Commit 316d4acc authored by Adam Osewski's avatar Adam Osewski
Browse files

Merge remote-tracking branch 'origin/develop' into aosewski/gemm_tile_loop

parents 9836e0ae 37a8c1f7
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef __int8__
#ifdef CK_ENABLE_INT8
namespace ck {
namespace tensor_operation {
namespace device {
......
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef __int8__
#ifdef CK_ENABLE_INT8
namespace ck {
namespace tensor_operation {
namespace device {
......
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef __int8__
#ifdef CK_ENABLE_INT8
namespace ck {
namespace tensor_operation {
namespace device {
......
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef __int8__
#ifdef CK_ENABLE_INT8
namespace ck {
namespace tensor_operation {
namespace device {
......
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef __int8__
#ifdef CK_ENABLE_INT8
namespace ck {
namespace tensor_operation {
namespace device {
......
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef __int8__
#ifdef CK_ENABLE_INT8
namespace ck {
namespace tensor_operation {
namespace device {
......
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef __int8__
#ifdef CK_ENABLE_INT8
namespace ck {
namespace tensor_operation {
namespace device {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dpp.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
// clang-format off
using device_gemm_dpp_f16_f16_f16_km_kn_mn_instances = std::tuple<
// ########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MDpp| NDpp| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
// ########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | | Dpp| Dpp| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
// ########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
// ########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDpp< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 4, 4, 16, 16, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 4, 4, 32, 8, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 64, 64, 4, 4, 32, 8, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 32, 32, 32, 4, 4, 32, 8, 1, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 64, 64, 4, 4, 32, 8, 2, 4, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 32, 32, 32, 4, 4, 32, 8, 1, 4, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 16, 16, 16, 4, 4, 16, 16, 1, 1, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, 5, 1>
>;
// clang-format on
void add_device_gemm_dpp_f16_f16_f16_km_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Col, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_dpp_f16_f16_f16_km_kn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dpp.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[k, m] * b[n, k] = c[m, n]
// clang-format off
using device_gemm_dpp_f16_f16_f16_km_nk_mn_instances = std::tuple<
// ########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MDpp| NDpp| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
// ########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | | Dpp| Dpp| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
// ########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
// ########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDpp< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 4, 8, 16, 16, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 4, 8, 32, 8, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 64, 64, 4, 8, 32, 8, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 32, 32, 32, 4, 8, 32, 8, 1, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 64, 64, 4, 8, 32, 8, 2, 4, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 32, 32, 32, 4, 8, 32, 8, 1, 4, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, S<4, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 16, 16, 16, 4, 8, 16, 16, 1, 1, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>
>;
// clang-format on
void add_device_gemm_dpp_f16_f16_f16_km_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Col, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_dpp_f16_f16_f16_km_nk_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dpp.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
// clang-format off
using device_gemm_dpp_f16_f16_f16_mk_kn_mn_instances = std::tuple<
// ########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MDpp| NDpp| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
// ########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | | Dpp| Dpp| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
// ########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
// ########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDpp< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 8, 4, 16, 16, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 8, 4, 32, 8, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 64, 64, 8, 4, 32, 8, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 32, 32, 32, 8, 4, 32, 8, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 64, 64, 8, 4, 32, 8, 2, 4, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 32, 32, 32, 8, 4, 32, 8, 1, 4, S<4, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 16, 16, 16, 8, 4, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, 5, 1>
>;
// clang-format on
void add_device_gemm_dpp_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_dpp_f16_f16_f16_mk_kn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dpp.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[m, k] * b[n, k] = c[m, n]
// clang-format off
using device_gemm_dpp_f16_f16_f16_mk_nk_mn_instances = std::tuple<
// ########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MDpp| NDpp| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
// ########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | | Dpp| Dpp| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
// ########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
// ########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDpp< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 8, 8, 16, 16, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 8, 8, 32, 8, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 64, 64, 8, 8, 32, 8, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 32, 32, 32, 8, 8, 32, 8, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 64, 64, 8, 8, 32, 8, 2, 4, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 32, 32, 32, 8, 8, 32, 8, 1, 4, S<4, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 16, 16, 16, 8, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>
>;
// clang-format on
void add_device_gemm_dpp_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_dpp_f16_f16_f16_mk_nk_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef __int8__
#ifdef CK_ENABLE_INT8
namespace ck {
namespace tensor_operation {
namespace device {
......
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef __int8__
#ifdef CK_ENABLE_INT8
namespace ck {
namespace tensor_operation {
namespace device {
......
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef __int8__
#ifdef CK_ENABLE_INT8
namespace ck {
namespace tensor_operation {
namespace device {
......
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#ifdef __int8__
#ifdef CK_ENABLE_INT8
namespace ck {
namespace tensor_operation {
namespace device {
......
add_instance_library(device_gemm_multiply_add_instance
device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instance.cpp
device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instance.cpp
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instance.cpp
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using F16_Tuple = ck::Tuple<F16, F16>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row, Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using F16_Tuple = ck::Tuple<F16, F16>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row, Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances =
std::tuple<
// clang-format off
// M/N/K padding
// N % 8 == 0 && K % 1 == 0
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>
// clang-format on
>;
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Tuple,
Row,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using F32_Tuple = ck::Tuple<F32, F32>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row, Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_generic_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
F8,
F32_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_generic_instances{});
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using F32_Tuple = ck::Tuple<F32, F32>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row, Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_generic_instances =
std::tuple<
// clang-format off
// M/N/K padding
// N % 8 == 0 && K % 1 == 0
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>
// clang-format on
>;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instances =
std::tuple<
// clang-format off
// M/N/K padding
// N % 8 == 0 && K % 1 == 0
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>
// clang-format on
>;
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Tuple,
Row,
F16,
F8,
F32_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_generic_instances{});
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment