Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
3165d5d7
Commit
3165d5d7
authored
Jul 17, 2023
by
Jing Zhang
Browse files
add examples
parent
fee2002c
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
331 additions
and
54 deletions
+331
-54
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
+228
-1
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
...sor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
+91
-53
library/include/ck/library/utility/device_memory.hpp
library/include/ck/library/utility/device_memory.hpp
+2
-0
library/src/utility/device_memory.cpp
library/src/utility/device_memory.cpp
+10
-0
No files found.
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
View file @
3165d5d7
...
...
@@ -10,6 +10,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
...
...
@@ -57,7 +58,233 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
#include "run_grouped_gemm_example.inc"
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
void
*>
p_Cs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]
*
problem_size
.
Ns
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
(),
a_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
ADataType
));
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
(),
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
BDataType
));
c_tensors_device
[
i
]
->
SetZero
();
p_Cs
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
gemm_descs
.
push_back
({
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
problem_size
.
stride_Cs
[
i
],
{}});
grouped_gemm_kernel_args_
.
push_back
({
a_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b_tensors_device
[
i
]
->
GetDeviceBuffer
(),
{},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
{},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
const
void
*>
p_As
=
{};
std
::
vector
<
const
void
*>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_Ds
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
hip_check_error
(
hipMemcpy
(
gemm_desc_workspace
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
gemm
.
GetWorkSpaceSize
(
&
argument
),
hipMemcpyHostToDevice
));
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
invoker
.
Run
(
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
(),
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
(),
c_device_tensors
[
i
].
mDesc
.
GetElementSize
()
*
sizeof
(
EDataType
));
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
],
c_host_tensors
[
i
]);
}
}
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
(),
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
return
pass
;
}
// int main(int argc, char* argv[]) { return !run_grouped_gemm_example(argc, argv); }
int
main
(
int
argc
,
char
*
argv
[])
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
View file @
3165d5d7
...
...
@@ -459,9 +459,9 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
return
math
::
integer_divide_ceil
(
M_
,
MPerBlock_
);
}
__host__
static
constexpr
index_t
CalculateGridSize
(
index_t
M
,
index_t
N
)
__host__
static
constexpr
index_t
CalculateGridSize
(
index_t
/*M*/
,
index_t
N
)
{
const
auto
M0
=
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
const
auto
M0
=
1
;
//
math::integer_divide_ceil(M, MPerBlock);
const
auto
N0
=
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
return
M0
*
N0
;
...
...
@@ -566,11 +566,27 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
group_count_
=
ck
::
type_convert
<
ck
::
index_t
>
(
gemm_descs
.
size
());
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_As
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Bs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Es
.
size
())))
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_As
.
size
())
||
0
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_As
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_As/b/c.size"
);
throw
std
::
runtime_error
(
"wrong! group_count_ != p_As || 0 != p_As.size"
);
}
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Bs
.
size
())
||
0
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Bs
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_Bs || 0 != p_Bs.size"
);
}
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Ds
.
size
())
||
0
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Ds
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_Ds || 0 != p_Ds.size"
);
}
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Es
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_Es"
);
}
gemm_desc_kernel_arg_
.
reserve
(
group_count_
);
...
...
@@ -605,9 +621,12 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
DsGridDesc_M_N
ds_grid_desc_m_n
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsLayout
>>
;
StrideDs
[
j
]
=
gemm_descs
[
i
].
stride_Ds_
[
j
];
ds_grid_desc_m_n
(
j
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
M
,
N
,
gemm_descs
[
i
].
stride_Ds_
[
j
]);
});
...
...
@@ -655,8 +674,8 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
e_grid_desc_m_n
);
gemm_desc_kernel_arg_
.
push_back
(
GemmBiasTransKernelArg
{
p_As
[
i
],
p_Bs
[
i
],
GemmBiasTransKernelArg
{
p_As
.
size
()
==
0
?
nullptr
:
p_As
[
i
],
p_Bs
.
size
()
==
0
?
nullptr
:
p_Bs
[
i
],
p_ds_grid
,
p_Es
[
i
],
M
,
...
...
@@ -664,7 +683,7 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
K
,
StrideA
,
StrideB
,
{}
,
StrideDs
,
StrideC
,
a_grid_desc_m_k
,
b_grid_desc_n_k
,
...
...
@@ -702,6 +721,58 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
void
*
grouped_gemm_kernel_args_dev
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
bool
has_main_k_block_loop
=
true
;
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_grouped_gemm_xdl
<
GridwiseGemm
,
GroupedGemmKernelArgument
<
NumDTensor
>
,
GemmSpec
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
Block2ETileMap
,
GroupedGemmBlock2ETileMap
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
has_main_k_block_loop_
>
;
const
index_t
grid_size_grp
=
arg
.
gemm_desc_kernel_arg_
[
0
].
BlockEnd_
-
arg
.
gemm_desc_kernel_arg_
[
0
].
BlockStart_
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
grouped_gemm_kernel_args_dev
),
arg
.
gemm_desc_kernel_arg_
.
size
(),
grid_size_grp
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
);
};
if
(
has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
return
ave_time
;
}
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
bool
has_main_k_block_loop
=
true
;
...
...
@@ -753,10 +824,17 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
throw
std
::
runtime_error
(
"wrong! not all gemm has_main_k_block_loop"
);
}
if
(
arg
.
gemm_desc_kernel_arg_
[
i
].
a_ptr_
==
nullptr
||
arg
.
gemm_desc_kernel_arg_
[
i
].
b_ptr_
==
nullptr
||
arg
.
gemm_desc_kernel_arg_
[
i
].
e_ptr_
==
nullptr
)
{
throw
std
::
runtime_error
(
"wrong! p_a/b/c_grid is nullptr"
);
}
grouped_gemm_kernel_args
.
push_back
(
GroupedGemmKernelArgument
<
NumDTensor
>
{
arg
.
gemm_desc_kernel_arg_
[
i
].
a_ptr_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
b_ptr_
,
{}
,
arg
.
gemm_desc_kernel_arg_
[
i
].
ds_ptr_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
e_ptr_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
M_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
N_
,
...
...
@@ -774,48 +852,7 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
hipMemcpyHostToDevice
,
stream_config
.
stream_id_
));
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_grouped_gemm_xdl
<
GridwiseGemm
,
GroupedGemmKernelArgument
<
NumDTensor
>
,
GemmSpec
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
Block2ETileMap
,
GroupedGemmBlock2ETileMap
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
has_main_k_block_loop_
>
;
const
index_t
grid_size_grp
=
arg
.
gemm_desc_kernel_arg_
[
0
].
BlockEnd_
-
arg
.
gemm_desc_kernel_arg_
[
0
].
BlockStart_
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
p_workspace_
),
arg
.
gemm_desc_kernel_arg_
.
size
(),
grid_size_grp
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
);
};
if
(
has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
float
ave_time
=
Run
(
arg
,
arg
.
p_workspace_
,
stream_config
);
return
ave_time
;
}
...
...
@@ -932,7 +969,8 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
return
dynamic_cast
<
const
Argument
*>
(
p_arg
)
->
group_count_
*
sizeof
(
GemmBiasTransKernelArg
);
return
dynamic_cast
<
const
Argument
*>
(
p_arg
)
->
group_count_
*
sizeof
(
GroupedGemmKernelArgument
<
NumDTensor
>
);
}
};
...
...
library/include/ck/library/utility/device_memory.hpp
View file @
3165d5d7
...
...
@@ -25,7 +25,9 @@ struct DeviceMem
void
*
GetDeviceBuffer
()
const
;
std
::
size_t
GetBufferSize
()
const
;
void
ToDevice
(
const
void
*
p
)
const
;
void
ToDevice
(
const
void
*
p
,
const
std
::
size_t
cpySize
)
const
;
void
FromDevice
(
void
*
p
)
const
;
void
FromDevice
(
void
*
p
,
const
std
::
size_t
cpySize
)
const
;
void
SetZero
()
const
;
template
<
typename
T
>
void
SetValue
(
T
x
)
const
;
...
...
library/src/utility/device_memory.cpp
View file @
3165d5d7
...
...
@@ -19,11 +19,21 @@ void DeviceMem::ToDevice(const void* p) const
hip_check_error
(
hipMemcpy
(
mpDeviceBuf
,
const_cast
<
void
*>
(
p
),
mMemSize
,
hipMemcpyHostToDevice
));
}
void
DeviceMem
::
ToDevice
(
const
void
*
p
,
const
std
::
size_t
cpySize
)
const
{
hip_check_error
(
hipMemcpy
(
mpDeviceBuf
,
const_cast
<
void
*>
(
p
),
cpySize
,
hipMemcpyHostToDevice
));
}
void
DeviceMem
::
FromDevice
(
void
*
p
)
const
{
hip_check_error
(
hipMemcpy
(
p
,
mpDeviceBuf
,
mMemSize
,
hipMemcpyDeviceToHost
));
}
void
DeviceMem
::
FromDevice
(
void
*
p
,
const
std
::
size_t
cpySize
)
const
{
hip_check_error
(
hipMemcpy
(
p
,
mpDeviceBuf
,
cpySize
,
hipMemcpyDeviceToHost
));
}
void
DeviceMem
::
SetZero
()
const
{
hip_check_error
(
hipMemset
(
mpDeviceBuf
,
0
,
mMemSize
));
}
DeviceMem
::~
DeviceMem
()
{
hip_check_error
(
hipFree
(
mpDeviceBuf
));
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment