"test/vscode:/vscode.git/clone" did not exist on "ea394347f1e314ab4c7c03ca64307896fdbb8dc5"
Commit 3190d495 authored by rocking's avatar rocking
Browse files

Add conv bias relu quantization exmaple

parent ac199f2f
add_example_executable(example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp) add_example_executable(example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp)
add_example_executable(example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using InDataType = int8_t;
using WeiDataType = int8_t;
using BiasDataType = int32_t;
using AccDataType = int32_t;
using CShuffleDataType = int32_t;
using OutDataType = int8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using ActivationOp = ck::tensor_operation::element_wise::Relu;
using OutElementOp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<ActivationOp>;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename BiasLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<BiasDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
64, // KPerBlock
16, // AK1
16, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
16, // ABlockTransferSrcScalarPerVector
16, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
16, // BBlockTransferSrcScalarPerVector
16, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 64, 1, 4>,
8>;
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv_fwd(bool do_verification,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& bias_g_k_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<BiasDataType> bias(bias_g_k_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "bias: " << bias.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
bias.GenerateTensorValue(GeneratorTensor_2<BiasDataType>{-5, 5});
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem bias_device_buf(sizeof(BiasDataType) * bias.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
bias_device_buf.ToDevice(bias.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> d0_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> d0_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(bias_g_k_desc.GetLengths(), d0_g_n_k_wos_lengths);
copy(bias_g_k_desc.GetStrides(), d0_g_n_k_wos_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(
in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{bias_device_buf.GetDeviceBuffer()},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, 1>{{d0_g_n_k_wos_lengths}},
std::array<std::array<ck::index_t, NDimSpatial + 3>, 1>{{d0_g_n_k_wos_strides}},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = conv_param.GetFlops();
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
Tensor<CShuffleDataType> c_host(out_g_n_k_wos_desc);
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
CShuffleDataType,
InElementOp,
WeiElementOp,
PassThrough>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
c_host,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
// TODO: implement elementwise operation for host
out_host.ForEach(
[&](auto&, auto idx) { out_element_op(out_host(idx), c_host(idx), bias(idx)); });
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(
out_device.mData, out_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
}
return true;
}
int main()
{
bool do_verification = true;
bool time_kernel = true;
const ck::index_t ndim_spatial = 2;
ck::utils::conv::ConvParam conv_param{
ndim_spatial, // n_dim
1, // group
4, // batch
64, // output channels
32, // input chanels
{3, 3}, // weight HW
{71, 71}, // x HW
{2, 2}, // strides
{1, 1}, // dilations
{1, 1}, // left_pads
{1, 1} // right_pads
};
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{0.5f, ActivationOp{}};
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using BiasLayout = ck::tensor_layout::convolution::G_K;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(conv_param);
// TODO - make_bias_host_tensor_descriptor_g_n_k_wos_packed()
const auto bias_g_k_desc = HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(conv_param);
std::cout << out_g_n_k_wos_desc << std::endl;
return run_grouped_conv_fwd<
ndim_spatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<ndim_spatial, InLayout, WeiLayout, BiasLayout, OutLayout>>(
do_verification,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_k_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
...@@ -277,6 +277,28 @@ struct Activation_Mul_Clamp ...@@ -277,6 +277,28 @@ struct Activation_Mul_Clamp
Activation activationOp_; Activation activationOp_;
}; };
// For Activation function which is piecewise linear function, such as relu, leaky relu ...etc
template <typename Activation>
struct Add_Activation_Mul_Clamp
{
Add_Activation_Mul_Clamp(float multiplier, Activation activationOp)
: multiplier_(multiplier), activationOp_(activationOp)
{
}
__host__ __device__ constexpr void
operator()(int8_t& y, const int32_t& x1, const int32_t& x2) const
{
float y_fp32 = ck::type_convert<float>(x1 + x2);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(multiplier_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int8_t>(y_fp32);
}
float multiplier_;
Activation activationOp_;
};
} // namespace element_wise } // namespace element_wise
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment