Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
2f463a94
"docs/source/zh/index.mdx" did not exist on "21e61eb3a9d16a46245bd284fea3aa19e66772f5"
Commit
2f463a94
authored
May 25, 2023
by
carlushuang
Browse files
Merge remote-tracking branch 'origin/develop' into stream-k-initial-impl
parents
ca8b5c79
ac9e01e2
Changes
151
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
234 additions
and
847 deletions
+234
-847
example/10_convnd_fwd_multiple_d_multiple_reduce/CMakeLists.txt
...e/10_convnd_fwd_multiple_d_multiple_reduce/CMakeLists.txt
+15
-16
example/13_pool2d_fwd/pool2d_fwd_common.hpp
example/13_pool2d_fwd/pool2d_fwd_common.hpp
+40
-132
example/13_pool2d_fwd/pool2d_fwd_fp16.cpp
example/13_pool2d_fwd/pool2d_fwd_fp16.cpp
+4
-5
example/13_pool2d_fwd/pool2d_fwd_fp32.cpp
example/13_pool2d_fwd/pool2d_fwd_fp32.cpp
+4
-5
example/14_gemm_quantization/CMakeLists.txt
example/14_gemm_quantization/CMakeLists.txt
+4
-2
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
+22
-20
example/17_convnd_bwd_data/CMakeLists.txt
example/17_convnd_bwd_data/CMakeLists.txt
+4
-3
example/18_batched_gemm_reduce/CMakeLists.txt
example/18_batched_gemm_reduce/CMakeLists.txt
+3
-1
example/20_grouped_conv_bwd_weight/CMakeLists.txt
example/20_grouped_conv_bwd_weight/CMakeLists.txt
+6
-5
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
...d_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
+3
-1
example/21_gemm_layernorm/CMakeLists.txt
example/21_gemm_layernorm/CMakeLists.txt
+6
-4
example/26_contraction/contraction_bilinear_xdl_fp32.cpp
example/26_contraction/contraction_bilinear_xdl_fp32.cpp
+17
-151
example/26_contraction/contraction_bilinear_xdl_fp64.cpp
example/26_contraction/contraction_bilinear_xdl_fp64.cpp
+17
-151
example/26_contraction/contraction_scale_xdl_fp32.cpp
example/26_contraction/contraction_scale_xdl_fp32.cpp
+18
-151
example/26_contraction/contraction_scale_xdl_fp64.cpp
example/26_contraction/contraction_scale_xdl_fp64.cpp
+18
-151
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
+17
-19
example/31_batched_gemm_gemm/CMakeLists.txt
example/31_batched_gemm_gemm/CMakeLists.txt
+11
-9
example/35_splitK_gemm/CMakeLists.txt
example/35_splitK_gemm/CMakeLists.txt
+11
-10
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
+7
-6
example/40_conv2d_fwd_quantization/CMakeLists.txt
example/40_conv2d_fwd_quantization/CMakeLists.txt
+7
-5
No files found.
example/10_convnd_fwd_multiple_d_multiple_reduce/CMakeLists.txt
View file @
2f463a94
add_custom_target
(
example_convnd_fwd_reduce_xdl
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_custom_target
(
example_convnd_fwd_reduce_xdl
)
add_example_executable
(
example_convnd_fwd_max_xdl_int8 convnd_fwd_max_xdl_int8.cpp
)
add_example_executable
(
example_convnd_fwd_max_xdl_int8 convnd_fwd_max_xdl_int8.cpp
)
add_example_executable_no_testing
(
example_convnd_fwd_max_xdl_bf16 convnd_fwd_max_xdl_bf16.cpp
)
add_example_executable_no_testing
(
example_convnd_fwd_max_xdl_bf16 convnd_fwd_max_xdl_bf16.cpp
)
add_example_executable_no_testing
(
example_convnd_fwd_max_xdl_fp16 convnd_fwd_max_xdl_fp16.cpp
)
add_example_executable_no_testing
(
example_convnd_fwd_max_xdl_fp16 convnd_fwd_max_xdl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_max_xdl_fp32 convnd_fwd_max_xdl_fp32.cpp
)
add_example_executable
(
example_convnd_fwd_max_xdl_fp32 convnd_fwd_max_xdl_fp32.cpp
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int8
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int8
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_bf16
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_bf16
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp16
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp16
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp32
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp32
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_convnd_fwd_max_xdl_int4 convnd_fwd_max_xdl_int4.cpp
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int4
)
add_example_executable
(
example_convnd_fwd_max_xdl_int4 convnd_fwd_max_xdl_int4.cpp
)
endif
(
USE_BITINT_EXTENSION_INT4
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int4
)
endif
()
endif
(
USE_BITINT_EXTENSION_INT4
)
\ No newline at end of file
example/13_pool2d_fwd/pool2d_fwd_common.hpp
View file @
2f463a94
...
@@ -17,115 +17,11 @@
...
@@ -17,115 +17,11 @@
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
template
<
typename
InDataType
,
template
<
typename
InDataType
,
typename
OutDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
ComputeDataType
,
typename
IndexDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
OutputIndex
>
static
void
pool_host_verify
(
const
Tensor
<
InDataType
>&
in
,
Tensor
<
OutDataType
>&
out
,
Tensor
<
IndexDataType
>&
out_indices
,
const
std
::
array
<
ck
::
index_t
,
2
>&
window_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
2
>&
window_strides
,
const
std
::
array
<
ck
::
index_t
,
2
>&
in_left_pads
,
const
std
::
array
<
ck
::
index_t
,
2
>&
/*in_right_pads*/
)
{
const
int32_t
reduceLength
=
window_spatial_lengths
[
0
]
*
window_spatial_lengths
[
1
];
using
ReduceOperation
=
typename
ck
::
reduce_binary_operator
<
ReduceOpId
>::
opType
;
auto
elementwise_ops
=
ck
::
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
reduceLength
);
auto
in_elementwise_op
=
std
::
get
<
0
>
(
elementwise_ops
);
auto
acc_elementwise_op
=
std
::
get
<
1
>
(
elementwise_ops
);
if
constexpr
(
!
OutputIndex
)
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
>
;
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
AccDataType
>();
for
(
ck
::
index_t
y
=
0
;
y
<
window_spatial_lengths
[
0
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
window_strides
[
0
]
+
y
-
in_left_pads
[
0
];
for
(
ck
::
index_t
x
=
0
;
x
<
window_spatial_lengths
[
1
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
window_strides
[
1
]
+
x
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_t
>
(
in
.
mDesc
.
GetLengths
()[
2
])
&&
wi
>=
0
&&
wi
<
static_cast
<
ck
::
index_t
>
(
in
.
mDesc
.
GetLengths
()[
3
]))
{
AccDataType
currVal
=
static_cast
<
AccDataType
>
(
in
(
n
,
c
,
hi
,
wi
));
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
);
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
out
(
n
,
c
,
ho
,
wo
)
=
accuVal
;
};
make_ParallelTensorFunctor
(
f_nchw
,
out
.
mDesc
.
GetLengths
()[
0
],
out
.
mDesc
.
GetLengths
()[
1
],
out
.
mDesc
.
GetLengths
()[
2
],
out
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
}
else
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
,
IndexDataType
>
;
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
AccDataType
>();
IndexDataType
accuIndex
=
0
;
for
(
ck
::
index_t
y
=
0
;
y
<
window_spatial_lengths
[
0
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
window_strides
[
0
]
+
y
-
in_left_pads
[
0
];
for
(
ck
::
index_t
x
=
0
;
x
<
window_spatial_lengths
[
1
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
window_strides
[
1
]
+
x
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
in
.
mDesc
.
GetLengths
()[
2
]
&&
wi
>=
0
&&
wi
<
in
.
mDesc
.
GetLengths
()[
3
])
{
AccDataType
currVal
=
static_cast
<
AccDataType
>
(
in
(
n
,
c
,
hi
,
wi
));
IndexDataType
currIndex
=
y
*
window_spatial_lengths
[
1
]
+
x
;
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
,
accuIndex
,
currIndex
);
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
out
(
n
,
c
,
ho
,
wo
)
=
accuVal
;
out_indices
(
n
,
c
,
ho
,
wo
)
=
accuIndex
;
};
make_ParallelTensorFunctor
(
f_nchw
,
out
.
mDesc
.
GetLengths
()[
0
],
out
.
mDesc
.
GetLengths
()[
1
],
out
.
mDesc
.
GetLengths
()[
2
],
out
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
};
}
template
<
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
IndexDataType
,
typename
IndexDataType
,
typename
InLayout
,
typename
InLayout
,
typename
OutLayout
,
typename
OutLayout
,
...
@@ -150,9 +46,10 @@ bool pool_test(bool do_verification,
...
@@ -150,9 +46,10 @@ bool pool_test(bool do_verification,
{
{
using
DevicePoolFwdInstance
=
using
DevicePoolFwdInstance
=
ck
::
tensor_operation
::
device
::
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
<
ck
::
tensor_operation
::
device
::
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
<
InDataType
,
// InDataType
InDataType
,
// InDataType
OutDataType
,
// OutDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
IndexDataType
,
// IndexDataType
ComputeDataType
,
// ComputeDataType
ReduceOpId
,
ReduceOpId
,
OutputIndex
,
OutputIndex
,
64
,
// BlockSize
64
,
// BlockSize
...
@@ -165,10 +62,10 @@ bool pool_test(bool do_verification,
...
@@ -165,10 +62,10 @@ bool pool_test(bool do_verification,
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Y
)
/
window_stride_h
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Y
)
/
window_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
X
)
/
window_stride_w
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
X
)
/
window_stride_w
+
1
;
const
std
::
array
<
ck
::
index_t
,
2
>
window_spatial_lengths
{
{
Y
,
X
}
}
;
const
std
::
vector
<
ck
::
index_t
>
window_spatial_lengths
{
Y
,
X
};
const
std
::
array
<
ck
::
index_t
,
2
>
window_strides
{
{
window_stride_h
,
window_stride_w
}
}
;
const
std
::
vector
<
ck
::
index_t
>
window_strides
{
window_stride_h
,
window_stride_w
};
const
std
::
array
<
ck
::
index_t
,
2
>
input_left_pads
{
{
in_left_pad_h
,
in_left_pad_w
}
}
;
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{
in_left_pad_h
,
in_left_pad_w
};
const
std
::
array
<
ck
::
index_t
,
2
>
input_right_pads
{
{
in_right_pad_h
,
in_right_pad_w
}
}
;
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{
in_right_pad_h
,
in_right_pad_w
};
// tensor layout
// tensor layout
auto
f_host_tensor_descriptor
=
auto
f_host_tensor_descriptor
=
...
@@ -219,14 +116,16 @@ bool pool_test(bool do_verification,
...
@@ -219,14 +116,16 @@ bool pool_test(bool do_verification,
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
N
,
{
N
,
C
,
Hi
,
Wi
},
C
,
{
Y
,
X
},
std
::
array
<
ck
::
index_t
,
2
>
{{
Hi
,
Wi
}},
{
N
,
C
,
Ho
,
Wo
},
std
::
array
<
ck
::
index_t
,
2
>
{{
Y
,
X
}},
{
C
*
Hi
*
Wi
,
1
,
Wi
*
C
,
C
},
std
::
array
<
ck
::
index_t
,
2
>
{{
Ho
,
Wo
}},
{
C
*
Ho
*
Wo
,
1
,
Wo
*
C
,
C
},
{
C
*
Ho
*
Wo
,
1
,
Wo
*
C
,
C
},
window_strides
,
window_strides
,
input_left_pads
,
input_left_pads
,
input_right_pads
);
input_right_pads
,
{
2
,
3
});
if
(
!
pool
.
IsSupportedArgument
(
argument_ptr
.
get
()))
if
(
!
pool
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
{
...
@@ -252,19 +151,28 @@ bool pool_test(bool do_verification,
...
@@ -252,19 +151,28 @@ bool pool_test(bool do_verification,
if
(
do_verification
)
if
(
do_verification
)
{
{
pool_host_verify
<
InDataType
,
using
ReferencePoolingFwdInstance
=
OutDataType
,
ck
::
tensor_operation
::
host
::
ReferencePoolingFwd
<
4
,
AccDataType
,
2
,
IndexDataType
,
InDataType
,
ReduceOpId
,
OutDataType
,
PropagateNan
,
ComputeDataType
,
OutputIndex
>
(
in_n_c_hi_wi
,
IndexDataType
,
out_n_c_ho_wo_host
,
ReduceOpId
,
out_indices_n_c_ho_wo_host
,
PropagateNan
,
window_spatial_lengths
,
OutputIndex
>
;
window_strides
,
input_left_pads
,
auto
ref_pooling
=
ReferencePoolingFwdInstance
{};
input_right_pads
);
auto
ref_pooling_invoker
=
ref_pooling
.
MakeInvoker
();
auto
ref_pooling_argument
=
ref_pooling
.
MakeArgument
(
in_n_c_hi_wi
,
out_n_c_ho_wo_host
,
out_indices_n_c_ho_wo_host
,
window_spatial_lengths
,
window_strides
,
input_left_pads
,
input_right_pads
);
ref_pooling_invoker
.
Run
(
ref_pooling_argument
);
out_device_buf
.
FromDevice
(
out_n_c_ho_wo_device
.
mData
.
data
());
out_device_buf
.
FromDevice
(
out_n_c_ho_wo_device
.
mData
.
data
());
...
...
example/13_pool2d_fwd/pool2d_fwd_fp16.cpp
View file @
2f463a94
...
@@ -2,7 +2,6 @@
...
@@ -2,7 +2,6 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
...
@@ -10,9 +9,9 @@
...
@@ -10,9 +9,9 @@
#include "pool2d_fwd_common.hpp"
#include "pool2d_fwd_common.hpp"
using
InDataType
=
ck
::
half_t
;
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
Acc
DataType
=
float
;
using
Compute
DataType
=
float
;
using
IndexDataType
=
int32_t
;
using
IndexDataType
=
int32_t
;
...
@@ -91,7 +90,7 @@ int main(int argc, char* argv[])
...
@@ -91,7 +90,7 @@ int main(int argc, char* argv[])
bool
pass
=
pool_test
<
InDataType
,
bool
pass
=
pool_test
<
InDataType
,
OutDataType
,
OutDataType
,
Acc
DataType
,
Compute
DataType
,
IndexDataType
,
IndexDataType
,
InLayout
,
InLayout
,
OutLayout
,
OutLayout
,
...
...
example/13_pool2d_fwd/pool2d_fwd_fp32.cpp
View file @
2f463a94
...
@@ -2,7 +2,6 @@
...
@@ -2,7 +2,6 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_enums.hpp"
...
@@ -10,9 +9,9 @@
...
@@ -10,9 +9,9 @@
#include "pool2d_fwd_common.hpp"
#include "pool2d_fwd_common.hpp"
using
InDataType
=
float
;
using
InDataType
=
float
;
using
OutDataType
=
float
;
using
OutDataType
=
float
;
using
Acc
DataType
=
float
;
using
Compute
DataType
=
float
;
using
IndexDataType
=
int32_t
;
using
IndexDataType
=
int32_t
;
...
@@ -91,7 +90,7 @@ int main(int argc, char* argv[])
...
@@ -91,7 +90,7 @@ int main(int argc, char* argv[])
bool
pass
=
pool_test
<
InDataType
,
bool
pass
=
pool_test
<
InDataType
,
OutDataType
,
OutDataType
,
Acc
DataType
,
Compute
DataType
,
IndexDataType
,
IndexDataType
,
InLayout
,
InLayout
,
OutLayout
,
OutLayout
,
...
...
example/14_gemm_quantization/CMakeLists.txt
View file @
2f463a94
...
@@ -2,5 +2,7 @@
...
@@ -2,5 +2,7 @@
add_example_executable
(
example_gemm_dl_quantization_int8 gemm_dl_quantization_int8.cpp
)
add_example_executable
(
example_gemm_dl_quantization_int8 gemm_dl_quantization_int8.cpp
)
# xdlops
# xdlops
add_example_executable
(
example_gemm_xdl_bias_relu_quantization_int8 gemm_xdl_bias_relu_quantization_int8.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_gemm_xdl_quantization_int8 gemm_xdl_quantization_int8.cpp
)
add_example_executable
(
example_gemm_xdl_bias_relu_quantization_int8 gemm_xdl_bias_relu_quantization_int8.cpp
)
\ No newline at end of file
add_example_executable
(
example_gemm_xdl_quantization_int8 gemm_xdl_quantization_int8.cpp
)
endif
()
\ No newline at end of file
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
View file @
2f463a94
add_custom_target
(
example_gemm_reduce_xdl
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_custom_target
(
example_gemm_reduce_xdl_max
)
add_custom_target
(
example_gemm_reduce_xdl
)
add_custom_target
(
example_gemm_reduce_xdl_mean_meansquare
)
add_custom_target
(
example_gemm_reduce_xdl_max
)
add_custom_target
(
example_gemm_add_add_mean_meansquare_xdl
)
add_custom_target
(
example_gemm_reduce_xdl_mean_meansquare
)
add_custom_target
(
example_gemm_add_add_mean_meansquare_xdl
)
add_example_executable
(
example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_max_xdl_int8 gemm_max_xdl_int8.cpp
)
add_example_executable
(
example_gemm_max_xdl_int8 gemm_max_xdl_int8.cpp
)
add_example_executable
(
example_gemm_max_xdl_fp32 gemm_max_xdl_fp32.cpp
)
add_example_executable
(
example_gemm_max_xdl_fp32 gemm_max_xdl_fp32.cpp
)
add_example_executable
(
example_gemm_max_xdl_bf16 gemm_max_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_max_xdl_bf16 gemm_max_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_add_add_mean_meansquare_xdl_fp16 gemm_add_add_mean_meansquare_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_add_add_mean_meansquare_xdl_fp16 gemm_add_add_mean_meansquare_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp16 gemm_mean_meansquare_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp16 gemm_mean_meansquare_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp32 gemm_mean_meansquare_xdl_fp32.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp32 gemm_mean_meansquare_xdl_fp32.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_bf16 gemm_mean_meansquare_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_bf16 gemm_mean_meansquare_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_add_addsquare_xdl_int8 gemm_add_addsquare_xdl_int8.cpp
)
add_example_executable
(
example_gemm_add_addsquare_xdl_int8 gemm_add_addsquare_xdl_int8.cpp
)
add_dependencies
(
example_gemm_reduce_xdl_max
add_dependencies
(
example_gemm_reduce_xdl_max
example_gemm_max_xdl_bf16
example_gemm_max_xdl_bf16
example_gemm_max_xdl_fp16
example_gemm_max_xdl_fp16
example_gemm_max_xdl_fp32
example_gemm_max_xdl_fp32
example_gemm_max_xdl_int8
)
example_gemm_max_xdl_int8
)
add_dependencies
(
example_gemm_reduce_xdl_mean_meansquare
add_dependencies
(
example_gemm_reduce_xdl_mean_meansquare
example_gemm_mean_meansquare_xdl_fp16
example_gemm_mean_meansquare_xdl_fp16
example_gemm_mean_meansquare_xdl_fp32
example_gemm_mean_meansquare_xdl_fp32
example_gemm_mean_meansquare_xdl_bf16
example_gemm_mean_meansquare_xdl_bf16
example_gemm_add_addsquare_xdl_int8
)
example_gemm_add_addsquare_xdl_int8
)
add_dependencies
(
example_gemm_add_add_mean_meansquare_xdl example_gemm_add_add_mean_meansquare_xdl_fp16
)
add_dependencies
(
example_gemm_add_add_mean_meansquare_xdl example_gemm_add_add_mean_meansquare_xdl_fp16
)
add_dependencies
(
example_gemm_reduce_xdl
add_dependencies
(
example_gemm_reduce_xdl
example_gemm_reduce_xdl_mean_meansquare
example_gemm_reduce_xdl_mean_meansquare
example_gemm_reduce_xdl_max
example_gemm_reduce_xdl_max
example_gemm_add_add_mean_meansquare_xdl
)
example_gemm_add_add_mean_meansquare_xdl
)
if
(
USE_BITINT_EXTENSION_INT4
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_gemm_max_xdl_int4 gemm_max_xdl_int4.cpp
)
add_example_executable
(
example_gemm_max_xdl_int4 gemm_max_xdl_int4.cpp
)
add_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_int4
)
add_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_int4
)
endif
()
endif
()
endif
()
example/17_convnd_bwd_data/CMakeLists.txt
View file @
2f463a94
add_example_executable
(
example_convnd_bwd_data_xdl_fp16 convnd_bwd_data_xdl_fp16.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
target_link_libraries
(
example_convnd_bwd_data_xdl_fp16 PRIVATE utility
)
add_example_executable
(
example_convnd_bwd_data_xdl_fp16 convnd_bwd_data_xdl_fp16.cpp
)
target_link_libraries
(
example_convnd_bwd_data_xdl_fp16 PRIVATE utility
)
endif
()
add_example_executable
(
example_convnd_bwd_data_dl_fp16 convnd_bwd_data_dl_fp16.cpp
)
add_example_executable
(
example_convnd_bwd_data_dl_fp16 convnd_bwd_data_dl_fp16.cpp
)
target_link_libraries
(
example_convnd_bwd_data_dl_fp16 PRIVATE utility
)
target_link_libraries
(
example_convnd_bwd_data_dl_fp16 PRIVATE utility
)
example/18_batched_gemm_reduce/CMakeLists.txt
View file @
2f463a94
add_example_executable
(
example_batched_gemm_reduce_xdl_fp16 batched_gemm_reduce_xdl_fp16.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_batched_gemm_reduce_xdl_fp16 batched_gemm_reduce_xdl_fp16.cpp
)
endif
()
example/20_grouped_conv_bwd_weight/CMakeLists.txt
View file @
2f463a94
add_custom_target
(
example_grouped_conv_bwd_weight
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_custom_target
(
example_grouped_conv_bwd_weight
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp
)
add_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16
add_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16
example_grouped_conv_bwd_weight_xdl_bf16
)
example_grouped_conv_bwd_weight_xdl_bf16
)
endif
()
add_custom_target
(
example_grouped_conv_bwd_weight_dl
)
add_custom_target
(
example_grouped_conv_bwd_weight_dl
)
...
...
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
View file @
2f463a94
...
@@ -18,7 +18,9 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
...
@@ -18,7 +18,9 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
// Set split_k = 2 for xdl op, split_k = 1 for dl
// Set split_k = 2 for xdl op, split_k = 1 for dl
// Dl op doesn't support split_k > 1
// Dl op doesn't support split_k > 1
// TODO: Add Dl op split_k > 1 support
// TODO: Add Dl op split_k > 1 support
if
(
!
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
))
if
(
!
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
||
ck
::
get_device_name
()
==
"gfx1100"
||
ck
::
get_device_name
()
==
"gfx1101"
||
ck
::
get_device_name
()
==
"gfx1102"
))
{
{
split_k
=
2
;
split_k
=
2
;
}
}
...
...
example/21_gemm_layernorm/CMakeLists.txt
View file @
2f463a94
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_welford_fp16 gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_naive_fp16 gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
)
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_welford_fp16 gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
)
add_example_executable
(
example_gemm_layernorm_xdl_naive_fp16 gemm_layernorm_xdl_naive_fp16.cpp
)
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_naive_fp16 gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_layernorm_naive_single_kernel_fp16 gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
)
add_example_executable
(
example_gemm_layernorm_xdl_naive_fp16 gemm_layernorm_xdl_naive_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_layernorm_naive_single_kernel_fp16 gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
)
endif
()
example/26_contraction/contraction_bilinear_xdl_fp32.cpp
View file @
2f463a94
...
@@ -16,6 +16,7 @@
...
@@ -16,6 +16,7 @@
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -74,141 +75,6 @@ using DeviceOpInstanceMNNN = ck::tensor_operation::device::
...
@@ -74,141 +75,6 @@ using DeviceOpInstanceMNNN = ck::tensor_operation::device::
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimM
==
2
&&
NumDimN
==
2
&&
NumDimK
==
2
,
bool
>
=
false
>
struct
ReferenceContraction_M2_N2_K2
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ns_ks
,
Tensor
<
EDataType
>&
e_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_ms_ks_
{
a_ms_ks
},
b_ns_ks_
{
b_ns_ks
},
e_ms_ns_
{
e_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_ms_ks_
;
const
Tensor
<
BDataType
>&
b_ns_ks_
;
Tensor
<
EDataType
>&
e_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_M2_N2_K2
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_ms_ns
=
[
&
](
auto
m0
,
auto
m1
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
2
];
const
int
K1
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
3
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
for
(
int
k1
=
0
;
k1
<
K1
;
++
k1
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_ms_ks_
(
m0
,
m1
,
k0
,
k1
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_ns_ks_
(
n0
,
n1
,
k0
,
k1
)));
v_acc
+=
v_a
*
v_b
;
}
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_ms_ns_
(
m0
,
m1
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_ms_ns
,
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ns_ks
,
Tensor
<
EDataType
>&
e_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_ms_ks
,
b_ns_ks
,
e_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_M2_N2_K2"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
bool
do_verification
=
true
;
bool
do_verification
=
true
;
...
@@ -385,22 +251,22 @@ int main(int argc, char* argv[])
...
@@ -385,22 +251,22 @@ int main(int argc, char* argv[])
{
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
using
ReferenceOpInstance
=
ReferenceContraction_M2_N2_K2
<
NumDimM
,
using
ReferenceOpInstance
=
NumDim
N
,
ck
::
tensor_operation
::
host
::
ReferenceContraction_M2_N2_K2
<
NumDim
M
,
NumDim
K
,
NumDim
N
,
ADataType
,
NumDimK
,
B
DataType
,
A
DataType
,
CShuffle
DataType
,
B
DataType
,
Acc
DataType
,
CShuffle
DataType
,
AElementOp
,
AccDataType
,
B
ElementOp
,
A
ElementOp
,
PassThrough
>
;
BElementOp
>
;
auto
ref_
gemm
=
ReferenceOpInstance
{};
auto
ref_
op
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_
gemm
.
MakeInvoker
();
auto
ref_invoker
=
ref_
op
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
auto
ref_argument
=
a_ms_ks
,
b_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{}
);
ref_op
.
MakeArgument
(
a_ms_ks
,
b_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
);
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
...
...
example/26_contraction/contraction_bilinear_xdl_fp64.cpp
View file @
2f463a94
...
@@ -16,6 +16,7 @@
...
@@ -16,6 +16,7 @@
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -74,141 +75,6 @@ using DeviceOpInstanceMNNN = ck::tensor_operation::device::
...
@@ -74,141 +75,6 @@ using DeviceOpInstanceMNNN = ck::tensor_operation::device::
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimM
==
2
&&
NumDimN
==
2
&&
NumDimK
==
2
,
bool
>
=
false
>
struct
ReferenceContraction_M2_N2_K2
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ns_ks
,
Tensor
<
EDataType
>&
e_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_ms_ks_
{
a_ms_ks
},
b_ns_ks_
{
b_ns_ks
},
e_ms_ns_
{
e_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_ms_ks_
;
const
Tensor
<
BDataType
>&
b_ns_ks_
;
Tensor
<
EDataType
>&
e_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_M2_N2_K2
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_ms_ns
=
[
&
](
auto
m0
,
auto
m1
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
2
];
const
int
K1
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
3
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
for
(
int
k1
=
0
;
k1
<
K1
;
++
k1
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_ms_ks_
(
m0
,
m1
,
k0
,
k1
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_ns_ks_
(
n0
,
n1
,
k0
,
k1
)));
v_acc
+=
v_a
*
v_b
;
}
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_ms_ns_
(
m0
,
m1
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_ms_ns
,
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ns_ks
,
Tensor
<
EDataType
>&
e_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_ms_ks
,
b_ns_ks
,
e_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_M2_N2_K2"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
bool
do_verification
=
true
;
bool
do_verification
=
true
;
...
@@ -385,22 +251,22 @@ int main(int argc, char* argv[])
...
@@ -385,22 +251,22 @@ int main(int argc, char* argv[])
{
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
using
ReferenceOpInstance
=
ReferenceContraction_M2_N2_K2
<
NumDimM
,
using
ReferenceOpInstance
=
NumDim
N
,
ck
::
tensor_operation
::
host
::
ReferenceContraction_M2_N2_K2
<
NumDim
M
,
NumDim
K
,
NumDim
N
,
ADataType
,
NumDimK
,
B
DataType
,
A
DataType
,
CShuffle
DataType
,
B
DataType
,
Acc
DataType
,
CShuffle
DataType
,
AElementOp
,
AccDataType
,
B
ElementOp
,
A
ElementOp
,
PassThrough
>
;
BElementOp
>
;
auto
ref_
gemm
=
ReferenceOpInstance
{};
auto
ref_
op
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_
gemm
.
MakeInvoker
();
auto
ref_invoker
=
ref_
op
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
auto
ref_argument
=
a_ms_ks
,
b_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{}
);
ref_op
.
MakeArgument
(
a_ms_ks
,
b_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
);
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
...
...
example/26_contraction/contraction_scale_xdl_fp32.cpp
View file @
2f463a94
...
@@ -16,6 +16,7 @@
...
@@ -16,6 +16,7 @@
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -73,141 +74,6 @@ using DeviceOpInstanceMNN = ck::tensor_operation::device::
...
@@ -73,141 +74,6 @@ using DeviceOpInstanceMNN = ck::tensor_operation::device::
using
DeviceOpInstance
=
DeviceOpInstanceKKN
;
using
DeviceOpInstance
=
DeviceOpInstanceKKN
;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimM
==
2
&&
NumDimN
==
2
&&
NumDimK
==
2
,
bool
>
=
false
>
struct
ReferenceContraction_M2_N2_K2
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ns_ks
,
Tensor
<
EDataType
>&
e_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_ms_ks_
{
a_ms_ks
},
b_ns_ks_
{
b_ns_ks
},
e_ms_ns_
{
e_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_ms_ks_
;
const
Tensor
<
BDataType
>&
b_ns_ks_
;
Tensor
<
EDataType
>&
e_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_M2_N2_K2
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_ms_ns
=
[
&
](
auto
m0
,
auto
m1
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
2
];
const
int
K1
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
3
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
for
(
int
k1
=
0
;
k1
<
K1
;
++
k1
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_ms_ks_
(
m0
,
m1
,
k0
,
k1
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_ns_ks_
(
n0
,
n1
,
k0
,
k1
)));
v_acc
+=
v_a
*
v_b
;
}
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_ms_ns_
(
m0
,
m1
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_ms_ns
,
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ns_ks
,
Tensor
<
EDataType
>&
e_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_ms_ks
,
b_ns_ks
,
e_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_M2_N2_K2"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
bool
do_verification
=
true
;
bool
do_verification
=
true
;
...
@@ -368,22 +234,23 @@ int main(int argc, char* argv[])
...
@@ -368,22 +234,23 @@ int main(int argc, char* argv[])
{
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
using
ReferenceOpInstance
=
ReferenceContraction_M2_N2_K2
<
NumDimM
,
using
ReferenceOpInstance
=
NumDimN
,
ck
::
tensor_operation
::
host
::
ReferenceContraction_M2_N2_K2
<
NumDimM
,
NumDimK
,
NumDimN
,
ADataType
,
NumDimK
,
BDataType
,
ADataType
,
CShuffleDataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
AccDataType
,
BElementOp
,
AElementOp
,
PassThrough
>
;
BElementOp
>
;
auto
ref_gemm
=
ReferenceOpInstance
{};
auto
ref_op
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_invoker
=
ref_op
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
Tensor
<
float
>
empty_tensor
(
std
::
vector
<
ck
::
index_t
>
{},
std
::
vector
<
ck
::
index_t
>
{});
a_ms_ks
,
b_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
auto
ref_argument
=
ref_op
.
MakeArgument
(
a_ms_ks
,
b_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
);
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
...
...
example/26_contraction/contraction_scale_xdl_fp64.cpp
View file @
2f463a94
...
@@ -16,6 +16,7 @@
...
@@ -16,6 +16,7 @@
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -73,141 +74,6 @@ using DeviceOpInstanceMNN = ck::tensor_operation::device::
...
@@ -73,141 +74,6 @@ using DeviceOpInstanceMNN = ck::tensor_operation::device::
using
DeviceOpInstance
=
DeviceOpInstanceKKN
;
using
DeviceOpInstance
=
DeviceOpInstanceKKN
;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimM
==
2
&&
NumDimN
==
2
&&
NumDimK
==
2
,
bool
>
=
false
>
struct
ReferenceContraction_M2_N2_K2
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ns_ks
,
Tensor
<
EDataType
>&
e_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_ms_ks_
{
a_ms_ks
},
b_ns_ks_
{
b_ns_ks
},
e_ms_ns_
{
e_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_ms_ks_
;
const
Tensor
<
BDataType
>&
b_ns_ks_
;
Tensor
<
EDataType
>&
e_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_M2_N2_K2
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_ms_ns
=
[
&
](
auto
m0
,
auto
m1
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
2
];
const
int
K1
=
arg
.
a_ms_ks_
.
mDesc
.
GetLengths
()[
3
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
for
(
int
k1
=
0
;
k1
<
K1
;
++
k1
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_ms_ks_
(
m0
,
m1
,
k0
,
k1
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_ns_ks_
(
n0
,
n1
,
k0
,
k1
)));
v_acc
+=
v_a
*
v_b
;
}
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_ms_ns_
(
m0
,
m1
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_ms_ns
,
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_ms_ns_
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_ms_ks
,
const
Tensor
<
BDataType
>&
b_ns_ks
,
Tensor
<
EDataType
>&
e_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_ms_ks
,
b_ns_ks
,
e_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_M2_N2_K2"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
bool
do_verification
=
true
;
bool
do_verification
=
true
;
...
@@ -368,22 +234,23 @@ int main(int argc, char* argv[])
...
@@ -368,22 +234,23 @@ int main(int argc, char* argv[])
{
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
using
ReferenceOpInstance
=
ReferenceContraction_M2_N2_K2
<
NumDimM
,
using
ReferenceOpInstance
=
NumDimN
,
ck
::
tensor_operation
::
host
::
ReferenceContraction_M2_N2_K2
<
NumDimM
,
NumDimK
,
NumDimN
,
ADataType
,
NumDimK
,
BDataType
,
ADataType
,
CShuffleDataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
AccDataType
,
BElementOp
,
AElementOp
,
PassThrough
>
;
BElementOp
>
;
auto
ref_gemm
=
ReferenceOpInstance
{};
auto
ref_op
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_invoker
=
ref_op
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
Tensor
<
float
>
empty_tensor
(
std
::
vector
<
ck
::
index_t
>
{},
std
::
vector
<
ck
::
index_t
>
{});
a_ms_ks
,
b_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
auto
ref_argument
=
ref_op
.
MakeArgument
(
a_ms_ks
,
b_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
);
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
...
...
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
View file @
2f463a94
add_custom_target
(
example_grouped_conv_fwd_multiple_d
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_custom_target
(
example_grouped_conv_fwd_multiple_d
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int4 grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4
)
endif
()
# USE_BITINT_EXTENSION_INT4
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int4 grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4
)
endif
()
# USE_BITINT_EXTENSION_INT4
add_example_executable
(
example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16
)
endif
()
if
(
GPU_TARGETS MATCHES
"gfx1100"
OR GPU_TARGETS MATCHES
"gfx1101"
OR GPU_TARGETS MATCHES
"gfx1102"
)
if
(
GPU_TARGETS MATCHES
"gfx1100"
OR GPU_TARGETS MATCHES
"gfx1101"
OR GPU_TARGETS MATCHES
"gfx1102"
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_wmma_fp16 grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_wmma_fp16 grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp
)
endif
()
endif
()
add_example_executable
(
example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16
)
example/31_batched_gemm_gemm/CMakeLists.txt
View file @
2f463a94
add_example_executable
(
example_batched_gemm_gemm_xdl_fp32 batched_gemm_gemm_xdl_fp32.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_batched_gemm_gemm_xdl_fp16 batched_gemm_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_fp32 batched_gemm_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_bf16 batched_gemm_gemm_xdl_bf16.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_fp16 batched_gemm_gemm_xdl_fp16.cpp
)
if
(
NOT GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_batched_gemm_gemm_xdl_bf16 batched_gemm_gemm_xdl_bf16.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
if
(
NOT GPU_TARGETS MATCHES
"gfx940"
)
endif
()
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int4 batched_gemm_gemm_xdl_int4.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int4 batched_gemm_gemm_xdl_int4.cpp
)
endif
(
USE_BITINT_EXTENSION_INT4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
endif
()
\ No newline at end of file
example/35_splitK_gemm/CMakeLists.txt
View file @
2f463a94
add_custom_target
(
example_splitK_gemm_xdl
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_custom_target
(
example_splitK_gemm_xdl
)
add_example_executable
(
example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_bfp16 splitK_gemm_xdl_bfp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp
)
add_dependencies
(
example_splitK_gemm_xdl
add_example_executable
(
example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_bfp16 splitK_gemm_xdl_bfp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp
)
add_dependencies
(
example_splitK_gemm_xdl
example_splitK_gemm_xdl_fp32
example_splitK_gemm_xdl_fp32
example_splitK_gemm_xdl_fp16
example_splitK_gemm_xdl_fp16
example_splitK_gemm_xdl_bfp16
example_splitK_gemm_xdl_bfp16
example_splitK_gemm_xdl_int8
)
example_splitK_gemm_xdl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_int4
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_int4
)
endif
()
endif
()
endif
()
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
View file @
2f463a94
add_custom_target
(
example_grouped_conv_bwd_data
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_custom_target
(
example_grouped_conv_bwd_data
)
add_example_executable
(
example_grouped_conv_bwd_data_fp16 grouped_conv_bwd_data_fp16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_data_bias_relu_fp16 grouped_conv_bwd_data_bias_relu_fp16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_data_fp16 grouped_conv_bwd_data_fp16.cpp
)
add_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_fp16
)
add_example_executable
(
example_grouped_conv_bwd_data_bias_relu_fp16 grouped_conv_bwd_data_bias_relu_fp16.cpp
)
add_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_bias_relu_fp16
)
endif
()
add_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_fp16
)
\ No newline at end of file
add_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_bias_relu_fp16
)
example/40_conv2d_fwd_quantization/CMakeLists.txt
View file @
2f463a94
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_perchannel_quantization_int8 conv2d_fwd_xdl_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8 conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
)
endif
()
# Conv perlayer quantization
# Conv perlayer quantization
add_example_executable
(
example_conv2d_fwd_dl_perlayer_quantization_int8 conv2d_fwd_dl_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_dl_perlayer_quantization_int8 conv2d_fwd_dl_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp
)
# Conv perchannel quantization
# Conv perchannel quantization
add_example_executable
(
example_conv2d_fwd_dl_perchannel_quantization_int8 conv2d_fwd_dl_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_dl_perchannel_quantization_int8 conv2d_fwd_dl_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_perchannel_quantization_int8 conv2d_fwd_xdl_perchannel_quantization_int8.cpp
)
# Conv + bias + relu perlayer quantization
# Conv + bias + relu perlayer quantization
add_example_executable
(
example_conv2d_fwd_dl_bias_relu_perlayer_quantization_int8 conv2d_fwd_dl_bias_relu_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_dl_bias_relu_perlayer_quantization_int8 conv2d_fwd_dl_bias_relu_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
)
# Conv + bias + relu perchannel quantization
# Conv + bias + relu perchannel quantization
add_example_executable
(
example_conv2d_fwd_dl_bias_relu_perchannel_quantization_int8 conv2d_fwd_dl_bias_relu_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_dl_bias_relu_perchannel_quantization_int8 conv2d_fwd_dl_bias_relu_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8 conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
)
# Conv + bias + tanh perlayer quantization
# Conv + bias + tanh perlayer quantization
add_example_executable
(
example_conv2d_fwd_dl_bias_tanh_perlayer_quantization_int8 conv2d_fwd_dl_bias_tanh_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_dl_bias_tanh_perlayer_quantization_int8 conv2d_fwd_dl_bias_tanh_perlayer_quantization_int8.cpp
)
# Conv + bias + tanh perchannel quantization
# Conv + bias + tanh perchannel quantization
add_example_executable
(
example_conv2d_fwd_dl_bias_tanh_perchannel_quantization_int8 conv2d_fwd_dl_bias_tanh_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_dl_bias_tanh_perchannel_quantization_int8 conv2d_fwd_dl_bias_tanh_perchannel_quantization_int8.cpp
)
\ No newline at end of file
Prev
1
2
3
4
5
6
…
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment