Commit 2f88070a authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of...

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/composable_kernel into e2e_kernellib
parents 0bb08f4b b076a02a
......@@ -9,10 +9,10 @@ namespace device {
namespace instance {
void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -23,19 +23,28 @@ void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
{
// dl
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwd1x1S1P0,
......@@ -44,10 +53,10 @@ void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -58,19 +67,28 @@ void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
{
// dl
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwd1x1S1P0,
......@@ -79,10 +97,10 @@ void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -93,19 +111,28 @@ void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
{
// dl
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
......
......@@ -9,10 +9,10 @@ namespace device {
namespace instance {
void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -22,19 +22,28 @@ void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
Add_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_Clamp,
ConvFwd1x1S1P0,
......@@ -43,10 +52,10 @@ void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -56,21 +65,30 @@ void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
Add_Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwd1x1S1P0,
......@@ -79,10 +97,10 @@ void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -92,21 +110,30 @@ void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
Add_Mul_TanH_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
......
......@@ -12,7 +12,10 @@ namespace device {
namespace instance {
// clang-format off
template <typename DsLayout,
template <typename InLayout,
typename WeiLayout,
typename DsLayout,
typename OutLayout,
typename DsDatatype,
typename OutElementOp,
ConvolutionForwardSpecialization ConvSpec,
......@@ -23,7 +26,7 @@ using device_grouped_conv2d_dl_int8_instances =
// ###########################################| Spatial| Type| Type| Type| Type| Type| | | Layout| | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ###########################################| | | | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK< NDimSpatial, int8_t, int8_t, DsDatatype, int8_t, int32_t, GNHWC, GKYXC, DsLayout, GNHWK, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<0, 1, 2, 3, 4, 5>, 5, DstScalarPerVector>
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK< NDimSpatial, int8_t, int8_t, DsDatatype, int8_t, int32_t, InLayout, WeiLayout, DsLayout, OutLayout, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<0, 1, 2, 3, 4, 5>, 5, DstScalarPerVector>
>;
// clang-format on
......
......@@ -9,10 +9,10 @@ namespace device {
namespace instance {
void add_device_conv2d_dl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -22,19 +22,28 @@ void add_device_conv2d_dl_perchannel_quantization_int8_instances(
Mul2_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Mul2_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Mul2_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Mul2_Clamp,
ConvFwd1x1S1P0,
......@@ -43,10 +52,10 @@ void add_device_conv2d_dl_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -56,19 +65,28 @@ void add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(
Relu_Mul2_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwd1x1S1P0,
......
......@@ -9,10 +9,10 @@ namespace device {
namespace instance {
void add_device_conv2d_dl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -22,19 +22,28 @@ void add_device_conv2d_dl_perlayer_quantization_int8_instances(
Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<Empty_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<Empty_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<Empty_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Mul_Clamp,
ConvFwd1x1S1P0,
......@@ -43,10 +52,10 @@ void add_device_conv2d_dl_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -56,19 +65,28 @@ void add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(
Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<Empty_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<Empty_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<Empty_Tuple,
device_grouped_conv2d_dl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwd1x1S1P0,
......
......@@ -9,10 +9,10 @@ namespace device {
namespace instance {
void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -22,19 +22,28 @@ void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
Add_Mul2_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwd1x1S1P0,
......@@ -43,10 +52,10 @@ void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -56,19 +65,28 @@ void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
Add_Relu_Mul2_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwd1x1S1P0,
......@@ -77,10 +95,10 @@ void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -90,19 +108,28 @@ void add_device_conv2d_xdl_bias_tanh_perchannel_quantization_int8_instances(
Add_Mul2_TanH_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
I32_F32_Tuple,
Add_Mul2_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
......
......@@ -9,10 +9,10 @@ namespace device {
namespace instance {
void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -22,19 +22,28 @@ void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
Add_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_Clamp,
ConvFwd1x1S1P0,
......@@ -43,10 +52,10 @@ void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -56,21 +65,30 @@ void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
Add_Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwd1x1S1P0,
......@@ -79,10 +97,10 @@ void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -92,21 +110,30 @@ void add_device_conv2d_xdl_bias_tanh_perlayer_quantization_int8_instances(
Add_Mul_TanH_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
I32_Tuple,
Add_Mul_TanH_Mul_Clamp,
ConvFwd1x1S1P0,
......
......@@ -12,30 +12,33 @@ namespace device {
namespace instance {
// clang-format off
template <typename DsLayout,
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename DsDatatype,
typename OutElementOp,
ConvolutionForwardSpecialization ConvSpec,
index_t DstScalarPerVector>
using device_grouped_conv2d_xdl_int8_instances =
std::tuple <
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 256, 64, 16, 16, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 64, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 64, 64, 16, 16, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 64, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 32, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, GNHWC, GKYXC, DsLayout, GNHWK, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 32, 64, 64, 16, 16, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 256, 64, 16, 16, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 64, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 64, 64, 16, 16, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 64, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 32, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial, ALayout, BLayout, DsLayout, ELayout, int8_t, int8_t, int32_t, int32_t, DsDatatype, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 32, 64, 64, 16, 16, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, DstScalarPerVector>
>;
// clang-format on
......
......@@ -9,10 +9,10 @@ namespace device {
namespace instance {
void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -22,19 +22,28 @@ void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
Mul2_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Mul2_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Mul2_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Mul2_Clamp,
ConvFwd1x1S1P0,
......@@ -43,10 +52,10 @@ void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -56,19 +65,28 @@ void add_device_conv2d_xdl_relu_perchannel_quantization_int8_instances(
Relu_Mul2_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwdDefault,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwd1x1P0,
8>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<GK_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwd1x1S1P0,
......
......@@ -9,10 +9,10 @@ namespace device {
namespace instance {
void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -22,19 +22,28 @@ void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<Empty_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Mul_Clamp,
ConvFwdDefault,
16>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<Empty_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Mul_Clamp,
ConvFwd1x1P0,
16>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<Empty_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Mul_Clamp,
ConvFwd1x1S1P0,
......@@ -43,10 +52,10 @@ void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -56,19 +65,28 @@ void add_device_conv2d_xdl_relu_perlayer_quantization_int8_instances(
Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<Empty_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwdDefault,
16>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<Empty_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwd1x1P0,
16>{});
add_device_operation_instances(instances,
device_grouped_conv2d_xdl_int8_instances<Empty_Tuple,
device_grouped_conv2d_xdl_int8_instances<NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwd1x1S1P0,
......
......@@ -72,8 +72,8 @@ bool profile_gemm_splitk_impl(int do_verification,
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-1, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-1, 2});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
......@@ -94,7 +94,7 @@ bool profile_gemm_splitk_impl(int do_verification,
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
c_device_buf.ToDevice(c_m_n_device_result.mData.data());
c_device_buf.SetZero();
using DeviceOp = ck::tensor_operation::device::DeviceGemmSplitK<ALayout,
BLayout,
......
......@@ -8,6 +8,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp"
......@@ -39,7 +40,8 @@ bool profile_grouped_gemm_impl(int do_verification,
const std::vector<int>& Ks,
const std::vector<int>& StrideAs,
const std::vector<int>& StrideBs,
const std::vector<int>& StrideCs)
const std::vector<int>& StrideCs,
int kbatch = 1)
{
bool pass = true;
......@@ -96,8 +98,6 @@ bool profile_grouped_gemm_impl(int do_verification,
a_m_k[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
b_k_n[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
}
c_m_n_device_results[i].GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
......@@ -132,13 +132,12 @@ bool profile_grouped_gemm_impl(int do_verification,
std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpaceSize()));
b_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpaceSize()));
c_device_buf.emplace_back(std::make_unique<DeviceMem>(
sizeof(CDataType) * c_m_n_device_results[i].mDesc.GetElementSpaceSize()));
a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
c_device_buf[i]->ToDevice(c_m_n_device_results[i].mData.data());
c_device_buf[i]->SetZero();
gemm_descs.push_back({Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i], {}});
......@@ -197,6 +196,28 @@ bool profile_grouped_gemm_impl(int do_verification,
{
std::string gemm_name = gemm_ptr->GetTypeString();
if(kbatch > 1)
{
using DeviceOpSplitK =
ck::tensor_operation::device::DeviceGroupedGemmSplitK<ALayout,
BLayout,
ck::Tuple<>,
CLayout,
ADataType,
BDataType,
ck::Tuple<>,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
if(dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get()) != nullptr)
{
dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get())
->SetKBatchSize(argument_ptr.get(), kbatch);
}
}
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
......
......@@ -52,20 +52,24 @@ std::vector<int> argToIntArray(char* input)
int profile_grouped_gemm(int argc, char* argv[])
{
if(!(argc == 14))
if(argc < 14)
{
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
printf(" 3: A[k, m] * B[n, k] = C[m, n])\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg6: print tensor value (0: no; 1: yes)\n");
printf("arg7: time kernel (0=n0, 1=yes)\n");
printf("arg8 to 13: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
"64,64 64,64 128,128)\n");
std::cout
<< "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n"
<< "arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n"
<< " 1: A[m, k] * B[n, k] = C[m, n];\n"
<< " 2: A[k, m] * B[k, n] = C[m, n];\n"
<< " 3: A[k, m] * B[n, k] = C[m, n])\n"
<< "arg4: verification (0: no; 1: yes)\n"
<< "arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: time kernel (0=n0, 1=yes)\n"
<< "arg8 to 13: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
"64,64 64,64 128,128)\n"
<< "arg15: kbatch value (default 4)\n"
<< std::endl;
exit(1);
}
......@@ -83,6 +87,7 @@ int profile_grouped_gemm(int argc, char* argv[])
const auto StrideAs = argToIntArray(argv[11]);
const auto StrideBs = argToIntArray(argv[12]);
const auto StrideCs = argToIntArray(argv[13]);
const int kbatch = argc == 15 ? std::stoi(argv[14]) : 1;
if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
......@@ -101,7 +106,8 @@ int profile_grouped_gemm(int argc, char* argv[])
Ks,
StrideAs,
StrideBs,
StrideCs);
StrideCs,
kbatch);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
......@@ -120,7 +126,8 @@ int profile_grouped_gemm(int argc, char* argv[])
Ks,
StrideAs,
StrideBs,
StrideCs);
StrideCs,
kbatch);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_KN_MN)
{
......@@ -139,7 +146,8 @@ int profile_grouped_gemm(int argc, char* argv[])
Ks,
StrideAs,
StrideBs,
StrideCs);
StrideCs,
kbatch);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_NK_MN)
{
......@@ -158,7 +166,8 @@ int profile_grouped_gemm(int argc, char* argv[])
Ks,
StrideAs,
StrideBs,
StrideCs);
StrideCs,
kbatch);
}
else
{
......
......@@ -12,9 +12,8 @@ cmake
-save-temps=$PWD" \
-D CMAKE_BUILD_TYPE=Release \
-D BUILD_DEV=ON \
-D GPU_TARGETS="gfx908;gfx90a" \
-D GPU_TARGETS="gfx908;gfx90a;gfx940" \
-D CMAKE_VERBOSE_MAKEFILE:BOOL=ON \
-D USE_BITINT_EXTENSION_INT4=OFF \
${MY_PROJECT_SOURCE}
#-D AMDGPU_TARGETS=gfx90a;gfx908
......@@ -11,9 +11,8 @@ cmake
-D CMAKE_CXX_FLAGS="-O3" \
-D CMAKE_BUILD_TYPE=Release \
-D BUILD_DEV=OFF \
-D GPU_TARGETS="gfx908;gfx90a" \
-D GPU_TARGETS="gfx908;gfx90a;gfx940" \
-D CMAKE_VERBOSE_MAKEFILE:BOOL=ON \
-D USE_BITINT_EXTENSION_INT4=OFF \
${MY_PROJECT_SOURCE}
#-D AMDGPU_TARGETS=gfx90a;gfx908
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment