Commit 3ba485b6 authored by Jing Zhang's avatar Jing Zhang
Browse files

resolve merge conflicts

parents 04c1aa31 a3c80265
...@@ -13,6 +13,10 @@ namespace tensor_operation { ...@@ -13,6 +13,10 @@ namespace tensor_operation {
namespace device { namespace device {
namespace instance { namespace instance {
#ifdef CK_ENABLE_FP8
using F8 = ck::f8_t;
#endif
using BF16 = ck::bhalf_t; using BF16 = ck::bhalf_t;
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
...@@ -174,6 +178,42 @@ using device_grouped_conv_fwd_xdl_int8_instances = std::tuple< ...@@ -174,6 +178,42 @@ using device_grouped_conv_fwd_xdl_int8_instances = std::tuple<
// clang-format on // clang-format on
>; >;
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
ConvolutionForwardSpecialization ConvSpec>
using device_grouped_conv_fwd_xdl_f16_comp_f8_instances = std::tuple<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| ComputeType|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| |
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| |
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#ifdef CK_ENABLE_FP8
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, F8>,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, F8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, F8>
#endif
// clang-format on
>;
} // namespace instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -426,13 +426,32 @@ void add_device_grouped_conv3d_bwd_data_wmma_ndhwgk_gkzyxc_ndhwgc_i8_1x1s1p0_ins ...@@ -426,13 +426,32 @@ void add_device_grouped_conv3d_bwd_data_wmma_ndhwgk_gkzyxc_ndhwgc_i8_1x1s1p0_ins
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#if defined CK_ENABLE_FP16 && defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
void add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_input_f16_comp_bf8f8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdDataMultipleD<3,
NDHWGK,
GKZYXC,
Empty_Tuple,
NDHWGC,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough,
BF8,
F8>>>& instances);
#endif
template <ck::index_t NumDimSpatial, template <ck::index_t NumDimSpatial,
typename OutLayout, typename OutLayout,
typename WeiLayout, typename WeiLayout,
typename InLayout, typename InLayout,
typename OutDataType, typename OutDataType,
typename WeiDataType, typename WeiDataType,
typename InDataType> typename InDataType,
typename ComputeTypeA,
typename ComputeTypeB>
struct DeviceOperationInstanceFactory< struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceGroupedConvBwdDataMultipleD< ck::tensor_operation::device::DeviceGroupedConvBwdDataMultipleD<
NumDimSpatial, NumDimSpatial,
...@@ -446,7 +465,9 @@ struct DeviceOperationInstanceFactory< ...@@ -446,7 +465,9 @@ struct DeviceOperationInstanceFactory<
InDataType, InDataType,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>> ck::tensor_operation::element_wise::PassThrough,
ComputeTypeA,
ComputeTypeB>>
{ {
using DeviceOp = using DeviceOp =
DeviceGroupedConvBwdDataMultipleD<NumDimSpatial, DeviceGroupedConvBwdDataMultipleD<NumDimSpatial,
...@@ -460,7 +481,9 @@ struct DeviceOperationInstanceFactory< ...@@ -460,7 +481,9 @@ struct DeviceOperationInstanceFactory<
InDataType, InDataType,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>; ck::tensor_operation::element_wise::PassThrough,
ComputeTypeA,
ComputeTypeB>;
static auto GetInstances() static auto GetInstances()
{ {
...@@ -597,7 +620,8 @@ struct DeviceOperationInstanceFactory< ...@@ -597,7 +620,8 @@ struct DeviceOperationInstanceFactory<
{ {
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, F16> && is_same_v<WeiDataType, F16> && if constexpr(is_same_v<InDataType, F16> && is_same_v<WeiDataType, F16> &&
is_same_v<OutDataType, F16>) is_same_v<OutDataType, F16> && is_same_v<ComputeTypeA, F16> &&
is_same_v<ComputeTypeB, F16>)
{ {
add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_f16_instances( add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_f16_instances(
op_ptrs); op_ptrs);
...@@ -607,6 +631,15 @@ struct DeviceOperationInstanceFactory< ...@@ -607,6 +631,15 @@ struct DeviceOperationInstanceFactory<
op_ptrs); op_ptrs);
} }
#endif #endif
#if defined CK_ENABLE_FP16 && defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
else if constexpr(is_same_v<InDataType, F16> && is_same_v<WeiDataType, F16> &&
is_same_v<OutDataType, F16> && is_same_v<ComputeTypeA, bf8_t> &&
is_same_v<ComputeTypeB, f8_t>)
{
add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_input_f16_comp_bf8f8_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
else if constexpr(is_same_v<InDataType, F32> && is_same_v<WeiDataType, F32> && else if constexpr(is_same_v<InDataType, F32> && is_same_v<WeiDataType, F32> &&
is_same_v<OutDataType, F32>) is_same_v<OutDataType, F32>)
......
...@@ -216,6 +216,21 @@ void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances ...@@ -216,6 +216,21 @@ void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#if defined CK_ENABLE_FP16 && defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough,
BF8,
F8>>>& instances);
#endif
#ifdef DL_KERNELS #ifdef DL_KERNELS
// dl // dl
...@@ -464,7 +479,9 @@ template <ck::index_t NumDimSpatial, ...@@ -464,7 +479,9 @@ template <ck::index_t NumDimSpatial,
typename OutLayout, typename OutLayout,
typename InDataType, typename InDataType,
typename WeiDataType, typename WeiDataType,
typename OutDataType> typename OutDataType,
typename ComputeTypeA,
typename ComputeTypeB>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvBwdWeight< struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvBwdWeight<
NumDimSpatial, NumDimSpatial,
InLayout, InLayout,
...@@ -475,7 +492,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -475,7 +492,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
OutDataType, OutDataType,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>> ck::tensor_operation::element_wise::PassThrough,
ComputeTypeA,
ComputeTypeB>>
{ {
using DeviceOp = DeviceGroupedConvBwdWeight<NumDimSpatial, using DeviceOp = DeviceGroupedConvBwdWeight<NumDimSpatial,
InLayout, InLayout,
...@@ -486,7 +505,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -486,7 +505,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
OutDataType, OutDataType,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>; ck::tensor_operation::element_wise::PassThrough,
ComputeTypeA,
ComputeTypeB>;
static auto GetInstances() static auto GetInstances()
{ {
...@@ -706,7 +727,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -706,7 +727,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>) is_same_v<OutDataType, half_t> &&
is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>)
{ {
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_ndhwgc_gkzyxc_ndhwgk_f16_instances( add_device_grouped_conv3d_bwd_weight_dl_ndhwgc_gkzyxc_ndhwgk_f16_instances(
...@@ -728,6 +751,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -728,6 +751,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances( add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances(
op_ptrs); op_ptrs);
} }
#endif
#if defined CK_ENABLE_FP16 && defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> &&
is_same_v<ComputeTypeA, bf8_t> && is_same_v<ComputeTypeB, f8_t>)
{
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_instances(
op_ptrs);
}
#endif #endif
} }
} }
......
...@@ -16,6 +16,7 @@ namespace ck { ...@@ -16,6 +16,7 @@ namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace instance { namespace instance {
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
// grouped conv1d forward, GNWC/GKXC/GNWK // grouped conv1d forward, GNWC/GKXC/GNWK
void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_bf16_instances( void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_bf16_instances(
...@@ -32,6 +33,7 @@ void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_bf16_instances( ...@@ -32,6 +33,7 @@ void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_bf16_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f16_instances( void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<1, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<1,
...@@ -47,6 +49,7 @@ void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f16_instances( ...@@ -47,6 +49,7 @@ void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f16_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f32_instances( void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<1, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<1,
...@@ -62,6 +65,7 @@ void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f32_instances( ...@@ -62,6 +65,7 @@ void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f32_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_INT8 #ifdef CK_ENABLE_INT8
void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_int8_instances( void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<1, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<1,
...@@ -77,100 +81,90 @@ void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_int8_instances( ...@@ -77,100 +81,90 @@ void add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_int8_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_BF16
// grouped conv2d forward, GNHWC/GKYXC/GNHWK #ifdef CK_ENABLE_INT8
void add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances( void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, NHWGC,
GKYXC, GKYXC,
Empty_Tuple, Empty_Tuple,
GNHWK, NHWGK,
BF16, int8_t,
BF16, int8_t,
Empty_Tuple, Empty_Tuple,
BF16, int8_t,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instances( #ifdef CK_ENABLE_INT8
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_1x1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, NHWGC,
GKYXC, GKYXC,
Empty_Tuple, Empty_Tuple,
GNHWK, NHWGK,
F16, int8_t,
F16, int8_t,
Empty_Tuple, Empty_Tuple,
F16, int8_t,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances( #ifdef CK_ENABLE_INT8
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, NHWGC,
GKYXC, GKYXC,
Empty_Tuple, Empty_Tuple,
GNHWK, NHWGK,
F32, int8_t,
F32, int8_t,
Empty_Tuple, Empty_Tuple,
F32, int8_t,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef DL_KERNELS
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_INT8
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances( void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_oddc_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, NHWGC,
GKYXC, GKYXC,
Empty_Tuple, Empty_Tuple,
GNHWK, NHWGK,
F16, int8_t,
F16, int8_t,
Empty_Tuple, Empty_Tuple,
F16, int8_t,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances( #ifdef CK_ENABLE_BF16
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, GNHWC,
GKYXC, GKYXC,
Empty_Tuple, Empty_Tuple,
GNHWK, GNHWK,
F32, BF16,
F32, BF16,
Empty_Tuple, Empty_Tuple,
F32, BF16,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1p0_instances( #ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, GNHWC,
GKYXC, GKYXC,
...@@ -183,22 +177,26 @@ void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1p0_instances( ...@@ -183,22 +177,26 @@ void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1p0_instances(
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1s1p0_instances( #ifdef CK_ENABLE_FP32
void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, GNHWC,
GKYXC, GKYXC,
Empty_Tuple, Empty_Tuple,
GNHWK, GNHWK,
F16, F32,
F16, F32,
Empty_Tuple, Empty_Tuple,
F16, F32,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_oddc_instances( #ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, GNHWC,
GKYXC, GKYXC,
...@@ -211,23 +209,8 @@ void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_oddc_instances( ...@@ -211,23 +209,8 @@ void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_oddc_instances(
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#ifdef DL_KERNELS
void add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#endif #endif
#ifdef CK_ENABLE_INT8 #ifdef CK_ENABLE_INT8
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_instances( void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
...@@ -285,22 +268,7 @@ void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_oddc_instances( ...@@ -285,22 +268,7 @@ void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_oddc_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#if(defined(CK_ENABLE_FP32) && defined(DL_KERNELS))
void add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
// grouped conv2d forward, NHWGC/GKYXC/NHWGK // grouped conv2d forward, NHWGC/GKYXC/NHWGK
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances( void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(
...@@ -317,6 +285,7 @@ void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances( ...@@ -317,6 +285,7 @@ void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_instances( void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
...@@ -388,63 +357,7 @@ void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances( ...@@ -388,63 +357,7 @@ void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_INT8
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_1x1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_oddc_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances( void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
...@@ -460,6 +373,7 @@ void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances( ...@@ -460,6 +373,7 @@ void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
// grouped conv3d forward, GNDHWC/GKZYXC/GNDHWK // grouped conv3d forward, GNDHWC/GKZYXC/GNDHWK
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances( void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances(
...@@ -476,6 +390,7 @@ void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances( ...@@ -476,6 +390,7 @@ void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instances( void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
...@@ -547,6 +462,7 @@ void add_device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_f16_oddc_instances( ...@@ -547,6 +462,7 @@ void add_device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_f16_oddc_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instances( void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
...@@ -562,6 +478,7 @@ void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instances( ...@@ -562,6 +478,7 @@ void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_INT8 #ifdef CK_ENABLE_INT8
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances( void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
...@@ -633,6 +550,7 @@ void add_device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_i8_oddc_instances( ...@@ -633,6 +550,7 @@ void add_device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_i8_oddc_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
// grouped conv3d forward, NDHWGC/GKZYXC/NDHWGK // grouped conv3d forward, NDHWGC/GKZYXC/NDHWGK
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances( void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
...@@ -649,6 +567,7 @@ void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances( ...@@ -649,6 +567,7 @@ void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances( void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
...@@ -663,7 +582,9 @@ void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances( ...@@ -663,7 +582,9 @@ void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances(
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_instances( void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC, NDHWGC,
...@@ -677,7 +598,9 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_instances( ...@@ -677,7 +598,9 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_instances(
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1p0_instances( void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC, NDHWGC,
...@@ -691,7 +614,9 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1p0_instances ...@@ -691,7 +614,9 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1p0_instances
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1s1p0_instances( void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC, NDHWGC,
...@@ -705,7 +630,9 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1s1p0_instanc ...@@ -705,7 +630,9 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1s1p0_instanc
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_oddc_instances( void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_oddc_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC, NDHWGC,
...@@ -720,6 +647,88 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_oddc_instances( ...@@ -720,6 +647,88 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_oddc_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_oddc_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP8
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_f8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
GKZYXC,
Empty_Tuple,
NDHWGK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough,
F8>>>& instances);
#endif
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances( void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
...@@ -735,6 +744,7 @@ void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances( ...@@ -735,6 +744,7 @@ void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_INT8 #ifdef CK_ENABLE_INT8
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_int8_instances( void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
...@@ -807,13 +817,79 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_i8_oddc_instances( ...@@ -807,13 +817,79 @@ void add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_i8_oddc_instances(
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#if(defined(CK_ENABLE_FP32) && defined(DL_KERNELS))
void add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#if(defined(CK_ENABLE_FP16) && defined(DL_KERNELS))
void add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#if(defined(CK_ENABLE_FP16) && defined(DL_KERNELS))
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#if(defined(CK_ENABLE_FP32) && defined(DL_KERNELS))
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
template <ck::index_t NumDimSpatial, template <ck::index_t NumDimSpatial,
typename InLayout, typename InLayout,
typename WeiLayout, typename WeiLayout,
typename OutLayout, typename OutLayout,
typename InDataType, typename InDataType,
typename WeiDataType, typename WeiDataType,
typename OutDataType> typename OutDataType,
typename ComputeType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD< struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
NumDimSpatial, NumDimSpatial,
InLayout, InLayout,
...@@ -826,7 +902,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -826,7 +902,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
OutDataType, OutDataType,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>> ck::tensor_operation::element_wise::PassThrough,
ComputeType>>
{ {
using DeviceOp = DeviceGroupedConvFwdMultipleD<NumDimSpatial, using DeviceOp = DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout, InLayout,
...@@ -839,7 +916,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -839,7 +916,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
OutDataType, OutDataType,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>; ck::tensor_operation::element_wise::PassThrough,
ComputeType>;
static auto GetInstances() static auto GetInstances()
{ {
...@@ -877,33 +955,46 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -877,33 +955,46 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
} }
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, GNHWK>) if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, GNHWK>)
{ {
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> && if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>) is_same_v<OutDataType, float>)
{ {
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs); add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
#ifdef DL_KERNELS }
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
#endif #endif
#if(defined(CK_ENABLE_FP32) && defined(DL_KERNELS))
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
} }
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>) is_same_v<OutDataType, half_t>)
{ {
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs); add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
#ifdef DL_KERNELS
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
#endif
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs); add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1p0_instances(op_ptrs); add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1p0_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1s1p0_instances(op_ptrs); add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_1x1s1p0_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_oddc_instances(op_ptrs); add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_oddc_instances(op_ptrs);
} }
#endif #endif
#if(defined(CK_ENABLE_FP16) && defined(DL_KERNELS))
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
if constexpr(is_same_v<InDataType, ck::bhalf_t> && if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<OutDataType, ck::bhalf_t>) is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<OutDataType, ck::bhalf_t>)
...@@ -911,9 +1002,10 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -911,9 +1002,10 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(op_ptrs); add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(op_ptrs);
} }
#endif #endif
#ifdef CK_ENABLE_INT8 #ifdef CK_ENABLE_INT8
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> && if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>) is_same_v<OutDataType, int8_t>)
{ {
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_instances(op_ptrs); add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_1x1p0_instances(op_ptrs); add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_1x1p0_instances(op_ptrs);
...@@ -922,33 +1014,43 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -922,33 +1014,43 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
} }
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, NHWGK>) if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, NHWGK>)
{ {
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> && if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>) is_same_v<OutDataType, float>)
{ {
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances(op_ptrs); add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances(op_ptrs);
#ifdef DL_KERNELS }
add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f32_instances(op_ptrs);
#endif #endif
#if(defined(CK_ENABLE_FP32) && defined(DL_KERNELS))
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f32_instances(op_ptrs);
} }
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>) is_same_v<OutDataType, half_t>)
{ {
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances(op_ptrs); add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances(op_ptrs);
#ifdef DL_KERNELS }
add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f16_instances(op_ptrs);
#endif #endif
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_1x1p0_instances(op_ptrs); #if(defined(CK_ENABLE_FP16) && defined(DL_KERNELS))
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_1x1s1p0_instances(op_ptrs); if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_oddc_instances(op_ptrs); is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f16_instances(op_ptrs);
} }
#endif #endif
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
if constexpr(is_same_v<InDataType, ck::bhalf_t> && if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<OutDataType, ck::bhalf_t>) is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<OutDataType, ck::bhalf_t>)
...@@ -967,8 +1069,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -967,8 +1069,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
} }
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, GNDHWC> &&
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, GNDHWK>) if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, GNDHWC> &&
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, GNDHWK>)
{ {
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> && if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
...@@ -1010,8 +1113,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -1010,8 +1113,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
} }
#endif #endif
} }
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWGC> &&
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, NDHWGK>) if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWGC> &&
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, NDHWGK>)
{ {
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> && if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
...@@ -1020,9 +1124,18 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -1020,9 +1124,18 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances(op_ptrs); add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances(op_ptrs);
} }
#endif #endif
#ifdef CK_ENABLE_FP8
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> && is_same_v<ComputeType, ck::f8_t>)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_f8_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> && if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>) is_same_v<OutDataType, half_t> && is_same_v<ComputeType, half_t>)
{ {
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances(op_ptrs); add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances(op_ptrs);
add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_instances(op_ptrs); add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_f16_instances(op_ptrs);
......
...@@ -95,7 +95,7 @@ struct GeneratorTensor_2<int8_t> ...@@ -95,7 +95,7 @@ struct GeneratorTensor_2<int8_t>
} }
}; };
#if defined CK_ENABLE_FP8 || defined CK_ENABLE_BF8 #if defined CK_ENABLE_FP8
template <> template <>
struct GeneratorTensor_2<ck::f8_t> struct GeneratorTensor_2<ck::f8_t>
{ {
...@@ -111,6 +111,22 @@ struct GeneratorTensor_2<ck::f8_t> ...@@ -111,6 +111,22 @@ struct GeneratorTensor_2<ck::f8_t>
}; };
#endif #endif
#if defined CK_ENABLE_BF8
template <>
struct GeneratorTensor_2<ck::bf8_t>
{
int min_value = 0;
int max_value = 1;
template <typename... Is>
ck::bf8_t operator()(Is...)
{
float tmp = (std::rand() % (max_value - min_value)) + min_value;
return ck::type_convert<ck::bf8_t>(tmp);
}
};
#endif
template <typename T> template <typename T>
struct GeneratorTensor_3 struct GeneratorTensor_3
{ {
...@@ -143,7 +159,7 @@ struct GeneratorTensor_3<ck::bhalf_t> ...@@ -143,7 +159,7 @@ struct GeneratorTensor_3<ck::bhalf_t>
} }
}; };
#if defined CK_ENABLE_FP8 || defined CK_ENABLE_BF8 #if defined CK_ENABLE_FP8
template <> template <>
struct GeneratorTensor_3<ck::f8_t> struct GeneratorTensor_3<ck::f8_t>
{ {
...@@ -162,6 +178,25 @@ struct GeneratorTensor_3<ck::f8_t> ...@@ -162,6 +178,25 @@ struct GeneratorTensor_3<ck::f8_t>
}; };
#endif #endif
#if defined CK_ENABLE_BF8
template <>
struct GeneratorTensor_3<ck::bf8_t>
{
float min_value = 0;
float max_value = 1;
template <typename... Is>
ck::bf8_t operator()(Is...)
{
float tmp = float(std::rand()) / float(RAND_MAX);
float fp32_tmp = min_value + tmp * (max_value - min_value);
return ck::type_convert<ck::bf8_t>(fp32_tmp);
}
};
#endif
template <typename T> template <typename T>
struct GeneratorTensor_4 struct GeneratorTensor_4
{ {
......
...@@ -24,7 +24,7 @@ function(add_instance_library INSTANCE_NAME) ...@@ -24,7 +24,7 @@ function(add_instance_library INSTANCE_NAME)
set(test 0) set(test 0)
break() break()
elseif((source MATCHES "fp8" OR source MATCHES "fp32" OR source MATCHES "fp64" OR source MATCHES "bf16" OR source MATCHES "int8" OR source MATCHES "fp16" OR elseif((source MATCHES "fp8" OR source MATCHES "fp32" OR source MATCHES "fp64" OR source MATCHES "bf16" OR source MATCHES "int8" OR source MATCHES "fp16" OR
source MATCHES "_f8" OR source MATCHES "_f32" OR source MATCHES "_f64" OR source MATCHES "_i8" OR source MATCHES "_f16" OR source MATCHES "_b16") AND source MATCHES "_f8" OR source MATCHES "_f32" OR source MATCHES "_f64" OR source MATCHES "_i8" OR source MATCHES "_f16" OR source MATCHES "_b16") AND
NOT(source MATCHES type OR source MATCHES type1)) NOT(source MATCHES type OR source MATCHES type1))
#if filename contains a type which doesn't match any selected type, mark it for removal #if filename contains a type which doesn't match any selected type, mark it for removal
set(test 1) set(test 1)
...@@ -51,7 +51,7 @@ function(add_instance_library INSTANCE_NAME) ...@@ -51,7 +51,7 @@ function(add_instance_library INSTANCE_NAME)
set(result 0) set(result 0)
endif() endif()
#message("add_instance_library returns ${result}") #message("add_instance_library returns ${result}")
return(PROPAGATE result) set(result ${result} PARENT_SCOPE)
endfunction(add_instance_library INSTANCE_NAME) endfunction(add_instance_library INSTANCE_NAME)
......
set(DEVICE_CONTRACTION_BILINEAR_INSTANCES) set(DEVICE_CONTRACTION_BILINEAR_INSTANCES)
#float
# FP32
list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance.cpp list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance.cpp device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance.cpp device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn_instance.cpp) device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn_instance.cpp)
list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mnnn_instance.cpp)
list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance.cpp)
# FP64 #double
list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance.cpp list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance.cpp device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance.cpp device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance.cpp) device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance.cpp)
list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_compute_f32_mnnn_instance.cpp)
# FP16
list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance.cpp)
# BF16
list(APPEND DEVICE_CONTRACTION_BILINEAR_INSTANCES device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance.cpp)
add_instance_library(device_contraction_bilinear_instance ${DEVICE_CONTRACTION_BILINEAR_INSTANCES}) add_instance_library(device_contraction_bilinear_instance ${DEVICE_CONTRACTION_BILINEAR_INSTANCES})
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance =
device_contraction_kk_instance<BF16,
BF16,
F32,
BF16,
BF16_Tuple,
BF16,
F32,
PassThrough,
PassThrough,
Bilinear>;
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
BF16,
BF16,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances)
{
add_device_operation_instances(
instances,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance =
device_contraction_kn_instance<BF16,
BF16,
F32,
BF16,
BF16_Tuple,
BF16,
F32,
PassThrough,
PassThrough,
Bilinear>;
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
BF16,
BF16,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances)
{
add_device_operation_instances(
instances,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance =
device_contraction_mk_instance<BF16,
BF16,
F32,
BF16,
BF16_Tuple,
BF16,
F32,
PassThrough,
PassThrough,
Bilinear>;
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
BF16,
BF16,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances)
{
add_device_operation_instances(
instances,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance =
device_contraction_mn_instance<BF16,
BF16,
F32,
BF16,
BF16_Tuple,
BF16,
F32,
PassThrough,
PassThrough,
Bilinear>;
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
BF16,
BF16,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances)
{
add_device_operation_instances(
instances,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance =
device_contraction_kk_instance<F16,
F16,
F32,
F16,
F16_Tuple,
F16,
F32,
PassThrough,
PassThrough,
Bilinear>;
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances)
{
add_device_operation_instances(
instances,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance =
device_contraction_kn_instance<F16,
F16,
F32,
F16,
F16_Tuple,
F16,
F32,
PassThrough,
PassThrough,
Bilinear>;
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances)
{
add_device_operation_instances(
instances,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance =
device_contraction_mk_instance<F16,
F16,
F32,
F16,
F16_Tuple,
F16,
F32,
PassThrough,
PassThrough,
Bilinear>;
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances)
{
add_device_operation_instances(
instances,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance =
device_contraction_mn_instance<F16,
F16,
F32,
F16,
F16_Tuple,
F16,
F32,
PassThrough,
PassThrough,
Bilinear>;
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
Bilinear,
F32>>>& instances)
{
add_device_operation_instances(
instances,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance =
device_contraction_kk_instance<F32,
F32,
F32,
F32,
F32_Tuple,
F32,
BF16,
PassThrough,
PassThrough,
Bilinear>;
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear,
BF16>>>& instances)
{
add_device_operation_instances(
instances,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance =
device_contraction_kn_instance<F32,
F32,
F32,
F32,
F32_Tuple,
F32,
BF16,
PassThrough,
PassThrough,
Bilinear>;
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear,
BF16>>>& instances)
{
add_device_operation_instances(
instances,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance =
device_contraction_mk_instance<F32,
F32,
F32,
F32,
F32_Tuple,
F32,
BF16,
PassThrough,
PassThrough,
Bilinear>;
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear,
BF16>>>& instances)
{
add_device_operation_instances(
instances,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance =
device_contraction_mn_instance<F32,
F32,
F32,
F32,
F32_Tuple,
F32,
BF16,
PassThrough,
PassThrough,
Bilinear>;
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear,
BF16>>>& instances)
{
add_device_operation_instances(
instances,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// This (ifndef) is a hack to use customized behavior for buffer load rather than using default
// setting Don't use this hack unless absolutely necessary!
// FIXME: make the behavior of buffer load a configurable (template) parameter of each device op
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 1
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance =
device_contraction_kk_instance<F32,
F32,
F32,
F32,
F32_Tuple,
F32,
F16,
PassThrough,
PassThrough,
Bilinear>;
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear,
F16>>>& instances)
{
add_device_operation_instances(
instances,
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment