F32_Tuple = ck::Tuple<int32_t, float>; using I32_F32_Tuple = ck::Tuple<int32_t, float>;
// perlayer
using Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<PassThrough>; using Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<PassThrough>;
using Relu_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Relu>; using Relu_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Relu>;
// bias + perlayer
using Add_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<PassThrough>; using Add_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<PassThrough>;
using Add_Relu_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Relu>; using Add_Relu_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Relu>;
using Add_Mul_TanH_Mul_Clamp =
ck::tensor_operation::element_wise::Add_Mul_Activation_Mul_Clamp<TanH>;
// perchannel
using Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<PassThrough>; using Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<PassThrough>;
using Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<Relu>; using Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<Relu>;
// bias + perchannel
using Add_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<PassThrough>; using Add_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<PassThrough>;
using Add_Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<Relu>; using Add_Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<Relu>;
using Add_Mul2_TanH_Mul_Clamp =
ck::tensor_operation::element_wise::Add_Mul2_Activation_Mul_Clamp<TanH>;
static constexpr ck::index_t NDimSpatial = 2; static constexpr ck::index_t NDimSpatial = 2;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding; static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
......
...@@ -76,6 +76,42 @@ void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances( ...@@ -76,6 +76,42 @@ void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
ConvFwd1x1S1P0, ConvFwd1x1S1P0,
4>{}); 4>{});
} }
void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_TanH_Mul_Clamp>>>& instances)
{
// dl
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
} // namespace instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -76,6 +76,43 @@ void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances( ...@@ -76,6 +76,43 @@ void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
ConvFwd1x1S1P0, ConvFwd1x1S1P0,
4>{}); 4>{});
} }
void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_TanH_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
} // namespace instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -74,6 +74,41 @@ void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances( ...@@ -74,6 +74,41 @@ void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
ConvFwd1x1S1P0, ConvFwd1x1S1P0,
8>{}); 8>{});
} }
void add_device_conv2d_xdl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_TanH_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
8>{});
}
} // namespace instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -76,6 +76,43 @@ void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances( ...@@ -76,6 +76,43 @@ void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
ConvFwd1x1S1P0, ConvFwd1x1S1P0,
8>{}); 8>{});
} }
void add_device_conv2d_xdl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_TanH_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
8>{});
}
} // namespace instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -8,8 +8,8 @@ MY_PROJECT_SOURCE=$1 ...@@ -8,8 +8,8 @@ MY_PROJECT_SOURCE=$1
cmake \ cmake \
-D CMAKE_PREFIX_PATH=/opt/rocm \ -D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \ -D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_CXX_FLAGS="-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -mcumode \ -D CMAKE_CXX_FLAGS="-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker \
-mno-wavefrontsize64 -Wno-gnu-line-marker -save-temps=$PWD" \ -save-temps=$PWD" \
-D CMAKE_BUILD_TYPE=Release \ -D CMAKE_BUILD_TYPE=Release \
-D BUILD_DEV=ON \ -D BUILD_DEV=ON \
-D GPU_TARGETS="gfx908;gfx90a" \ -D GPU_TARGETS="gfx908;gfx90a" \
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment